
Tao et al. Advances in Difference Equations  (2016) 2016:58 
DOI 10.1186/s13662-016-0786-6

R E S E A R C H Open Access

Nonoscillation for higher-order nonlinear
delay dynamic equations on time scales
Chunyan Tao1, Taixiang Sun1,2* and Qiuli He3

*Correspondence:
stx1963@163.com
1College of Mathematics and
Information Science, Guangxi
University, Nanning, Guangxi
530004, China
2College of Information and
Statistics, Guangxi University of
Finance and Economics, Nanning,
Guangxi 530003, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we investigate the nonoscillation of the higher-order nonlinear delay
dynamic equation

(an–1(t)(an–2(t)(· · · (a1(t)x�(t))� · · · )�)
�
)
� + u(t)g(x(δ(t))) = R(t)

for t ∈ [t0,∞)T,

where T is a scale with supT =∞, t0 ∈ T, and [t0,∞)T = {t ∈ T : t ≥ t0}. We obtain
some sufficient conditions for all solutions of this equation to be nonoscillatory.

MSC: 34K11; 39A10; 39A99
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1 Introduction
A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus, the
set R of all real numbers, the set N of all natural numbers, and the set Z of all integers are
examples of time scales. On a time scale T, the forward jump operator, the backward jump
operator, and the graininess function are defined as

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, and μ(t) = σ (t) – t,

respectively.
In this paper, we investigate the nonoscillation of the higher-order nonlinear delay dy-

namic equation

(
an–(t)

(
an–(t)

(· · · (a(t)x�(t)
)� · · · )�)�)� + u(t)g

(
x
(
δ(t)

))
= R(t)

for t ∈ [t,∞)T, (.)

where t ∈ T, the time scale interval [t,∞)T ≡ {t ∈ T : t ≥ t}, ai ∈ Crd([t,∞)T, (,∞))
( ≤ i ≤ n – ), u, R ∈ Crd([t,∞)T,R), δ ∈ Crd([t,∞)T,T) is surjective with δ(t) ≤ t and
δ(t) → ∞ as t → ∞, and g ∈ C([t,∞)T ×R,R). Our goal is to obtain sufficient conditions
for all solutions of (.) to be nonoscillatory.
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We define

Ri
(
t, x(t)

)
=

{
x(t) if i = ,
ai(t)R�

i–(t, x(t)) if  ≤ i ≤ n – .
(.)

Then (.) reduces to the equation

R�
n–

(
t, x(t)

)
+ u(t)g

(
x
(
δ(t)

))
= R(t). (.)

We can suppose the supT = ∞ since we are interested in the oscillatory behavior of
solutions near infinity. By a solution of (.) we mean a nontrivial real-valued function
x ∈ Crd([Tx,∞)T,R), Tx ≥ t, such that Rn–(t, x(t)) ∈ C

rd([Tx,∞)T,R) and satisfies (.)
on [Tx,∞). Since we are working on a time scale, the notion of oscillation takes the form
of what is known as a generalized zero of a function. We say that x(t) has a generalized
zero at a point T if x(T)x(σ (T)) ≤ . A function is said to be oscillatory if it has arbitrarily
large generalized zeros and nonoscillatory otherwise.

In order to create a theory that can unify discrete and continuous analysis, the theory
of time scale was initiated by Hilger’s landmark paper [], which has received a lot of at-
tention. There exist a variety of interesting time scales, and they give rise to many appli-
cations (see []). We refer the reader to [, ] for further results on time-scale calculus.
In the thousands of papers in the literature, finding sufficient conditions for all solutions
of an equation to be oscillatory have been a major focus of study (see [–]), but finding
necessary and sufficient conditions for the existence of a nonoscillatory bounded solution
of an equation are more rare (see []).

Zhu and Wang [] studied the existence of nonoscillatory solutions to neutral dynamic
equation

[
x(t) + p(t)x

(
g(t)

)]� + f
(
t, x

(
h(t)

))
= .

Karpuz and Öcalan [] studied the asymptotic behavior of delay dynamic equations of
the form

[
x(t) + A(t)x

(
α(t)

)]� + B(t)F
(
x
(
β(t)

))
– C(t)G

(
x
(
γ (t)

))
= ϕ(t).

Wu et al. [] investigated the oscillation of the higher-order dynamic equation

{
rn(t)

[(
rn–(t)

(· · · (r(t)x(t)�
)� · · · )�)�]γ }� + F

(
t, x

(
τ (t)

))
= .

Sun et al. [] obtained some necessary and sufficient conditions for the existence of
nonoscillatory solution for the higher-order equation

{
a(t)

[(
x(t) – p(t)x

(
τ (t)

))�m]α}� + f
(
t, x

(
δ(t)

))
= .

2 Auxiliary results
We state the following conditions, which are needed in the sequel.

(H) There exist constants α,β ≥  and γ ≥  such that |g(u)| ≤ α|u|γ + β .
(H)

∫ ∞
t

�s
a(s)

∫ s
t

�s
a(s) · · · ∫ sn–

t
�sn–

an–(sn–)
∫ sn–

t
|R(sn)|�sn < ∞.
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(H)
∫ ∞

t
�s

a(s)
∫ s

t
�s

a(s) · · · ∫ sn–
t

�sn–
an–(sn–)

∫ sn–
t

|u(sn)|�sn < ∞.

We shall employ the following lemma.

Lemma . Let R+ ≡ [,∞) and H = {(t, s, s, . . . , sn–) :  ≤ sn– ≤ sn– ≤ · · · ≤ s ≤ t <
∞}. Suppose that r ∈ Crd([t,∞)T,R+), h ∈ Crd(H ,R+), and that p ∈ C(R+,R+) is nonde-
creasing with p(r) >  for r > . If there exists a constant c >  such that

r(t) ≤ c +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)p
(
r(sn)

)
�sn, (.)

then

r(t) ≤ P–
(

P(c) +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn

)
,

where

P(w) =
∫ w

w

ds
p(s)

, w, w > ,

P– is the inverse function of P, and

P(c) +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn ∈ Dom
(
P–). (.)

Proof Let z(t) denote the right side of inequality (.). Then z(t) = c, r(t) ≤ z(t), and

z�(t) =
∫ t

t

�s

∫ s

t

· · ·
∫ sn–

t

h(t, s, . . . , sn)p
(
r(sn)

)
�sn

≤ p
(
z(t)

)∫ t

t

�s

∫ s

t

· · ·
∫ sn–

t

h(t, s, . . . , sn)�sn.

Since z�(t) ≥  and p is nondecreasing, we obtain

z�(t)
p(z(t))

≤
∫ t

t

�s

∫ s

t

· · ·
∫ sn–

t

h(t, s, . . . , sn)�sn. (.)

Noting that

P�
(
z(t)

)
= z�(t)

∫ 



dh
p[hz(σ (t)) + ( – h)z(t)]

≤ z�(t)
p(z(t))

,

we have

P
(
z(t)

) ≤ P
(
z(t)

)
+

∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn.

Since P(w) is increasing, we have

z(t) ≤ P–
(

P(c) +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn

)
.

The proof is complete. �
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Notice that taking p(ν) = νξ and ξ >  in Lemma ., we have

P
(
z(t)

)
– P

(
z(t)

)
=


 – ξ

[
z–ξ (t) – z–ξ (t)

]
.

So


 – ξ

z–ξ (t) ≤ 
 – ξ

z–ξ (t) +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn,

that is,

z–ξ (t) ≥ z–ξ (t) + ( – ξ )
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn.

We have

r(t) ≤
[

c–ξ – (ξ – )
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn

] –
ξ–

,

provided that

∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn <
c–ξ

ξ – 
. (.)

3 Main results
Now, we state and prove our main results.

Theorem . Assume that conditions (H)-(H) hold and for some k ≥ ,

∫ ∞

t

�s

a(s)

∫ s

t

�s

a(s)
· · ·

∫ sn–

t

�sn–

an–(sn–)

∫ sn–

t

∣
∣u(sn)

∣
∣δkγ (sn)�sn < ∞. (.)

If x(t) is an oscillatory solution of (.) such that

∣
∣x(t)

∣
∣ = O

(
tk), t → ∞, (.)

then x(t) →  as t → ∞.

Proof We will show lim supt−→∞ x(t) =  and lim inft−→∞ x(t) = . Suppose that
lim supt−→∞ x(t) = L > . Then for any t ≥ t, there exists t ≥ t such that x(t) > L

 . In
view of conditions (H), (H), (.), and (.), there exist T ≥ t and K >  such that
|x(t)| ≤ Ktk (t ≥ T) and

∫ ∞

T

�s

a(s)

∫ s

T

�s

a(s)
· · ·

∫ sn–

T

�sn–

an–(sn–)

×
∫ sn–

T

{∣∣R(sn)
∣∣ +

∣∣u(sn)
∣∣[αKγ δkγ (sn) + β

]}
�sn <

L


. (.)
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Since x(t) is an oscillatory solution of (.), every Ri(t, x(t)) is oscillatory for i = , , . . . , n–.
Choose T < T ≤ T ≤ · · · ≤ Tn– such that

Rn–i
(
Ti, x(Ti)

)
Rn–i

(
σ (Ti), x

(
σ (Ti)

)) ≤ , i = , , . . . , n – , (.)

and

Rn–i
(
Ti, x(Ti)

) ≤ , i = , , . . . , n – . (.)

Integrating (.) from Ti to t, i = , , . . . , n – , successively n –  times with t > Tn–, we
obtain

ax�(t) = a(Tn–)x�(Tn–) +
∫ t

Tn–

R(Tn–, x(Tn–))
a(sn–)

�sn–

+
∫ t

Tn–

�sn–

a(sn–)

∫ sn–

Tn–

R(Tn–, x(Tn–))
a(sn–)

�sn–

+ · · ·
+

∫ t

Tn–

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
· · ·

∫ s

T

Rn–(T, x(T))
an–(s)

�s

+
∫ t

Tn–

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
· · ·

∫ s

T

[
R(s) – u(s)g

(
x
(
δ(s)

))]
�s

≤
∫ t

Tn–

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
· · ·

∫ s

T

[
R(s) – u(s)g

(
x
(
δ(s)

))]
�s. (.)

Choose Tn > Tn– so that

x(Tn)x
(
σ (Tn)

) ≤  and x(Tn) ≤ .

Take Tn+ ≥ Tn such that

x(Tn+) ≥ L


and x(t) > , t ∈ (Tn, Tn+).

Note that such Tn+ exists since lim supt−→∞ x(t) > L
 . Dividing (.) by a(t) and integrating

once more from Tn to Tn+, we have

L


≤ x(Tn+) ≤
∫ Tn+

Tn

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)

· · ·
∫ s

T

[
R(s) – u(s)g

(
x
(
δ(s)

))]
�s. (.)

It follows from (H) that

L


≤
∫ Tn+

Tn

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
· · ·

∫ s

T

[∣∣R(s)
∣∣ +

∣∣u(s)
∣∣∣∣g

(
x
(
δ(s)

))∣∣]�s

≤
∫ Tn+

Tn

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
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· · ·
∫ s

T

{∣∣R(s)
∣∣ +

∣∣u(s)
∣∣[α

∣∣x
(
δ(s)

)∣∣γ + β
]}

�s

≤
∫ Tn+

Tn

�sn–

a(sn–)

∫ sn–

Tn–

�sn–

a(sn–)
· · ·

∫ s

T

{∣∣R(s)
∣∣ +

∣∣u(s)
∣∣[αKγ δkγ (s) + β

]}
�s.

In view of (.), we have a contradiction.
In a similar fashion, we can show that lim inft−→∞ x(t) = . The proof is complete. �

Theorem . Assume that conditions (H)-(H) hold with γ ≥ . Then every oscillatory
solution of (.) is bounded.

Proof Let x(t) be an oscillatory solution of (.), and d >  be a constant.
If γ > , then it follows from conditions (H) and (H) that there exists T∗ ≥ t such that

∫ ∞

T∗

�s

a(s)

∫ s

T∗

�s

a(s)
· · ·

∫ sn–

T∗

�sn–

an–(sn–)

∫ sn–

T∗

[∣∣R(sn)
∣∣ + β

∣∣u(sn)
∣∣]�sn < d (.)

and

∫ ∞

T∗

�s

a(s)

∫ s

T∗

�s

a(s)
· · ·

∫ sn–

T∗

�sn–

an–(sn–)

∫ sn–

T∗
α
∣
∣u(sn)

∣
∣�sn <

d–γ

(γ – )
. (.)

We will show that eventually for any interval on which x(t) is positive, we have that x(t)
is bounded by a constant independent of x(t). Choose T∗ < T ≤ T ≤ · · · ≤ Tn– ≤ Tn

so that (.)-(.) are satisfied, δ(t) > Tn– for t ≥ Tn, and x(δ(Tn))x(δ(σ (Tn))) ≤  with
x(δ(Tn)) ≤ . As in the proof of Theorem ., using (.), we have

x
(
δ(t)

) ≤
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)

· · ·
∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

{∣∣R(sn)
∣∣ +

∣∣u(sn)
∣∣[α

∣∣x
(
δ(sn)

)∣∣γ + β
]}

�sn

=
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)
· · ·

∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

[∣∣R(sn)
∣
∣ + β

∣
∣u(sn)

∣
∣]�sn

+
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)
· · ·

∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

∣
∣u(sn)

∣
∣α

∣
∣x

(
δ(sn)

)∣∣γ �sn

≤ d +
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)

· · ·
∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

∣∣u(sn)
∣∣α

∣∣x
(
δ(sn)

)∣∣γ �sn. (.)

We can apply Lemma . with c = d, h(s, s, . . . , sn) = α|u(sn)|
a(s)a(s)···an–(sn–) , ξ = γ , and

p(s) = sγ . From condition (.) we have

d–γ – (γ – )α
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)
· · ·

∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

∣∣u(sn)
∣∣�sn

> d–γ – (γ – )
d–γ

(γ – )
=

d–γ


> .
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Thus, (.) holds. It follows from Lemma . that

x
(
δ(t)

)

≤
[

d–γ – (γ – )α
∫ δ(t)

T

�s

a(s)

∫ s

T

�s

a(s)
· · ·

∫ sn–

T

�sn–

an–(sn–)

∫ sn–

T

∣∣u(sn)
∣∣�sn

] –
γ –

≤ 


γ –

d
.

So x(δ(t)) is bounded. A similar argument holds for intervals where x(t) is negative.
If γ = , then choose T̂ ≥ t so that (.) holds with T∗ replaced by T̂ and

∫ ∞

T̂

�s

a(s)

∫ s

T̂

�s

a(s)
· · ·

∫ sn–

T̂

�sn–

an–(sn–)

∫ sn–

T̂

∣∣u(sn)
∣∣�sn <


α + 

.

Choose T∗ < T ′
 ≤ T ′

 ≤ · · · ≤ T ′
n– ≤ T ′

n so that Rn–i(T ′
i , x(T ′

i ))Rn–i(σ (T ′
i ), x(σ (T ′

i ))) ≤ 
with Rn–i(T ′

i , x(T ′
i )) ≥  for  ≤ i ≤ n and δ(t) > T ′

n– for t ≥ T ′
n. As in the proof of Theo-

rem ., using (.), we have

x
(
δ(t)

) ≥ –d –
∫ δ(t)

T ′


�s

a(s)

∫ s

T ′


�s

a(s)
· · ·

∫ sn–

T ′


�sn–

an–(sn–)

∫ sn–

T ′


∣
∣u(sn)

∣
∣α

∣
∣x

(
δ(sn)

)∣∣�sn.

Combining (.) with this inequality, we obtain

∣∣x
(
δ(t)

)∣∣ ≤ d +
∫ δ(t)

L

�s

a(s)

∫ s

L

�s

a(s)

· · ·
∫ sn–

L

�sn–

an–(sn–)

∫ sn–

L

∣
∣u(sn)

∣
∣α

∣
∣x

(
δ(sn)

)∣∣�sn, (.)

where L = min{T, T ′
}. Denoting by z(t) the right side of inequality (.), we see that

|x(δ(t))| ≤ z(t), z(δ(t)) ≤ z(t), and

z(t) = d +
∫ δ(t)

L

�s

a(s)

∫ s

L

�s

a(s)
· · ·

∫ sn–

L

�sn–

an–(sn–)

∫ sn–

L

∣∣u(sn)
∣∣α

∣∣x
(
δ(sn)

)∣∣�sn

≤ d +
∫ δ(t)

L

�s

a(s)

∫ s

L

�s

a(s)
· · ·

∫ sn–

L

�sn–

an–(sn–)

∫ sn–

L

∣∣u(sn)
∣∣αz(sn)�sn

≤ d + z(t)
∫ δ(t)

L

�s

a(s)

∫ s

L

�s

a(s)
· · ·

∫ sn–

L

�sn–

an–(sn–)

∫ sn–

L

∣∣u(sn)
∣∣α�sn

≤ d +
α

α + 
z(t),

which implies x(δ(t)) ≤ d(α + ). The proof is complete. �

After seeing the proof of Theorem ., the proof of the following Theorem . becomes
obvious.

Theorem . Assume that conditions (H)-(H) hold with γ ≥ . If (.) holds, then every
oscillatory solution of (.) converges to zero as t → ∞.
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In a similar fashion as before, we can show the following theorem.

Theorem . Assume that conditions (H)-(H) hold with  < γ < . If (.) holds, then
every oscillatory solution of (.) is bounded and converges to zero as t → ∞.

Proof Notice that taking p(ν) = νξ and  < ξ <  in Lemma ., we have

P
(
z(t)

)
– P

(
z(t)

)
=


 – ξ

[
z–ξ (t) – z–ξ (t)

]
.

So


 – ξ

z–ξ (t) ≤ 
 – ξ

z–ξ (t) +
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn,

that is,

z(t) ≤
[

z–ξ (t) + ( – ξ )
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn

] 
–ξ

.

We have

r(t) ≤
[

z–ξ (t) + ( – ξ )
∫ t

t

�s

∫ s

t

�s

∫ s

t

· · ·
∫ sn–

t

h(s, s, . . . , sn)�sn

] 
–ξ

.

Further, the proof is similar to that of Theorem ., so we have

x
(
δ(t)

) ≤
[

d–γ + ( – γ )α
∫ δ(t)

t

�s

a(s)

∫ s

t

�s

a(s)

· · ·
∫ sn–

t

�sn–

an–(sn–)

∫ sn–

t

∣∣u(sn)
∣∣�sn

] 
–γ

.

So we can conclude that every oscillatory solution of (.) is bounded, and by Theorem .
x(t) converges to zero as t → ∞. The proof is complete. �

Theorem . Assume that conditions (H)-(H) hold with g() = . If there exists N > 
such that for all large T , either

lim inf
t−→∞

∫ t

T

[
R(s) – N

∣
∣u(s)

∣
∣]�s >  (.)

or

lim sup
t−→∞

∫ t

T

[
R(s) + N

∣
∣u(s)

∣
∣]�s < , (.)

then all solutions of (.) are nonoscillatory.

Proof For contradiction, let x(t) be an oscillatory solution of (.). By Theorem . and
Theorem ., x(t) converges to  as t → ∞. Hence, there exists T ≥ t such that
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|g(x(δ(t)))| ≤ N for t ≥ T. From (.) we have

R(t) – N
∣∣u(t)

∣∣ ≤ R�
n–

(
t, x(t)

) ≤ R(t) + N
∣∣u(t)

∣∣. (.)

If (.) holds, then we choose T ≥ T such that δ(t) ≥ T for t ≥ T ,

Rn–
(
T , x(T)

)
Rn–

(
σ (T), x

(
σ (T)

)) ≤ , Rn–
(
T , x(T)

) ≥ , (.)

and integrating the left inequality in (.) from T to t, we obtain

Rn–
(
T , x(T)

)
+

∫ t

T

[
R(s) – N

∣
∣u(s)

∣
∣]�s ≤ Rn–

(
t, x(t)

)
.

This is a contradiction since if x(t) is oscillatory, then Rn–(t, x(t)) is also oscillatory.
If (.) holds, then we choose T so that the second inequality in (.) is reversed. This

completes the proof of the theorem. �

4 Example
In this section, we give an example to illustrate our main results.

Lemma . [, ] Assume that s, t ∈ T and g ∈ Crd(T×T,R). Then

∫ t

s

[∫ t

η

g(η, ζ )�ζ

]
�η =

∫ t

s

[∫ σ (ζ )

s
g(η, ζ )�η

]
�ζ .

Example . Let T = {qn : n ∈ Z} ∪ {} with q > . Consider the higher-order dynamic
equation

(
t
(
t
(· · · (t+ 

γ x�
)� · · · )�)�)� +



t+kγ + 
γ

∣
∣∣
∣x

(
t
q

)∣
∣∣
∣

γ

sgn x
(

t
q

)
=



t+ 
γ

, (.)

where t ∈ [q,∞)T, γ > , k ≥ , a(t) = t+ 
γ , ai(t) = t ( ≤ i ≤ n – ), u(t) = 

t+kγ + 
γ

, δ(t) = t
q ,

R(t) = 

t+ 
γ

, and g(u) = |u|γ sgn(u).

It is easy to verify that R(t) and u(t) satisfy the condition (.). We will use the following
inequality: if s > t ≥ q, then

∫ s

t


τ

�τ =
∫ qt

t


τ

�τ +
∫ qt

qt


τ

�τ + · · · +
∫ qnt=s

qn–t


τ

�τ

=
qt – t

t
+

qt – qt
qt

+ · · · +
qnt – qn–t

qn–t

= n(q – ) ≤ qn+ ≤ qnt = s.

Applying Lemma . and the last inequality, we have

∫ ∞

q

�s

a(s)

∫ s

q

�s

a(s)
· · ·

∫ sn–

q

�sn–

an–(sn–)

∫ sn–

q

∣∣u(sn)
∣∣�sn

≤
∫ ∞

q

�s

a(s)

∫ s

q

�s

a(s)
· · ·

∫ sn–

q

�sn–

an–(sn–)

∫ sn–

q

∣
∣R(sn)

∣
∣�sn
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=
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q



s
+ 

γ
n

�sn

=
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q
�sn–

∫ sn–

q


sn–



s
+ 

γ
n

�sn

≤
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q
�sn–

∫ σ (sn–)

q


sn–



s
+ 

γ
n

�sn

=
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q

�sn

s
+ 

γ
n

∫ sn–

sn


sn–

�sn–

≤
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q

sn–

s
+ 

γ
n

�sn

=
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q
�sn–

∫ sn–

q



s
+ 

γ
n

�sn

≤
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q
�sn–

∫ σ (sn–)

q



s
+ 

γ
n

�sn

=
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

�sn–

sn–

∫ sn–

q
�sn

∫ sn–

sn



s
+ 

γ
n

�sn–

≤
∫ ∞

q

�s

s
+ 

γ



∫ s

q

�s

s
· · ·

∫ sn–

q

sn–

s
+ 

γ
n

�sn

· · ·

≤
∫ ∞

q

�s

s
+ 

γ



∫ s

q

s

s
+ 

γ
n

�sn ≤
∫ ∞

q

�s

s
+ 

γ



∫ σ (s)

q



s
+ 

γ
n

�sn

=
∫ ∞

q

�sn

s
+ 

γ
n

∫ ∞

sn



s
+ 

γ



�s

≤
∫ ∞

q

�sn

s
+ 

γ
n

∫ ∞

q



s
+ 

γ



�s =
(

q – 

q

γ – 

)

< ∞.

Thus, conditions (H)-(H) and (.) hold. Then it follows from Theorem . that every
solution x(t) of (.) is nonoscillatory.
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