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Kirk and Saliga and then Chen et al. introduced lower semicontinuity from above, a generalization
of sequential lower semicontinuity, and they showed that well-known results, such as Ekeland’s
variational principle and Caristi’s fixed point theorem, remain still true under lower semicon-
tinuity from above. In a previous paper we introduced a new concept that generalizes lower
semicontinuity from above. In the present one we continue such study, also introducing other
two new generalizations of lower semicontinuity from above; we study such extensions, compare
each other five concepts (sequential lower semicontinuity, lower semicontinuity from above, the
one by us previously introduced, and the two here defined) and, in particular, we show that the
above quoted well-known results remain still true under one of our such generalizations.

1. Introduction

In [1] Chen et al. proposed the following generalization ([1, Definitions 1.2 and 1.5]).

Definition 1.1. Let (X, τ) be a topological space. Let x ∈ X. A function f : X → [−∞,+∞] is
said to be sequentially lower semicontinuous from above at x (“d-slsc at x”) if (xn)n∈N sequence
of elements of X for which xn → x and (f(xn))n∈N weakly decreasing sequence, implies
f(x) ≤ limn→+∞f(xn). Moreover f is said to be sequentially lower semicontinuous from above
(“d-slsc”) if it is sequentially lower semicontinuous from above at x for every x ∈ X.

Actually the same definition was previously considered by Kirk and Saliga in [2,
Section 2, definition above Theorem 2.1]. Both in [1, 2] this concept is called lower
semicontinuity from above; furthermore also Borwein and Zhu in [3, Exercise 2.1.4] used the
same concept, naming it partial lower semicontinuity; here we are calling it sequential lower
semicontinuity from above, as it is a generalization of sequential lower semicontinuity.
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Moreover the authors of [1] conjectured that, for convex functions on normed
spaces, sequential lower semicontinuity from above is equivalent to weak sequential lower
semicontinuity from above (see [1, some rows below Definition 1.5]). We exhibited some
examples showing that such conjecture is false (see [4, Example 3.1 and Examples sketched
in Remark 3.1]).

In [4] we defined the following new concept, that generalizes sequential lower
semicontinuity from above.

Definition 1.2 (see [4, Definition 4.1]). Let (X, τ) be a topological space. Let f be a function,
f : X → [−∞,+∞]. Then f is said to be

(i) inf-sequentially lower semicontinuous at x ∈ X (“i-slsc at x”) if (xn)n∈N sequence of
elements of X for which xn → x and limn→+∞f(xn) = inf f, implies f(x) = inf f
(equivalently, in the above condition the part limn→+∞f(xn) = inf f can be replaced
by f(xn) ↘ inf f);

(ii) inf-sequentially lower semicontinuous (“i-slsc”) if it is i-slsc at x for every x ∈ X.

In particular we showed that for convex functions on normed spaces, such concept is
equivalent to its weak counterpart ([4, Theorem 4.1]).

Here, with the purpose to continue the study already begun in [4], we define other
two new concepts (Definitions 3.1), called by us below sequential lower semicontinuity from
above (bd-slsc) and uniform below sequential lower semicontinuity from above (ubd-slsc), that
generalize sequential lower semicontinuity from above and we show the following.

(a) As it already happened for i-slsc, for convex functions on normed spaces, one of
such new concepts (bd-slsc) is equivalent to its weak counterpart (Theorem 4.1 and
part (e) of Remarks 3.2); also by means of such result, it can be seen that, for convex
functions on normed spaces and indifferently with respect to the topology induced
by norm or to the weak topology, i-slsc and bd-slsc are each other equivalent (part
(e) of Remarks 3.2, part (b) of Theorem 3.4 and Corollary 4.2).

(b) Some results listed in [1, 2], such as Ekeland’s variational principle and Caristi’s
fixed point theorem, remain still true under an hypothesis of ubd-slsc (Section 5).

Moreover we study the five concepts of sequential lower semicontinuity, lower
semicontinuity from above, inf-sequential lower semicontinuity, below sequential lower
semicontinuity from above and uniform below sequential lower semicontinuity from above,
supplying further results and examples, with the purpose of getting a comparison between
such five concepts, both in the general case (Section 3) and in the case of convex functions
(Section 4). In particular, in Theorem 4.10 we prove that every convex ubd-slsc function on a
Banach space is continuous in the points of the interior of its effective domain.

Finally, in Section 5, we also give some examples to show that, in the generalization of
Ekeland’s variational principle by us proved, some hypotheses cannot be weakened.

2. Notations and Preliminaries

Notations 1. In the sequel, unless otherwise specified, all linear spaces will be considered
on the field F, where F = R or F = C. As convention, in [−∞,+∞], inf ∅ = +∞ and the
product 0 · (+∞) is considered equal to 0. By N we denote the set of natural numbers (0
included), while Z+ := {n ∈ Z : n > 0} and R+ := {x ∈ R : x > 0}; δn,m is the Kronecker
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symbol. If Z is a linear space on R or on C, let dim Z denote the algebraic dimension
of Z, and, if A ⊆ Z, let spA and co A denote, respectively, the linear subspace of Z that is
generated by A and the convex hull of A; if x, y ∈ Z let [x, y] := {λx + (1 − λ)y : λ ∈ [0, 1]}
and, if x /=y, let ]x, y] := {λx+(1−λ)y : λ ∈ [0, 1[}; if 0 ∈ A, then theMinkowski functional (or
gauge) of A is the function gA : Z → [0,+∞] defined by gA(x) := inf{α ∈ R+ : x ∈ αA} for
every x ∈ Z. If Z is a topological linear space, let Z′ denote the continuous dual of Z; if
A ⊆ Z, let coA be the closure of co A. If Z is a normed space, then |z|Z indicates the norm
in Z of an element z ∈ Z and SZ(a, r) := {z ∈ Z : |z − a|Z < r}(a ∈ Z, r ∈ R+). Let �2 and
c0, respectively, denote the real, or complex, Banach spaces of the sequences whose squares of
moduli of coordinates are summable, and of the infinitesimal sequences. If A and B are sets,
if C ⊆ A and f : A → B is a function, then #A denotes the cardinality of A, f|C means the
restriction of f to C; if g : A → [−∞,+∞] is a function, then dom g := {x ∈ A : g(x) < +∞}
denotes the effective domain of g. If Z is a topological space and if A ⊆ Z, let ∂A be the
boundary of A. Let E denote the integer part function. If (τn)n∈N is a sequence of elements
of [−∞,+∞] and if � ∈ [−∞,+∞], then τn ↘ � means that (τn)n∈N is a weakly decreasing
sequence with limn→+∞τn = �. Henceforth we will shorten both lower semicontinuous and
lower semicontinuity in “lsc′′, both sequentially lower semicontinuous and sequential lower
semicontinuity in “slsc”.

Definitions 2.1. Let X be a linear space on F, A ⊆ X, y ∈ A. Then (in accordance with [5])

(a) the point y is said to be an internal point of A if for every x ∈ X there exists an
αx ∈ R+ such that y + λx ∈ A for all λ ∈ [0, αx];

(b) (see [5, page 8, above Exercise 1.1.20, and page 9, between the two Examples]) A
is said to be absorbing if 0 is an internal point of A, that is, if for every x ∈ X there
exists an αx ∈ R+ such that λx ∈ A for all λ ∈ [0, αx];

(c) the set A is said to be balanced if λx ∈ A for every x ∈ A and λ ∈ F such that |λ| ≤ 1;

(d) the point y is said to be an extreme point of A if x, z ∈ A, λ ∈ ]0, 1[ for which
y = λx + (1 − λ)z implies x = z = y.

Example 2.2. For every infinite dimensional X normed space on F there exists C an absorbing
balanced convex subset of SX(0, 1), C without interior points.

Let T :X → X be a linear bijective not continuous operator (e.g., let en ∈ X be such that
|en|X = 1(n ∈ N), en /= em if n,m ∈ N, n /=m, {en : n ∈ N} linearly independent set of vectors,
B a Hamel basis of X such that {en : n ∈ N} ⊆ B, T(en) := nen for every n ∈ N, T(b) := b

for every b ∈ B \ {en : n ∈ N}, T extended for linearity to all X). Let C := T−1(SX(0, 1)) ∩
SX(0, 1). Then C is a balanced convex as intersection of two balanced convex sets, is bounded
because contained in SX(0, 1), is absorbing as intersection of two absorbing sets (T−1(SX(0, 1))
is absorbing because if x ∈ X \ {0} then T(x) ∈ X \ {0} and so λx ∈ T−1(SX(0, 1)) for every
λ ∈ F with |λ| ≤ 1/|T(x)|X). Moreover, if by absurd there existed an interior point of C, then,
being C balanced and convex, 0 should be an interior point of C and therefore T should be a
continuous operator, that is not possible.

Here we are providing also another example, which will be useful in the construction
of the subsequent Example 4.8; to this purpose we describe expressly a set C, that can be
obtained using Theorem 1 of [6], provided in the proof of such theorem a bounded Hamel
basis (in case constituted by elements having norm less or equal to 1) is considered, and with
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a little change in the complex case for showing that “0 is not an interior point of C” (and so
there are no interior points of C, as above noted).

Let en ∈ X be such that |en|X ≤ 1(n ∈ N), en /= em if n, m ∈ N, n /=m, {en : n ∈ N}
linearly independent set of vectors, B a Hamel basis of X such that {en : n ∈ N} ⊆ B, |b|X ≤ 1
for every b ∈ B,D := {(1/(n + 1))en : n ∈ N} ∪ (B \ {en : n ∈ N}). Then it is enough to define

C := co{αd : α ∈ F, |α| = 1, d ∈ D}. (2.1)

Such a C is obviously a balanced set; for obtaining the remaining properties the same proof of
Theorem 1 of [6] still works, with the unique following little change if F = C for showing that
cd /∈C when c > 1 and d ∈ D (i.e., one of the points of the demonstration of [6]): if by absurd
such a cd ∈ C then, using that D is a Hamel basis, there should exist m ∈ Z+, λ1, . . . , λm ∈
[0, 1], with

∑m
j=1 λj = 1, α1, . . . , αm ∈ C, with |αj | = 1 for every j ∈ {1, . . . , m} such that cd =

∑m
j=1 λjαjd, therefore c =

∑m
j=1 λjαj , that is impossible because |∑m

j=1 λjαj | ≤
∑m

j=1 λj |αj | = 1
while c > 1.

Theorem 2.3. Let X be a real normed space with algebraic dimension greater or equal to 2; then
∂SX(0, 1) is an arcwise connected set.

Proof. Let x, y ∈ ∂SX(0, 1), x /=y. We will distinguish two cases:

(a) x /= − y,

(b) x = −y.

In the case (a) the arc γ : t ∈ [0, 1] �→ ((1 − t)x + ty)/|(1 − t)x + ty|X connects x to y:
in fact γ(0) = x, γ(1) = y; moreover γ is defined and continuous, as, if by absurd there exists
t ∈ [0, 1] such that (1 − t)x = −ty, then 1 − t = (1 − t)|x|X = t|y|X = t, consequently t = 1/2 and
so (1/2)x = −(1/2)y, that is in contradiction with the assumption of (a).

In the case (b), being dim X ≥ 2, there exists z ∈ ∂SX(0, 1) linearly independent from
x and y, hence z/= − x and z/= − y; then an arc connecting x to y can be found joining
together two arcs, one connecting x to z and another connecting z to y, both of them existing
in consequence of (a).

Lemma 2.4. Let I ⊆ R be an interval, x ∈ [−∞,+∞] an extreme of I, � ∈ [−∞,+∞[, f : I →
[−∞,+∞] a convex function, xn ∈ I, xn /=x(n ∈ N) such that xn → x and f(xn) ↘ �. Then
� = inf {f(y) : y ∈ I \ {x}}.

Proof. If � = −∞, then the conclusion is obvious; therefore we can suppose � ∈ R. Let z ∈
I\{x}. Then there exist nz ∈ N such that f(xnz) ∈ R, xnz ∈ ]x, z[ andmz ∈ N,mz > nz such that
xmz ∈ ]x, xnz[; therefore, being � ≤ f(xmz) ≤ f(xnz), we deduce that f(xmz) ∈ R and, for the
convexity of f,we get f(xnz) ≤ ((xmz−xnz)/(xmz−z))f(z)+((xnz−z)/(xmz−z))f(xmz),whence,
using in the second inequality that f(xnz) ≥ f(xmz), we obtain f(z) ≥ ((xmz − z)/(xmz −
xnz))f(xnz) − ((xnz − z)/(xmz − xnz))f(xmz) ≥ f(xmz) ≥ �.

Theorem 2.5. Let X be an infinite dimensional normed space. Then there exists A ⊆ X, A infinite,
countable and linearly independent set such that, for every M, N ⊆ A,M ∩ N = ∅, it is spM ∩
sp N = {0}.
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Proof. It is enough to use, with respect to an infinite dimensional closed separable subspace Y
ofX, metrizability and compactness of SY ′(0, 1)with respect to the weak ∗ topology (see, e.g.,
[7, proof of Theorem V.5.1], [8, Theorem III.10.2]), and [9, proof of Proposition 1.f.3].

3. New Weaker Concepts of Sequential Lower Semicontinuity

Definitions 3.1. Let (X, τ) be a topological space. Let f be a function, f : X → [−∞,+∞].
Then, if f is not +∞ identically, f is said to be

(i) below sequentially lower semicontinuous from above at x ∈ X (“ bd-slsc at x”) if there
exists ax ∈ ]infXf,+∞] such that: (xn)n∈N sequence of elements ofX for which xn →
x and f(xn) ↘ limn→+∞f(xn) ≤ ax, implies f(x) ≤ limn→+∞f(xn);

(ii) below sequentially lower semicontinuous from above (“bd-slsc”) if it is bd-slsc at x for
every x ∈ X;

(iii) uniformly below sequentially lower semicontinuous from above (“ubd-slsc′′) if there
exists a ∈ ]infXf,+∞] such that: x ∈ X, (xn)n∈N sequence of elements ofX for which
xn → x and f(xn) ↘ limn→+∞f(xn) ≤ a, imply f(x) ≤ limn→+∞f(xn).

When f has value +∞ constantly, all these properties are assumed to hold in a vacuous
way.

In the above definitions, equivalently, we can replace the part “f(xn) ↘
limn→+∞f(xn) ≤ ax (resp., ≤ a)” with the following: “(f(xn))n∈N weakly decreasing sequence
and f(xn) ≤ ax (resp., ≤ a) for every n ∈ N.” Indeed one of the two implications is obvious
(in both cases) and the other can be proved, for example in the case of (i) (being the other
case similar), in this way: if the above variant of definition (i) is verified relatively to a certain
value of ax and if bx is such that inf f < bx < ax, then, for every sequence (xn)n∈N of elements
of X for which xn → x and f(xn) ↘ limn→+∞f(xn) ≤ bx, there exists k ∈ N such that
f(xn) ≤ ax for every n > k and so we conclude, applying such variant to the sequence (xn)n>k.

Remarks 3.2. Here we will note some easy comparison between Definitions 3.1 and other
previously considered generalizations of sequential lower semicontinuity (Definitions 1.1
and 1.2).

Let (X, τ) be a topological space. Let x ∈ X. Let f be a function, f : X → [−∞,+∞].
We note that

(a) if f is d-slsc at x, then f is bd-slsc at x;

(b) if f is bd-slsc at x, then f is i-slsc at x, because if f is not constantly +∞, if xn → x
and f(xn) ↘ inf f, then limn→+∞f(xn) ≤ ax and f(x) ≤ inf f ;

(c) if f is d-slsc, then f is ubd-slsc, because if f is not constantly +∞ it follows that (iii)
of Definitions 3.1 is true with respect to an arbitrary value of a > inf f ;

(d) if f is ubd-slsc, then f is bd-slsc;

(e) if f is bd-slsc, then f is i-slsc, for (b);

(f) “f is ubd-slsc and (iii) of Definitions 3.1 is verified with respect to a = +∞” if and
only if f is d-slsc.
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Remarks 3.3. Let(X, τ) be a topological space. Let x ∈ X. Let f be a function, f : X →
[−∞,+∞].We observe that:

(a) if lim infy→xf(y) > infXf, then f is bd-slsc at x, because it suffices to consider
ax ∈]infXf, lim infy→xf(y)[;

(b) for verifying that f satisfies ubd-slscwith respect to a certain a > infXf (a as in (iii)
of Definitions 3.1), it is enough to prove that f|{z∈X:lim infy→ zf(y)≤a} is ubd-slsc.

Theorem 3.4. Let (X, τ) be a topological space satisfying the first axiom of countability. Let x ∈ X.
Let f be a function, f : X → [−∞,+∞]. The following implications are true:

(a) if f is i-slsc at x, then f is bd-slsc at x;

(b) if f is i-slsc, then f is bd-slsc (so, under hypothesis of fulfillment of the first axiom of
countability, a vice-versa of part (e) of Remarks 3.2 is true).

Proof. It is sufficient to show the part (a) of the theorem.
By absurd, we suppose that f is not bd-slsc at x; then f is not +∞ constantly and,

choosing a sequence (ak)k∈N, with ak > inf f for every k ∈ N, such that ak → inf f, for every
k ∈ N there exists a sequence (xn,k)n∈N of elements of X for which xn,k → x, (f(xn,k))n∈N
is a weakly decreasing sequence with limn→+∞f(xn,k) ≤ ak and f(x) > limn→+∞f(xn,k);
moreover, from the hypothesis, we deduce that inf f < limn→+∞f(xn,k) for every k ∈ N.
On the other hand, since τ verifies the first axiom of countability, there exists {Uh : h ∈ N}
base for the neighbourhood system of x,withUh+1 ⊆ Uh for every h ∈ N.

Now we will define a sequence (xn)n∈N by means of which we will produce a
contradiction. Let x0 = xn0,0, where n0 = min{n ∈ N : xn,0 ∈ U0, inf f < f(xn,0) < a0 + 1} and,
for m ∈ N, chosen x0, . . . , xm with inf f < f(xh) (h ∈ {0, . . . , m}), let xm+1 = xnm+1,k(m+1), where
k(m+1) = min{k ∈ N : k ≥ m+1, ak < f(xm)} and nm+1 = min{n ∈ N : xn,k(m+1) ∈ Um+1, inf f <
f(xn,k(m+1)) < ak(m+1) + 1/(m + 2), f(xn,k(m+1)) ≤ f(xm)} (these choices are possible, because
f(xn,k) ≥ limp→+∞f(xp,k) > inf f for every n, k ∈ N). For construction xn → x, f(xn) ↘ inf f ;
furthermore f(x) > inf f, because f(x) > limn→+∞f(xn,k) > inf f (k ∈ N); but these facts are
in contradiction with the i-slsc of f at x.

Theorem 3.5. Let X be a topological linear space and let f : X → [0,+∞] be a function such that

f(αx) = αf(x) for every α ∈ [0,+∞[ and for every x ∈ X. (3.1)

Suppose that f is ubd-slsc. Then f is slsc too. Therefore, for such a function f, ubd-slsc, d-slsc,
and slsc are each other equivalent conditions (see part (c) of Remarks 3.2).

Proof. Let a be relative to the ubd-slsc of f as in (iii) of Definitions 3.1. Then, since infXf =
f(0) = 0, we get that a > 0.

Let x ∈ X and let (xn)n∈N be a sequence of elements of X such that xn → x; let α :=
lim infn→+∞f(xn).We will conclude if we will prove that f(x) ≤ α.

Now, since the desired conclusion is obvious if α = +∞, it is enough that we distinguish
two cases:

(i) α = 0,

(ii) α ∈ R+.
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In the case (i), being α = 0 = inf f, then there exists a subsequence (f(xnk))k∈N of (f(xn))n∈N
constantly 0 or strictly decreasing to 0: anyhow such subsequence is weakly decreasing and
converging to 0 < a; so, applying ubd-slsc of f, the desired result follows.

In the second case, (ii), let (xnk)k∈N be a subsequence of (xn)n∈N such that
limk→+∞f(xnk) = α; let k0 ∈ N be such that f(xnk) ∈ R+ for every k > k0 and let
yk := axnk/f(xnk) for every k ∈ N, k > k0; then, being X a topological linear space, it holds
that yk → ax/α, moreover f(yk) = (a/f(xnk))f(xnk) = a for every k > k0; so, using ubd-slsc
of f , we get f(ax/α) ≤ a whence f(x) = (α/a)f(ax/α) ≤ α.

Remark 3.6. Note that, if X is a topological linear space, if A ⊆ X is an absorbing set and
if f = gA, then (3.1) is true (see [5, Theorem 1.2.4 (i) and definition foregoing]).

Examples 3.7. (a)There exist a bounded function g: R → R and a point z ∈ R such that g is
ubd-slsc, but g is not d-slsc at z.

(b)There exists a bounded function h : R → R such that h is bd-slsc, but h is not
ubd-slsc.

(c) Let W = �2 (on the field F) endowed with its weak topology. Then there exist a
function k : W → [0, 1] and a point w ∈ W such that k is i-slsc, but k is not bd-slsc
at w (note that an analogue example on a topological space satisfying the first axiom of
countability does not exist, in consequence of Theorem 3.4).

(a) Let

g(x) =

⎧
⎨

⎩

arctgx, if x ∈ ]−∞, 0],

−1, if x ∈ ]0,+∞[,
(3.2)

and z = 0. Then g is lsc in every point of R\{z}; therefore g is ubd-slsc: indeed it suffices to
consider a ∈ ] − π/2,−1[ and to use (b) of Remarks 3.3. Besides g is not d-slsc at z, because
if zn := 1/(n + 1) = z + 1/(n + 1) for every n ∈ N we get that zn → z, (g(zn))n∈N is a weakly
decreasing sequence, but g(z) = 0 > −1 = limn→+∞g(zn).

(b) Let

h(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arctgx, if − 2m − 1 < x ≤ −2m (m ∈ N),

0, if − 2m − 2 < x ≤ −2m − 1 (m ∈ N),

0, if x > 0.

(3.3)

Then h is lsc in every point ofR\{−2m−1 : m ∈ N}; moreover it is bd-slsc, as for everym ∈ N

it is sufficient to note that lim infx→−2m−1h(x) = arctg (−2m − 1) > −π/2 = infRh and to use
(a) of Remarks 3.3. On the other hand h is not ubd-slsc, because for every a > infRh = −π/2
there existma ∈ N and a sequence (yn,a)n∈N of real numbers for which limn→+∞yn,a = −2ma−1
and h(yn,a) ↘ �a ≤ a, but h(−2ma − 1) = 0 > �a (in fact it is enough to consider ma such that
arctg(−2ma − 1) < a and yn,a = −2ma − 1 + 1/(n + 1) for every n ∈ N).
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(c) Let

k(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
E(|λ|) + 1

if x = λem for some m ∈ N and λ ∈ F \ Z,
1
|λ| if x = λem for some m ∈ N and λ ∈ Z \ {0},

1 if x ∈ {0}
⋃

(

W \
⋃

m∈N
sp{em}

)

,

(3.4)

where en := (δn,m)m∈N for every n ∈ N, and let w = 0. We get that k is i-slsc, as there does not
exist a converging sequence (wn)n∈N of elements of W which satisfies

lim
n→+∞

k(wn) = 0 = inf
W

k : (3.5)

in fact, if a sequence (wn)n∈N verifies (3.5), then it follows that there exists n0 ∈ N such that
for every n > n0 there are λn ∈ F and mn ∈ N for which wn = λnemn and |λn| → +∞,
hence |wn|�2 → +∞, from here the sequence is unbounded and therefore cannot converge.
On the other hand k is not bd-slsc at w, because for every a > infWk = 0 there exists a
sequence (zn,a)n∈N of elements of W for which limn→+∞zn,a = 0 = w and k(zn,a) ↘ �a ≤ a,
but k(0) = 1 > �a (indeed it is sufficient to consider sa ∈ N such that sa > 1, 1/sa < a and
zn,a = saen for every n ∈ N).

Example 3.8. It is possible to find an example of a Hilbert space Y and of a function that is
lsc with respect to the topology induced on Y by its norm, but that, with respect to the weak
topology on Y, is not bd-slsc (and so it is neither ubd-slsc nor d-slsc; indeed neither i-slsc):
see [4, Example 4.1] and Remarks 3.2.

4. Behavior of Some Weak Concepts of Sequential Lower
Semicontinuity with Respect to the Convexity

With respect to [4, Theorem 4.1], a slightly more laborious demonstration allows to get a
stronger result.

Theorem 4.1. Let X be a normed space, let f : X → [−∞,+∞] be a convex, i-slsc function with
respect to the topology induced on X by its norm. Then f is bd-slsc with respect to the weak topology
on X.

Proof. By absurd, we suppose that f is not bd-slsc with respect to the weak topology on
X. Then f is not +∞ constantly and there exists at least a point x ∈ X such that for every
a > inf f there exists a sequence (yn,a)n∈N of elements of X for which yn,a ⇀ x, (f(yn,a))n∈N is
a weakly decreasing sequence, f(yn,a) ≤ a for every n ∈ N and f(x) > limn→+∞f(yn,a).Hence
f(x) > inf f and we will reach an absurd if we will show that

there exists a sequence (xn)n∈N of elements of X

for which xn −→ x and f(xn) ↘ inf f,
(4.1)
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because, using the i-slsc of f at x with respect to the topology induced on X by its norm,
relatively to such a sequence, it should be f(x) = inf f. At first, in order to prove (4.1), we
will define a sequence (bk)k∈N of real numbers and by induction we will define other four
sequences, (ah)h∈N of real numbers, (kh)h∈N of natural numbers, (jh)h∈N of integer numbers
and (zh)h∈N of elements of X such that jh ∈ {0, . . . , h} and f(zjh) > inf f if f(zm) > inf f for
some m ∈ {0, . . . , h}(h ∈ N), by means of the followings:

bk :=

⎧
⎨

⎩

inf f +
1

k + 1
if inf f ∈ R

−k if inf f = −∞
for every k ∈ N,

k0 := 0, a0 := bk0 , z0 ∈ co
{
yn,a0 : n ∈ N

}
such that |z0 − x|X < 1,

j0 :=

⎧
⎨

⎩

−1 if f(z0) = inf f

0 if f(z0) > inf f

(4.2)

and, if h ∈ N, defined kp, ap, zp and jp for every p ∈ {0, . . . , h}, we define kh+1, ah+1, zh+1 and
jh+1 in the following way:

kh+1 :=

⎧
⎨

⎩

kh + 1 if f(z0) = · · · = f(zh) = inf f,

min
{
k ∈ N : k > kh, bk ≤ f

(
zjh

)}
if f(zm) > inf f for some m ∈ {0, . . . , h},

ah+1 := bkh+1 , zh+1 ∈ co
{
yn,ah+1 : n ∈ N

}
such that |zh+1 − x|X <

1
h + 2

,

jh+1 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, if f(z0) = · · · = f(zh+1) = inf f,

max
{
j ∈ {0, . . . , h + 1} : f

(
zj
)
> inf f

}
, if f(zm) > inf f

for some m ∈ {0, . . . , h + 1}.
(4.3)

(such definitions are possible, being x ∈ co{yn,a : n ∈ N} for every a > inf f (as a convex
closed subset of X is weakly closed too) and thanks to choice’s axiom). By definition, (bk)k∈N
is strictly decreasing, with limk→+∞bk = inf f, (kh)h∈N is strictly increasing and so (ah)h∈N is
a subsequence of (bk)k∈N and therefore is itself strictly decreasing, with limh→+∞ah = inf f ,
limh→+∞zh = x with respect to the topology induced on X by its norm; moreover (jh)h∈N is
weakly increasing, j(N) \ {−1} = {n ∈ N : f(zn) > inf f} and hence, if j(N) is a finite set, there
exists a subsequence of (zh)h∈N such that the values of f in the elements of such subsequence
are constantly inf f.

Now we will distinguish two cases:

(i) there exists a subsequence of (zh)h∈N such that the values of f in the elements of
such subsequence are constantly inf f,

(ii) there does not exist a subsequence as in (i).

In the case (i) we at once conclude, because, if (xn)n∈N is a subsequence of (zh)h∈N as
in (i), then it verifies (4.1).
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If we are in the case (ii), then j(N) is an infinite set; therefore by induction we can
define a new sequence (mn)n∈N in this way: let m0 := min(j(N) \ {−1}) and, if n ∈ N, defined
mp for every p ∈ {0, . . . , n}, letmn+1 := min(j(N) \ ({−1} ∪ {m0, . . . , mn})); from here, defining
xn := zmn for every n ∈ N and taking into account the definition of j, it follows that (xn)n∈N is
the subsequence of (zh)h∈N whose elements are exactly all the “zh” such that f(zh) > inf f.

It will be enough to prove that f(xn) ↘ inf f, because in such waywewill have proved
(4.1).

For every n ∈ N it holds:

f(xn+1) = f(zmn+1) ≤ amn+1 = bkmn+1
≤ f

(
zjmn+1−1

)
= f(zmn) = f(xn) (4.4)

(where for obtaining the inequality between second and third terms we used that zmn+1 ∈
co{yp,amn+1

: p ∈ N} by definition and for deducing the equality between fifth and sixth terms
we used that

jmn+1−1 = max
{
j ∈ {0, . . . , mn+1 − 1} : f

(
zj
)
> inf f

}
= mn (4.5)

by definition).
At last and analogously as seen above, it is verified:

f(xn) = f(zmn) ≤ amn for every n ∈ N; (4.6)

besides limn→+∞amn = inf f, as (amn)n∈N is a subsequence of (bk)k∈N and so we conclude.

Corollary 4.2. Let X be a normed space, let f : X → [−∞,+∞] be a convex function, i-slsc with
respect to the weak topology onX; then f is bd-slsc with respect to the same topology (so, in the present
case, by the help of hypothesis of convexity, the conclusion of Theorem 3.4 is true, although the first
axiom of countability may be not fulfilled).

Proof. From the easy observation that if τ and σ are two topologies on a set Y,with σ ⊆ τ , and
if a function verifies Definition 1.2 with respect to σ then it verifies the same condition with
respect to τ too, we get that f is i-slsc with respect to the topology induced on X by its norm
and so it is sufficient to use Theorem 4.1.

Examples 4.3. As it will be seen below, in examples (a) and (b), there exist examples of convex
functions, satisfying “the same semicontinuity conditions” of Examples 3.7 (a) and (b), but
that are not upperly bounded and whose values are in ] − ∞,+∞] instead of in R; on the
contrary, owing to Corollary 4.2, if W is as in (c) of Examples 3.7, an example of convex
function k : W → [−∞,+∞] i-slsc but not bd-slsc cannot exist.

(a) For every X normed space having, as real space, algebraic dimension greater or
equal to 2 and such that

the closed unitary sphere of X admits at least one extreme point, (4.7)

there exist a convex function g : X → [0,+∞] and a point z ∈ X such that g is
ubd-slsc, but g is not d-slsc at z.
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(b) For every X normed space having, as real space, algebraic dimension greater or
equal to 2 there exists a convex function h : X → [0,+∞] such that h is bd-slsc, but
h is not ubd-slsc.

(a) Let z ∈ ∂SX(0, 1) be an extreme point of SX(0, 1) (such a point exists for (4.7)) and
let

g(x) =

⎧
⎨

⎩

|x|X, if x ∈ SX (0, 1) \ {z},
+∞, if x ∈ {z}

⋃(
X \ SX(0, 1)

) (4.8)

Then g is convex, because SX(0, 1) \ {z} is a convex set (being z an extreme point of
SX(0, 1)); moreover g is lsc in every point of X \ {z}; therefore g is ubd-slsc: indeed
it suffices to consider a ∈ ]0, 1[ and to use (b) of Remarks 3.3. Besides g is not
d-slsc at z, because if zn ∈ ∂SX(0, 1) \ {z}(n ∈ N) is chosen in such a way as to
converge to z (this choice is possible for hypothesis, using Theorem 2.3)we get that
(g(zn))n∈N is a weakly decreasing sequence (it is constantly 1), but g(z) = +∞ > 1 =
limn→+∞g(zn).

(b) Let y ∈ ∂SX(0, 1) and let

h(x) =

⎧
⎨

⎩

|x|X, if x ∈ {0}
⋃

SX
(
y, 1

)
,

+∞, if x ∈ X \
(
{0}

⋃
SX

(
y, 1

))
.

(4.9)

Then h is convex, because {0} ∪ SX(y, 1) is a convex set; furthermore h is lsc in
every point of {0} ∪ (X \ ∂SX(y, 1)); moreover it is bd-slsc, because for every
x ∈ ∂SX(y, 1) \ {0} it is enough to note that lim infz→xh(z) = |x|X > 0 = infXh
and to use (a) of Remarks 3.3. On the other hand h is not ubd-slsc, because for
every a > infXh = 0 there exist xa ∈ X and a sequence (yn,a)n∈N of elements of
X for which limn→+∞yn,a = xa, h(yn,a) ↘ �a ≤ a, but h(xa) > �a: in fact, being
∂SX(y, 1) a connected set owing to Theorem 2.3 and, chosen 0 < ba < min{a, 2},
being ∂SX(y, 1) ∩ (X \ SX(0, ba)) a nonempty open of ∂SX(y, 1) (it contains 2y),
the nonempty subset ∂SX(y, 1) ∩ SX(0, ba) of ∂SX(y, 1) (it contains 0) must have at
least a not interior point xa (with respect to ∂SX(y, 1)); so there exists a sequence
(zn,a)n∈N of elements of ∂SX(y, 1) with limn→+∞zn,a = xa, |zn,a|X > ba ≥ |xa|X for
every n ∈ N, and it is enough to consider y0,a ∈ SX(y, 1) such that |y0,a − z0,a|X < 1,
|y0,a|X > |xa|X and, if n ∈ N, given yn,a (with |yn,a|X > |xa|X) to select hn > n such that
|zhn,a|X < |yn,a|X and yn+1,a ∈ SX(y, 1) such that |yn+1,a − zhn,a|X < 1/(n + 2), |xa|X <
|yn+1,a|X < |yn,a|X ; with these choices, it results that limn→+∞yn,a = xa, (h(yn,a))n∈N =
(|yn,a|X)n∈N is a strictly decreasing sequence with limn→+∞h(yn,a) = |xa|X ≤ ba < a,
but h(xa) = +∞ > |xa|X = limn→+∞h(yn,a).

Remark 4.4. Note that hypothesis (4.7) done in (a) of Examples 4.3 is verified for example by
every reflexive Banach space (see [5, Theorem 2.4.5] and use the weak topology), but there
exist Banach spaces (e.g., c0 and L1([a, b])(a, b ∈ R, a /= b)) which do not satisfy it (see [10,
Examples II.8]).
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Remark 4.5. ForX = R and also if functions with values in [−∞,+∞] are considered, examples
verifying conditions of (a) or (b) of Examples 4.3 do not exist, because the following fact is
true.

If f : R → [−∞,+∞] is a convex, i-slsc function, then f is d-slsc (and so, in this case,
taking into account parts (c), (d) and (e) of Remarks 3.2, under hypothesis of convexity, the
four conditions of d-slsc, ubd-slsc, bd-slsc and i-slsc are each other equivalent).

Let x, xn ∈ R (n ∈ N), xn → x, f(xn) ↘ �; then we will conclude, if we will prove
that f(x) ≤ �. It is not restrictive to suppose � < +∞, xn /=x, xn ∈ dom f(n ∈ N) and x an
extreme of dom f (otherwise, if x ∈ (dom f)◦, the function f should be continuous in x);
applying Lemma 2.4 to f|dom f it follows that � = inf{f(y) : y ∈ dom f \ {x}}; then, if by
absurd f(x) > �, it should be � = inf f , that contradicts i-slsc of f.

Example 4.6. For every infinite dimensional X normed space there exists a convex bd-slsc
function g : X → R that is discontinuous in every point ofX (and therefore, if X is complete,
is neither a lsc function on X (see, e.g., [5, Theorem 3.1.9])).

Indeed, we will show that such a function g can be chosen as whatever a Minkowski
functional of

an absorbing balanced convex subset C of X such that

0 is not an interior point for C, C ⊆ SX(0, 1)
(4.10)

(for the existence of such a set, see Example 2.2). Consequently, if X is a Banach space, using
Theorem 3.5, Remark 3.6 and part (c) of Remarks 3.2, such a function g neither is ubd-slsc
nor is d-slsc.

Let C be as in (4.10) and let g := gC. Then g is a real valued convex not continuous
function (see, e.g., [8, Theorems II.12.1 and II.12.3, and foregoing Definition]); hence, using a
classical result of convex analysis (see, e.g., [5, Theorem 3.1.8]) g is discontinuous in every
point of X.

Owing to part (b) of Theorem 3.4, for showing the remaining condition on g, namely
the bd-slsc of g, it suffices to prove that g is i-slsc.

At first, note that

|x|X ≤ g(x) for every x ∈ X. (4.11)

In fact, being C ⊆ SX(0, 1), for every x ∈ X it holds

|x|X = inf
{

α ∈ R+ :
∣
∣
∣
x

α

∣
∣
∣
X
≤ 1

}

≤ inf
{
α ∈ R+ :

x

α
∈ C

}
= g(x). (4.12)

Now let x ∈ X, let (xn)n∈N be a sequence of elements of X for which xn → x and
limn→+∞g(xn) = 0 (= g(0) = inf g); therefore, using (4.11), we get that x = 0, whence
g(x) = g(0) = 0.

Remarks 4.7. (a) Example 4.6 shows that the classical result “every f convex lsc function
defined on a Banach space with values in [−∞,+∞] is continuous on the interior of dom f”
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(see, e.g., [11, Theorem 2.2.20 (b) and sentences afterward Proposition 1.1.11]) fails if lsc is
replaced by bd-slsc (or equivalently (see (e) of Remarks 3.2 and Theorem 3.4) by i-slsc).

(b)On the contrary, the above-mentioned classical result is still true if lsc is replaced by
d-slsc (it is enough to use [4, Theorem 3.2], and a classical result of convex analysis (see, e.g.,
[5, Theorem 3.1.9]) applied to f|(dom f)◦ , also considering that, if there exists a point x0 ∈ X
such that f(x0) = −∞, then f(x) = −∞ for every x ∈ (dom f)◦ (see, e.g., [11, Proposition
2.1.4])), or by ubd-slsc (as we will show in the part (c) of Theorem 4.10).

Among other things, by means of such facts there is a different way to prove that, if X
is a Banach space, the function g of Example 4.6 cannot be either ubd-slsc or d-slsc (i.e., what
already claimed in the last rows of the statement of number 4.6).

(c) The above (a) and (b) show a big difference between convex, bd-slsc (or convex,
i-slsc) functions on Banach spaces on the one hand and convex, d-slsc (or convex, ubd-slsc)
functions on Banach spaces on the other hand; such situation in a certain way renders, in
the case in which convex functions on Banach spaces are considered, more meaningful those
results, as for example [4, Theorems 5.1, 5.3 and Corollary 5.1] in which the classic hypothesis
of “lower semicontinuity” can be replaced by an hypothesis of “bd-slsc” (or of “i-slsc”).

Working with some properties of infinite dimensional Banach spaces and with the
choice of the convex set C, we will able to exhibit an example as the following one (that may
be regarded in a certain way as a refinement of Example 4.6, because, also if it does not give
a stronger conclusion than the one of Example 4.6, it lets to define in a constructive way a
sequence of points, by means of which ubd-slsc is showed not to be true).

Moreover, with respect to Examples 4.3 (b), observe that in Example 4.8 we get an
example of a function defined in a less general space, but having real values; hence the points
by means of which we could prove that such a function is not ubd-slsc, unlike that in part (b)
of Examples 4.3, necessarily are all at the interior of its effective domain.

Example 4.8. For every infinite dimensionalX Banach space on F, there exists a convex bd-slsc
function g : X → R that is not ubd-slsc (and therefore, for part (c) of Remarks 3.2, is not even
a d-slsc function).

Indeed, wewill show that such a function g can be chosen as theMinkowski functional
of a suitable set C satisfying (4.10); then infXg = 0 and we will prove that g is not ubd-slsc,
exhibiting a sequence (cq)q∈Z+

of elements of X such that for every q ∈ Z+ there exists
a sequence (cq,k)k∈N of points of X for which limk→+∞cq,k = cq, (g(cq,k))k∈N is a weakly
decreasing sequence and g(cq) > 1/q = limk→+∞g(cq,k) for every q ∈ Z+.

We will define the set C by means of the construction of Thorp ([6, Theorem 1]),
already cited in the final part of Example 2.2, but choosing a suitable Hamel basis, formed
by elements having norm less or equal to 1 and verifying other suitable conditions that we
are going to introduce.

For Theorem 2.5 there exists A ⊆ X,A infinite, countable and linearly independent set
such that

M,N ⊆ A, M ∩N = ∅ =⇒ spM ∩ spN = {0}; (4.13)

moreover let |a|X = 1 for every a ∈ A (this is not a restriction).
Consequently if

∑
n∈N αnan = 0 with αn ∈ F and an ∈ A (n ∈ N), then αn = 0 for every

n ∈ N.
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LetNq ⊆ A (q ∈ Z+) be such thatA =
⋃

q∈Z+
Nq, eachNq is an infinite set andNq∩Np =

∅ (q, p ∈ Z+, q /= p). Further on, let λn ∈ R+(n ∈ N) be such that
∑

n∈N λn = 1.
Let bq :=

∑
n∈N λneq,n for every q ∈ Z+, where Nq = {eq,n : n ∈ N} with eq,n /= eq,m if

n, m ∈ N, n /=m (q ∈ Z+) (such elements bq (q ∈ Z+) are existing as X is a Banach space).
Then |bq|X ≤ 1 for every q ∈ Z+.

Hence bq ∈ spNq \ spNq, spNq ∩ spNt = {0} if q, t ∈ Z+, q /= t and therefore bq /= bt if
q, t ∈ Z+, q /= t, A ∩ {bq : q ∈ Z+} = ∅ and A ∪ {bq : q ∈ Z+} is a linearly independent set of
vectors.

Therefore, we can consider B a Hamel basis of X such that B ⊇ A ∪ D, where D :=
{bq/q : q ∈ Z+},with |b|X = 1 for every b ∈ B \D, and C := co{αb : α ∈ F, |α| = 1, b ∈ B}.

Then C satisfies (4.10), because C is a particular case of the convex set defined,
following Theorem 1 of [6], in the final part of Example 2.2.

Let g := gC. Since C verifies (4.10) and g is its Minkowski functional, for the proof
already seen in Example 4.6 we get that g is a real valued convex bd-slsc function.

At last we will prove that g is not ubd-slsc, exhibiting a sequence as described in the
statement.

Let

cq :=
bq

q
, p

(
q, k

) ∈ Nq \ {0, . . . , k},

bq,k :=
k∑

n=0
λneq,n +

∑

n>k

λneq,p(q,k),

cq,k :=
bq,k

q

(
q ∈ Z+, k ∈ N

)
;

(4.14)

then for each q ∈ Z+, k ∈ N it is bq,k ∈ co{eq,n : n ∈ N} ⊆ C, but there does not exist an
α > 1 such that αbq,k ∈ C because, being B a linearly independent set of vectors, if α > 1
the following one is the only way in which αbq,k can be written as a linear combination of
elements of B: αbq,k =

∑k
n=0 αλneq,n +

∑
n>k αλneq,p(q,k) and, on the other hand,

∑k
n=0 αλn +

∑
n>k αλn = α > 1; therefore g(bq,k) = 1 and, being g positively homogeneous, g(cq,k) =

1/q; whence, for each q ∈ Z+, the sequence (g(cq,k))k∈N is constant and therefore weakly
decreasing; furthermore g(cq) = 1 (for a demonstration quite similar to the above proof that
g(bq,k) = 1) and so g(cq) = 1 > 1/q = limk→+∞g(cq,k), besides limk→+∞cq,k = cq and we
conclude.

Lemma 4.9. Let Y be a topological space and let X be a topological linear space. The following facts
hold

(a) if A is a subset of Y , F is a closed subset of Y and G is an open subset of Y such that
A ∩G = F ∩G, then A ∩G ⊆ F (and therefore A ∩G = F ∩G);

(b) if U is an open subset of X and C is a convex subset of X such that U ∩ C/= ∅ and
◦
C/= ∅,

thenU ∩
◦
C/= ∅;

(c) if A is a subset of X, C is a convex subset of X and F is a closed subset of X such that
◦
A ∩ C/= ∅, A ∩

◦
C = F∩ ◦

C and
◦
C /= ∅, then ◦

A /= ∅.
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Proof. (a) If by absurdA∩G∩(Y \F)/= ∅, then, beingG∩(Y \F) an open, it is ∅/=A∩G∩(Y \F) =
F ∩G ∩ (Y \ F) = ∅, that is a contradiction.

(b) Let x ∈ ◦
C and y ∈ U ∩ C. If x = y we have the desired result; otherwise, if x /=y,

from [7, demonstration inside of the proof of Theorem V.2.1] it follows that [x, y] \ {y} ⊆ ◦
C,

besides from the topological linear structure of X it is ([x, y] \ {y}) ∩ U/= ∅ and so we can
conclude.

(c) Applying (b) to U :=
◦
A, we get

◦
A ∩ ◦

C /= ∅. Besides, from (a) applied with G :=
◦
C,

we deduce
◦
A ∩ ◦

C ⊆ A ∩ ◦
C ⊆ F and so

◦
A ∩ ◦

C ⊆ F ∩ ◦
C ⊆ A, namely,

◦
A ∩ ◦

C is a not empty
open set contained in A and we conclude.

Theorem 4.10. LetX be a topological linear space and let f : X → [−∞,+∞] be a convex, ubd-slsc
function. Suppose that f is not +∞ identically, let a ∈ R be such that a > infXf is relative to f as in
condition (iii) of Definitions 3.1 and let A := {x ∈ X : f(x) ≤ a}. Then

(a) the set A ∩ (dom f)◦ is sequentially closed with respect to the relative topology of
(dom f)◦;

henceforth suppose that (dom f)◦ /= ∅, then also the following facts hold:

(b) there exists a point x0 ∈ {x ∈ X : f(x) < a}∩ (dom f)◦ and thereforeA−x0 is absorbing;

(c) if X is a Banach space, it results that
◦
A /= ∅ and f is continuous in the points of (dom f)◦.

Proof. If there exists a point z0 ∈ X such that f(z0) = −∞, then f(x) = −∞ for every x ∈
(dom f)◦ (see, e.g., [11, Proposition 2.1.4]) and all the parts of the desired result follow also
if X is simply a topological linear space (in fact in such case (dom f)◦ ⊆ {x ∈ X : f(x) < a}).

Henceforward we can suppose that f(z) > −∞ for every z ∈ X; with such a further
hypothesis, we will prove all the three parts of the desired result.

(a) Let (xn)n∈N be a sequence of elements ofA∩ (dom f)◦ and let x ∈ (dom f)◦ be such
that xn → x; let α = lim infn→+∞f(xn). Then α ≤ a; moreover there exists a subsequence
(xnk)k∈N of (xn)n∈N such that f(xnk) → α and there exists a further subsequence (xnkh

)h∈N of
(xnk)k∈N such that (f(xnkh

))h∈N is a weakly monotone sequence. Now, if by absurd a < f(x),
we get α < f(x) and hence, using Lemma 3.1 of [4], it is not restrictive to suppose that
(f(xnkh

))h∈N is a weakly decreasing sequence; so it is enough to use the ubd-slsc of f to obtain
a contradiction.

(b) Let y0 ∈ (dom f)◦ and let z ∈ X be such that f(z) < a; then z ∈ dom f and hence,
being dom f a convex set, it is [y0, z] ⊆ dom f ; therefore f|[y0,z] is an upper semicontinuous
function (see [12, Theorem 10.2]) and so there exists a point x0 ∈ [y0, z] \ {z} such that
f(x0) < a; besides, from [7, demonstration inside of the proof of Theorem V.2.1] it follows
that [y0, z] \ {z} ⊆ (dom f)◦; consequently x0 ∈ {x ∈ X : f(x) < a} ∩ (dom f)◦.

Now, if w ∈ {x ∈ X : f(x) < a} ∩ (dom f)◦, then w is an internal point of A, because,
being an interior point of dom f , for every x ∈ X there exists a βx ∈ R+ such that [w,w +
βxx] ⊆ (dom f)◦; therefore f|[w,w+βxx] is a continuous function and so, being f(w) < a, there
exists an αx ∈ R+ such that f(w + λx) < a for all λ ∈ [0, αx]. Then A −w is absorbing.

(c) Now let X be a Banach space. First of all we will prove that
◦
A /= ∅.

From (b) the set A − x0 is absorbing; therefore X =
⋃

n∈Z+
n(A − x0) and from Baire’s

lemma there exists a n ∈ Z+ such that (n(A − x0))
◦
/= ∅, hence (A − x0)

◦
/= ∅, wherefore

◦
A /= ∅.
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Now we will prove that part (c) of Lemma 4.9 can be applied with C := dom f . Since

A ⊆ dom f and
◦
A /= ∅, we get ∅ /=

◦
A ⊆

◦
A ∩dom f . On the other hand, from (a), the set

A ∩ (dom f)◦ is sequentially closed (and hence closed, satisfying the topology of X the first
axiom of countability) with respect to the relative topology of (dom f)◦ and therefore there
exists F closed subset of X such that A ∩ (dom f)◦ = F ∩ (dom f)◦. Consequently, from part

(c) of Lemma 4.9, we have that
◦
A /= ∅.

Then
◦
A is a not empty open subset of dom f on which f is bounded above (from the

real element a) and so we can conclude, applying Theorem 3.1.8 of [5].

Remark 4.11. The Example 3.1 of [4] and those cited in Remarks 3.1 of [4] give also examples
of Banach spaces Y and of convex, ubd-slsc, with respect to the weak topology, functions
defined on Y with values in [0,+∞], that are not d-slsc with respect to the weak topology.

In fact it suffices to use (b) of Remarks 3.3 and, using the notations of the above cited
examples, to note that inf f = 0 and that, relatively to whatever value of a ∈ ]0, 1[, it is true
that D ∩ {y ∈ Y : g(y) ≤ a} = C ∩ {y ∈ Y : g(y) ≤ a} is convex and closed, f|D∩{y∈Y :g(y)≤a} =
g|D∩{y∈Y :g(y)≤a} and g is continuous (for Example 3.1 of [4]), D ∩ SY (0, a) = C ∩ SY (0, a) is
convex and closed, f|D∩SY (0,a)

=| |Y |D∩SY (0,a)
(for Example cited in (a) of Remarks 3.1 of [4]),

f|SY (0,a)
=| |Y |SY (0,a)

(for Example cited in (b) of Remarks 3.1 of [4]).

5. Ekeland’s and Caristi’s Theorems

Remark 5.1. In the following theorem we will show an extension of Ekeland’s variational
principle (see [13, Theorem 1.1]) to the case in which the hypothesis of lsc is replaced by
ubd-slsc. The proof is inspired by the demonstration of Theorem 2.1 of [1]: since we will add
the result (b) (that was considered already in [13, Theorem 1.1]) and for reading convenience,
here we are writing the whole proof, removing some trivial mistakes of [1].

The authors thank the referee for having pointed out to them that Theorem 2.1 of [1]
can be deduced also from [14, Corollary 4 of Theorem 1] that subsequently was generalized
by [15–17]: in fact it is easy to prove that the hypotheses of such corollary are verified if we
assume d-slsc (but the same we cannot do if we assume ubd-slsc).

Moreover we wish here to point out another recent paper ([18]) in which other
generalizations of Caristi-Kirk’s Fixed Point Theorem and Ekeland’s Variational Principle are
given, in a different environment with respect to the one of the present paper.

Theorem 5.2. Let (X, d) be a complete metric space and let f : X → ] −∞,+∞] be a bounded from
below and not +∞ identically function. Let ε > 0, λ > 0 and u ∈ X be such that f(u) ≤ infx∈Xf(x)+ε.
Moreover,

suppose that f is ubd-slsc and that f(u) ≤ a,

where a is relative to f as in (iii) of Definitions 3.1.
(5.1)

Then there exists v ∈ X such that
(a)f(v) ≤ f(u),
(b)d(u, v) ≤ λ,
(c)f(w) > f(v) − (ε/λ)d(w,v) for every w ∈ X \ {v}.
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Proof. Let

ε0 := a − inf
X
f. (5.2)

Since f(u) ≤ a = infXf + ε0 and observing that, if ε > ε0, then a point v ∈ X verifying (a), (b)
and (c)with respect to ε0, λ and u also satisfies (a), (b) and (c)with respect to ε, λ and u, it is
not restrictive to suppose ε ≤ ε0.

For every z ∈ X let Tz = {x ∈ X : f(x) ≤ f(z) − (ε/λ)d(x, z)}; then Tz /= ∅ and Tz = {z}
if and only if f(x) > f(z) − (ε/λ)d(x, z) for every x ∈ X \ {z}.

If z ∈ X and s ∈ Tz, then Ts ⊆ Tz, because if x ∈ Ts we have f(x) ≤ f(s) − (ε/λ)d(x, s);
besides f(s) ≤ f(z)−(ε/λ)d(s, z) as s ∈ Tz; so f(x) ≤ f(s)−(ε/λ)d(x, s) ≤ f(z)−(ε/λ)d(s, z)−
(ε/λ)d(x, s) ≤ f(z) − (ε/λ)d(x, z) and hence x ∈ Tz.

Let now U := {X} ∪ {Tz : z ∈ X}. Then as a consequence of what was above noted,

Ts ⊆ U for every U ∈ U, s ∈ U. (5.3)

There exists a function h : {(U, s) : U ∈ U, s ∈ U} → X such that h(U, s) ∈ Ts and
f(h(U, s)) − infx∈Tsf(x) ≤ (1/2)(f(s) − infx∈Uf(x)) for every U ∈ U and s ∈ U: for showing
such a fact, if U ∈ U, s ∈ U and if f(s) = infx∈Uf(x) we choose h(U, s) = s (in such a case we
must choose h(U, s) = s, because f(s) ≤ f(x) ≤ f(s) − (ε/λ)d(x, s) for every x ∈ Ts, being
Ts ⊆ U on account of (5.3), and so Ts = {s}), otherwise we use the characterization of greatest
lower bound and the choice’s axiom.

Then, for definition of Ts, we have that

f(h(U, s)) ≤ f(s) for every U ∈ U, s ∈ U. (5.4)

Nowwe consider two recursive sequences (xn)n∈N and (Sn)n∈N defined by x0 = u, S0 =
X, xn+1 = h(Sn, xn), Sn+1 = Txn for every n ∈ N; then, using (5.4), (5.3) and definition of h, we
get

f(xn+1) ≤ f(xn) ≤ f(u) < +∞, Sn+1 ⊆ Sn for every n ∈ N, (5.5)

f(xn+1) − inf
x∈Sn+1

f(x) ≤ 1
2

(

f(xn) − inf
x∈Sn

f(x)
)

for every n ∈ N; (5.6)

moreover, being xn+1 ∈ Sn+1 = Txn , it holds

ε

λ
d(xn, xn+1) ≤ f(xn) − f(xn+1) for every n ∈ N, (5.7)

whence (xn)n∈N is a Cauchy sequence, since there exists limn→+∞f(xn) ∈ R because of (5.5)
and being f lower bounded for hypothesis.
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Let v = limn→+∞xn; since f is a ubd-slsc function, f(u) ≤ infXf + ε0 = a and using
(5.5), we obtain that

f(v) ≤ lim
n→+∞

f(xn) ≤ f(u) (5.8)

and so (a) is verified.
From (5.7), using triangular inequality of distance, we deduce

ε

λ
d(x0, xn) ≤

n∑

k=1

ε

λ
d(xk−1, xk) ≤

n∑

k=1

(
f(xk−1) − f(xk)

)
= f(x0) − f(xn) (5.9)

for every n ∈ Z+; hence, considering that x0 = u, v = limn→+∞xn, f(xn) ≥ infx∈Xf(x) for every
n ∈ N and by means of a limit passage for n → +∞ in the first and the last terms, we get

ε

λ
d(u, v) ≤ f(u) − lim

n→+∞
f(xn) ≤ inf

x∈X
f(x) + ε − lim

n→+∞
f(xn) ≤ ε, (5.10)

from whence (b) follows.
As an alternative, for showing (b), we can observe that Tz ⊆ {x ∈ X : d(x, z) ≤ λ} for

every z ∈ X such that f(z) ≤ infx∈Xf(x) + ε: indeed, in such hypothesis on z, if y ∈ Tz and
if by absurd d(y, z) > λ then f(y) ≤ f(z) − (ε/λ)d(y, z) < f(z) − ε ≤ infx∈Xf(x), that gives
a contradiction. Besides, using (5.5), we have that xn ∈ Tu ⊆ {x ∈ X : d(x, u) ≤ λ} for every
n ∈ N. Consequently d(v, u) = limn→+∞d(xn, u) ≤ λ, that is (b).

If, by absurd, (c) is not true, then

there exists x ∈ X \ {v} such that f(x) ≤ f(v) − ε

λ
d(x, v); (5.11)

owing to (5.5) and (5.8), it is

f(v) ≤ lim
k→+∞

f(xk) ≤ f(xm) ≤ f(xn) − ε

λ
d(xm, xn) for every n, m ∈ N, m ≥ n (5.12)

and hence, passing to the limit for m → +∞ in the first and the fourth terms, we get f(v) ≤
f(xn) − (ε/λ)d(v, xn) for every n ∈ N; therefore, using (5.11), it holds:

f(x) ≤ f(xn) − ε

λ
d(v, xn) − ε

λ
d(x, v) ≤ f(xn) − ε

λ
d(xn, x) for every n ∈ N; (5.13)

hence x ∈ Sn+1 for every n ∈ N, from whence

f(x) ≥ inf
Sn

f for every n ∈ N; (5.14)

besides, since from (5.5) it follows that (infSnf)n∈N is a weakly increasing sequence, we can do
a limit passage for n → +∞ in (5.6), obtaining that 0 ≤ α := limn→+∞(f(xn) − infy∈Snf(y)) ≤
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(1/2)α, from whence α = 0; then, using (5.11) and (5.8), we get that f(x) < f(v) ≤
limn→+∞f(xn) = limn→+∞infSnf , that is in contradiction with (5.14).

Example 5.3. In the hypotheses of Theorem 5.2, but without the additional hypothesis f(u) ≤
a, it is easy to verify that conclusions (a) and (c) are still true (in fact, if ε0 = a − infXf and if
f(u) > infXf + ε0, then it is enough to consider t ∈ X such that f(t) ≤ infXf + ε0 and in such
case a point v relative to ε0, λ and t as in Theorem 5.2 solves the question) but it can happen
that there exist ε, λ and u satisfying the remaining hypotheses, for which there is not a point
v that verifies conclusions (b) and (c).

On R we consider the equivalence relation ∼ defined by x ∼ y if x − y ∈ Q(x, y ∈ R)
and let R := {A ∩ [0, 2] : A equivalence class with respect to ∼}; then #B = ℵ0 for every
B ∈ R and ∪R = [0, 2], hence #R = 2ℵ0 , so there exists a bijective function ϕ : R → ]0, 1];
moreover B = [0, 2] for every B ∈ R. Let now f : R → R be defined by

f(x) =

⎧
⎨

⎩

arctg x if x ∈ ]−∞, 0[
⋃

]2,+∞[,

ϕ(B) if x ∈ B (B ∈ R).
(5.15)

Because f is real-valued and continuous in the points y where f(y) < 0, then f is ubd-slsc,
considering a = 0 > infRf ; moreover f is bounded from below. Let ε = (π/2) + 1, λ = 1 and
u = 1; then f(u) ∈ ϕ(R) ≤ 1 = infRf + ε. If by absurd there exists v ∈ R verifying conclusions
(b) and (c), then using (b) we get that |v − 1| ≤ 1 and therefore v ∈ [0, 2]; let B ∈ R such that
v ∈ B. Consequently 1 ≥ f(v) > 0 and, if α ∈ ]0, f(v)[, we obtain that ϕ−1(α) ∈ R, whence
ϕ−1(α) = [0, 2] and so there exists a sequence (xn)n∈N of elements of ϕ−1(α) converging to v;
from this, using (c), we obtain that α = ϕ(ϕ−1(α)) = f(xn) > f(v) − ε|xn − v| for every n ∈ N

and, by means of a limit passage for n → +∞, we have α ≥ f(v), that is a contradiction.

Example 5.4. If in Theorem 5.2 the hypothesis (5.1) is replaced by a hypothesis of bd-slsc on f,
then, in spite of what we noted at the beginning of Example 5.3, conclusion (c) can be not true.
Indeed here we will show an example of a bd-slsc function f : [1/2,+∞[ → ]0, 1] for which
there does not exist v ∈ [1/2,+∞[ verifying conclusion (c) of Theorem 5.2 with respect to ε =
λ = 1 (with such a choice the hypothesis f(u) ≤ infx∈[1/2,+∞[f(x)+ε of Theorem 5.2 is satisfied
by every u ∈ [1/2,+∞[), that is for every v ∈ [1/2,+∞[ there existsw ∈ [1/2,+∞[ \{v} such
that f(w) ≤ f(v) − |w − v|.

Let B :=
⋃

n∈Z+
(](3n2 + 5n − 1)/(3(n + 2)), n[∪]n, (3n2 + 7n + 1)/(3(n + 2))[) and let

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n + 2

+ 3(n − x), if x ∈
]
3n2 + 5n − 1
3(n + 2)

, n

[

(n ∈ Z+),

1
n + 2

+ 3(x − n), if x ∈
]

n,
3n2 + 7n + 1
3(n + 2)

[

(n ∈ Z+),

1, if x ∈
[
1
2
,+∞

[

\ B

(5.16)
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(i.e., if g : [1/2,+∞[ → ]0, 1] is the continuous piecewise affine function, with slope
alternatively equal to −3 and 3 in the connected components of B and with value 1 in
[1/2,+∞[ \(B ∪ Z+), f coincides with g on [1/2,+∞[ \Z+ and has value 1 in the points of
Z+).

Then f is a bd-slsc function, by the help of (a) of Remarks 3.3.
On the other hand, now we will show that for every v ∈ [1/2,+∞[ there exists w ∈

[1/2,+∞[ \{v} such that f(w) ≤ f(v) − |w − v|:

(i) if v ∈ B, it is enough to choose w ∈ B in the same connected component of v and
such that f(w) < f(v), because with such a choice it holds

f(w) = f(v) − 3|w − v| < f(v) − |w − v|; (5.17)

(ii) if v ∈ Z+, then a point w sufficiently close to v solves what is requested, because

lim
t→v

f(t) < 1 = lim
t→v

(
f(v) − |t − v|); (5.18)

(iii) if v ∈ [1/2,+∞[ \(B ∪ Z+), then it is sufficient to consider an element n ∈ Z+

such that |n − v| ≤ 1/2 and to choose w in the interval with extremes n and v,
w sufficiently close to n, because

lim
t→n

f(t) =
1

n + 2
≤ 1

3
<

1
2
= 1 − 1

2
≤ lim

t→n

(
f(v) − |t − v|). (5.19)

Remark 5.5. In the following results we note that Caristi’s fixed point theorem (see [19,
Theorem (2.1)’]) and Caristi’s infinite fixed points theorem can be extended to the case in
which the hypothesis of lsc is replaced by ubd-slsc (see also the extensions given in the case
d-slsc by [2, Theorem 2.1] and by [1]).

Theorem 5.6 (Caristi’s fixed point theorem; see [19, Theorem (2.1)’]). Let (X, d) be a complete
metric space and let ϕ : X → R be a ubd-slsc and bounded from below function. Let T : X → X be a
function such that d(x, T(x)) ≤ ϕ(x) − ϕ(T(x)) for every x ∈ X. Then there exists x0 ∈ X such that
T(x0) = x0.

Proof. It is enough to repeat the same demonstration of Theorem 2.2 in [1], where
Theorem 5.2 has to be used instead of Theorem 2.1 in [1].

Theorem 5.7 (Caristi’s infinite fixed points theorem). Let (X, d) be a complete metric space and
let ϕ : X → R be a ubd-slsc and bounded from below function, that does not obtain its infimum on
X. Let T : X → X be a function such that d(x, T(x)) ≤ ϕ(x) − ϕ(T(x)) for every x ∈ X. Then T
admits infinite fixed points in X.

Proof. It is enough to repeat the same demonstration of Theorem 2.3 in [1], where Theorems
5.2 and 5.6 have to be used instead of Theorems 2.1 and 2.2 of [1].
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