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1 Introduction
In this paper, we investigate a coupled system of fractional g-integro-difference equations
with nonlocal fractional g-integral boundary conditions given by

Dex(t) = f(t,x(0), Ily(t)), te[0,T,1<a<2,
Dpy(t) =gt y(0), IEx(t), t€[0,T],1<p <2,
x(0)=0,  Mlnx(n) =1I5y(8),
0)=0, A Iy(0) = [}x(),

11)

where 0 < p,q,r,z,m,n,h,k <1 are quantum numbers, 1,§,0,7 € (0, T) are fixed points,
8,8, ¥4, 4, v >0, and A;, 12 € R are given constants, D? is the fractional w-derivative of
Riemann-Liouville type of order p, when p € {«, 8} and w € {p,q}, I;f/ is the fractional
¢-integral of order  with ¢ € {r,z,m,n,h,k} and ¥ € {8,¢,y,k, 0, v} and f,g : [0, T] x
R x R — R are continuous functions.

The early work on g-difference calculus or quantum calculus dates back to Jackson’s
paper [1]. Basic definitions and properties of quantum calculus can be found in the book
[2]. The fractional g-difference calculus had its origin in the works by Al-Salam [3] and
Agarwal [4]. Motivated by recent interest in the study of fractional-order differential equa-
tions, the topic of g-fractional equations has attracted the attention of many researchers.
The details of some recent development of the subject can be found in [5-18], and the
references cited therein, whereas the background material on g-fractional calculus can be
found in a recent book [19].
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Recently in [20], we have studied the existence and the uniqueness of solutions of a class
of boundary value problems for fractional g-integro-difference equations with nonlocal
fractional g-integral conditions which have different quantum numbers. Here we extend
the results of [20] to a coupled system of fractional g-integro-difference equations with
nonlocal fractional g-integral boundary conditions.

The paper is organized as follows: In Section 2 we will present some useful preliminaries
and lemmas. Some auxiliary lemmas are presented in Section 3. In Section 4, we establish
an existence and a uniqueness result via the Banach contraction principle, and an exis-
tence result by applying Leray-Schauder’s alternative. Results on the uncoupled integral
boundary conditions case are contained in Section 5. Examples illustrating our results are
also presented.

2 Preliminaries
To make this paper self-contained, below we recall some well-known facts on fractional
g-calculus. The presentation here can be found in, for example, [6, 19].

For g € (0,1), define

-4

[a]q: l—q’

acR. (2.1)

The g-analog of the power function (a — b)f with k € Ny := {0,1,2,...} is
k-1
@-b=1,  (@-n)P=[](a-bq), keNabeR. (2.2)
i=0
More generally, if y € R, then

= 1—(bla)g
_ W —
(a-b)" | Ol T blag™ a#0. (2.3)

Note if b = 0, then a) = a”. We also use the notation 0%) = 0 for y > 0. The g-gamma
function is defined by

(1-q)

Iﬂq(t) = W;

teR\{0,-1,-2,...}. (2.4)

Obviously, I'y (£ + 1) = [£],T,(£).
The g-derivative of a function / is defined by

h(t) - h(qt)

(D0 ==~

fort #0 and (D,h)(0) = }irré(th)(t), (2.5)

and g-derivatives of higher order are given by
(DYh) (&) =h(t) and (Dyh)(£) = Dg(Dy'h)(2), keN. (2.6)

The g-integral of a function / defined on the interval [0, &] is given by

(L h)(t) = /0 his)dys=t(1—q) Y _h(tq')q', te[0,b]. 2.7)
i=0
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If a € [0,b] and & is defined in the interval [0, 4], then its integral from a to b is defined by

b b a
/h(s)dqs.‘:/o h(s)dqs—/o h(s)dys. (2.8)

Similar to derivatives, an operator IZ]‘ is given by

(I0n)(£) = h(z) and  (I3h)(£) =L, (IS ') (1), k€N, (2.9)
The fundamental theorem of calculus applies to these operators D, and I, i.e.,

(Dglyh)(t) = h(2), (2.10)
and if / is continuous at ¢ = 0, then

(I;Dgh)(t) = h(t) — h(0). (2.11)

Definition 2.1 Let v > 0 and / be a function defined on [0, T']. The fractional g-integral
of Riemann-Liouville type is given by (Igh)(t) = h(t) and

1
Fg(v)

(Iyh)(e) = /0 t(t —g5)" Vh(s)dys, v>0,t€[0,T]. (2.12)

Definition 2.2 The fractional g-derivative of Riemann-Liouville type of order v > 0 is
defined by (D)h)(#) = h(z) and

(Dyh)(e) = (DL ) (1), v >0, (2.13)
where [ is the smallest integer greater than or equal to v.

Definition 2.3 For any ¢,s > 0,
1
B,(t,5) = / ut V(1 - qu)(sfl) dqu (2.14)
0

is called the g-beta function.

The expression of g-beta function in terms of the g-gamma function can be written as

Tq(0)lg(s)

By(t:s) = [E+s)

Lemma 2.4 [4] Let o, B > 0 and f be a function defined in [0, T]. Then the following for-
mulas hold:

(1) UF12f)(E) = (I3 PF) ),

@) (D)) = £(0).
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Lemma 2.5 [6] Let « > 0 and n be a positive integer. Then the following equality holds:

n-1 a-n+i

(D)0 = (DI )0 =

i=0

(Dif)(0). (2.15)

Fla+i-n+1)
3 Some auxiliary lemmas

The following formulas have been modified from Lemmas 3.2 and 7 in [21] and [20], re-
spectively.

Lemma 3.1 Let x,y,z>0 and 0 <u,v,w < 1. Then, for ¢ € R,, we have
(i) BER)($) = %«w
(11) ]xlylz (1) (¢) Ly (y+z+1)Ty(2+1) ¢x+y+z

u@+y+z+1) Ty (y+2+1) Ty (2+1)

Lemma 3.2 Given u,v € C([0, T, R), the unique solution of the problem

Dg‘x(t) =u(t), tel0,T],l<a<2,
Dhy(t)=v(t), te[0,T,1<p <2,
x(0)=0,  Mlyx(n) =I5y(E),
y0)=0,  XaIy(6) = [}x(1),

(3.1)

x() = / (t - q5)* Vu(s)dys + ;22 I v(O)

[y(e)
Q A Q2

- Elt“’ll}(’lg‘u(r) + %t“’llrﬁlgu(n)

)» Q
29%‘1 TP v(E) (3.2)

and

A2
tﬁ 1IVI‘)‘u(r])

y(t) = / (t— ps)‘g 1V(s)d S+

)»1)\293
Q

Tp(B)

2

5 — PP v(E) + —=—1" 1 10 v(0)

A Q
19 =2 u(D), (3.3)

where

FulB) o
Tu(B +) ’
Q. = Fk(a) I.a+v—1
2T Fk(O[ + \)) ’

[(e)

Qs = a+y—1’
3 | . (oz+)/)'7

Fh(lg) 9’3“"1
Cu(B + 1)

Q= Q1 — MAr Q32 #0.

Q=

Qy =

’
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Proof From 1 < o < 2, we let n = 2. Applying Lemma 2.5, the equations in (3.1) can be
expressed as equivalent integral equations

t

x(t) =t + et + Fql(a) /(; (t — g5)“ Du(s) dgs, (3.4)
t

y(t) = ditP + dyt?? + % /0 (t - ps) P Vv(s) dps (3.5)

for ¢;,¢,d1,dy € R. The conditions x(0) = 0 and y(0) = 0 imply that ¢; = 0 and d; = 0,
respectively. Taking the Riemann-Liouville fractional ¢-integral of order ¥ > 0 for (3.4)
and (3.5), we have the system

Vo) oo L@ iy
I, x(t) =1 ot )
; [ — -1 (o _ (a-1)
' F¢(w>rq<a)/o /0 (6= ¢ s —qw)"* Vulw) dyw s, (3.6)

F¢(,B) hrv-1
Ly(B+ V)

1 t ps
+ m /0 /(; (t — ¢S)(‘//—1)(S —pw)(ﬁ—l)v(w) ded¢S. (37)

Iﬁfy(t) =d

Substituting (¥, ¢,t) by (v, m,n), (v,k, ) in (3.6), and («,n,£), (u, h,0) in (3.7) and using
Lemma 2.4 with nonlocal conditions in (3.1), we have

A2 2
a=-g Iflﬁv(ﬁ)—ﬁlzlgu(r)
)\.IA.ZQzL )\.294
+ S L) - S L)
and
)»1522 Qz
dy = S utn) - Z2SIEVE)
)\,1)\293 )\193
=g L I5v(6) - o Wiju().

Substituting the values of ¢, ¢, di, and d; in (3.4) and (3.5), we obtain the solutions (3.2)
and (3.3) as required. O

4 Main results
Let C = C([0, T],R) denotes the Banach space of all continuous functions from [0, 7]
to R. Let us introduce the space X = {x(¢)|x(¢) € C([0, T],R)} endowed with the norm
[lx|| = sup{|x(z)|, ¢ € [0, T1}. Obviously (X, | - ||) is a Banach space. Also let Y = {y(¢)|y(¢) €
C([0, T],R)} be endowed with the norm ||y = sup{|y(¢)|, ¢ € [0, T]}. Obviously the product
space (X x Y, ||(x,9)|l) is a Banach space with norm ||(x,y)|| = [lx| + I¥||.
In view of Lemma 3.2, we define an operator K : X x ¥ — X x Y by
K )(0) - (’Cl("’y)“)) ,
Ko (x, y)(2)
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where
PN
K1 9)(8) = I2f (5,2(5), I29(5)) (£) + —=— o B (s, 9(5), 15 x(5)) (0)

Q
_ Eltafll,ﬁlgf(s,x(s),lfy(S))(T)

MAr Q2
+ %tw-ll,zr; (5,2(5), y(s)) (n)

Ay Q2
- %t"“llgll’fg(s,y(s),Ijx(S))(E)

and

Ko, )(2) = 1g (5, 9(5), L;x(9)) () + L tﬁ LI (s,x(5), y(s)) (m)

Q
- étﬂ’llglfg(s,y(S),Ijx(S))(E)

k Ao Q2
! ;2 207U P (5, 9(5), IEx(5)) (6)

A1823

- 1Ikl‘)‘f(s, (s), 2y(9)) (7).

For the sake of convenience, we set

A= - L
YT+ 1) T, 1)
~ [, (8 +1)T%% ~ Ty(e +1) TP+
A3 = ) A4 = )
Fgla+8+1T(5+1) Ip(B+e+1) (e +1)
A = Do + 1)y _ Tu(B+1EP
Ty +a+ DT (a+1) T+ B+ T,(B+1)
Tu(B +1)0"+F (o + 1)+
A7 = ) AS = )
Cp(n+ B +1T,(B +1) Fr(w+o+ 1)y +1)
Ao o Do +8 + 1T, (8 + 1)y +erd
o Py +a+8+ DT (a+8+1)T(6 +1)
A Tu(B +e&+1),(e + 1)g<
0= Ty +B+e+DIL,(B+e+ DI (e + 1)’
A - Tu(B + & +1)p(e + 1)gH+F+e
e Fpw+B+e+DIL,(B+e+D(e + 1)’
Ti(a +8 + 1,8 + 1)TVrer?
App =

Tiw+a+8+ )M (a+8+ D6 +1)

Page 6 of 21

(4.2)

Theorem 4.1 Assume thatf,g: [0, T] x R? — R are continuous functions and there exist

positive constants M;, N;, i = 1,2, such that forall t € [0, T] and u;,v; e R, i=1,2,

[f (& w1, u2) = f (&, v1,v2)| < Mylug = vi| + Maluz = vs
and

\g(t, w1, u2) — g(t,v1,v2)| < Nilug — 1| + Naluz — vy .
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In addition, we suppose that

Bl+Bg+C1+C2<1,

where

2| T Q1,4

Bl = M1A1 + T(QINZAH + |}\.1|Q4M1A5 + Q4N2A10) + @T MlAg,
2| T Qe

Bz =M2A3 + |Q| (91N1A7 + |)\1|Q4M2A9 + Q4N1A6) + @T M2A12,
| TP D,

C1 = N2A4 + T (92M1A5 + |)\.2|93N2A11 + QngAg) + @T N2A10,
P TP b

C2 = N1A2 + (QzMzAg + |)\2|S—23N1A7 + QgMzAlz) + |— T N1A6.

€2 Q

Then the system (1.1) has a unique solution on [0, T].

Page 7 of 21

Proof Firstly, we define sup,c(o 71 |f(£,0,0)| = G1 < 00 and sup,(o 11 1¢(£,0,0)| = Gy < 00

such that

B3 G
7 > max , )
1-(B1+By) 1-(C+(Cy)

where

2| T S
Bg = GlAl + T (91G2A7 + |)»1|Q4G1A5 + Q4G2A6) + @T GlAg,

M| TP
|€2]

Q
C3 = G2A2 + (QgGlAg + |)\2|93G2A7 + QgGlAS) + —2|Tﬁ_lG2A6.

|2

We will show that KB, C B,, where B, = {(x,y) € X x Y : ||(x,9)|| < r}.
For (x,y) € B,, taking into account Lemma 3.1, we have

K1)

|A2]€2,
|€2]

< sug{lg [f(s,x(s),]fy(s)) |(t) + t"‘_ll,’fllf |g(s,y(s),1§x(s)) |(9)

|A1]122 €24

Q
LU (5,%(5), 12y()) | (1) + il

4L

|€2]

|A2[€24
|€2]

< I (|f (s 2(5), I29()) £ (5,0,0)| + |f(5,0,0)[)(2)
Q
* |A|2g|z| ST (g (s, 9(5), I x(5)) - g(s,0,0)| + |g(5,0,0)[)(0)
Q
# 1o TG (1 (5206, 75(6)) = £6,0,0)| + (5, 0,0) ) (2)
2122124

|€2]

=T s, y(s),zjx(s))y@)}

T"‘llfnlg (If (5,%(5), 2¥(s)) = £(5,0,0)| + |£(5,0,0)|) ()

eI | (5,2(5), 129(5)) | (n)
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Ao |2
B e 8 g5(90 136) ~06,0,0)| + L6, 0,0) )@
< M|lx]|A1 + MallyllAs + G1Ay

A2 €2
IQI

LT (Naly A7 + NalxllAn + GaAr)

|Q| Ta H(My||xllAs + Ma||yllAr + GiAsg)

[A1]1A2]€24

12|

|)»2|Q4
12|

T (My|xl|As + Ma|lyl|Ag + G1As)

——— T (NillyllAs + Na|lx[lA1o + G2As)

= Billx[l + B2|lyll + B3

< (Bl +Bz)l"+B3 <r.

In a similar way, we get

| Ko, 9)(0)]
<15 (|g(s,y(s), I5x(s)) — g(s,0,0)| + |g(s, 0,0)|)(®)
+ % TP 12 (|f (s, %(5), I2y(s)) = £(5,0,0)| + |f(5,0,0)[) (1)
SZ
|Q| =2 - 1518 (|g (s, 9(5), I;x(s)) — g(5,0,0)| + |g(s,0,0)]) ()
% Tﬂ‘llflﬁﬂg(s,y(s),Ijx(s)) -2(5,0,0)| + |g(s,0,0)])(6)
|)»1|Q3

1] Lt 1Ik1°‘([f( (s),Ify(s)) —f(s, 0,0)| + [f(s,O, O)‘)(r)

< MNillyllAz + Nollx||Ag + GoA,

|)»1|

2 SR TP My x| As + My lyllAs + GiAs)

Q9 p-1
+— 2l — TP (N1llyllAs + Na[lxl|Aso + G2As)

|A1][22]€23

12|

|)»1|Q3
12|

= Gillxll + Collyll + Cs

TP (N1 llyllA7 + Nal|x|| A1y + G2A7)

TP (M|x]|As + M|yl A1z + G1As)

< (C1 +C2)I"+B3 <r.

Consequently, [|KC(x,y)(@)|| <r.
Next, for (x3,72), (¥1,71) € X x Y, and for any ¢ € [0, T], we have

|/C1(x2,y2)(t) - /C1(x1,y1)(t)|
< I (|f (s,%2(5), I2y2(s)) = f (5, x1(5), )y (5)) |) (8)
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MZ'QI
|€2]
Q
|Ql| T I (If (5,22(8), L9 (9)) = f (5,1(8), 31 (5)) ) (2)
2|22 Q24
12|
|>»2IQ4
1€2]

———T L1 (|g(5,2(9), Exa(9)) — g (5,11 (5), LEx1(5)) ] ) 6)

T2 (| (5,%2(5), Ly (s)) = f (5,%0(5), [y (9)) ) ()

T I 10 (|g(5,72(5), L2 (5)) — g (s, 01(5), L1 (5)) |) (8)

< My oy = 3 [LI2D)(T) + Mally> =y | 22 A)(T)

|)»2|Q1

Qi ——— T (Nully, - n ML I (1)) + Na |y — 21 | T ID T (1)(9))

h'p“z

Q
+ ﬁ TN (M|l — % | (D) () + My ly2 = IR (1)(2))

|)L ||)\ |Q *- o «
#T (Ml = 1) () + Mallys = 31 I I2 1 (1) ()
122182, 4 - .

' T (Nullyz =L )(E) + Nallxs = 21 11 (1)(€))

1€2]

= Billx2 =21l + Bally2 = ml-
Therefore, we have
1C1 (25 92)(8) = Ky (1, 91)@) | < Br + Bo) (Il — 1l + [ly2 = ). (4.3)
In the same way, we have

’Kz(xz,yz)(t) - ’Cz(xl,yl)(t)|
<15(|g(s,2(5), I (5)) = g (5, 31(5), L1 (9)) | ) (2)

+ |)Lllg|2g|22 TP (|f (s, %2(5), L ya(s)) = f (s,21(5), 231 (5)) [ ) ()

B pp ISP (|g (5, 72(9), Loxa(s)) — g (5,1 (), Loxa () |) ()

el
I 111 0 ) ~ 60 5 9) O
o P g (5 a5, 23 6) - :
1] k 242(8), 1732(5)) = £ (8,21(5), 31 (5)) ) ()
< Nillys = 1l14a + Nallxz = 1|44
|x|1§|2g|22 TFH (Ml = 1] As + Mallys — y1]1As)
+ ﬁT'“ (Nilly2 =y1l146 + Nalx2 =21/l Aro)
% TP (Nillys = 31147 + Nallxs = x| An)
LMl Y(Mallxy — 1]l Ag + Mo |y, —
19] 1lxz =21 |Ag + Malys - 11lA1)

= Cillxa = 21l + Cally2 = 31l
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which implies

12 (32, 32)(8) = Ka (1, 31)@) | < (Cy + Co) (Nl = &1 + [ly2 = 31 l). (4.4)

It follows from (4.3) and (4.4) that

1K€ (G2, v2)(®) = K1, 31) @) | < By + B + Cu+ Co) (Il — x4l + ly2 = 3 l).
Since By + By + C1 + C; < 1, therefore, K is a contraction operator. So, by Banach’s fixed
point theorem, the operator K has a unique fixed point, which is the unique solution of

problem (1.1). The proof is completed. d

In the next result, we prove the existence of solutions for the problem (1.1) by applying
the Leray-Schauder alternative.

Lemma 4.2 (Leray-Schauder alternative, see [22], p.4) Let F : E — E be a completely con-

tinuous operator (i.e., a map that restricted to any bounded set in E is compact). Let
E(F) = {x € E:x = AF(x) for some 0 < A < 1}.
Then either the set E(F) is unbounded, or F has at least one fixed point.

For convenience, we set constants

Ao T Qo

Ep = PoA; + T(QlQofb +|111Q24PoAs + 24QoA¢) + ] T% Py Asg,
Ay | T2 Q

Ey =PiA; + 2|T|(QIQ2AH + | M[QaP1As + Q4QaA10) + |—91|Ta 'P1As,
Ao T Q0

E3 =PyAz + T(Qle‘b +|M]Q24P2Ag + 24Q1Ae) + ] T PyAp,
0| TAL Q.

Fo=QoAz + 1|T|(92P0A5 + A2 Q23QoA7 + Q3PoAs) + |—92|Tﬂ 'QoAs,
A | TP Qo 51

Fi= QA + Is] (RuP1A5 + A2 Q23 QA1 + 2P1Ag) + ﬁT Qa410,
|}‘-1|Tﬁ_1 QZ -1

Fy=Qi4; + I (2P2A0 + |12]|Q3QuA7 + Q3P A1) + @Tﬂ Q146

and
G* =max{l - (E; + F}),1- (E, + F»)}.

Theorem 4.3 Assume that there exist real constants P;, Q; > 0 (i =1,2),and Py >0, Qy >0
such that for all u;,v; € R (i =1,2) we have

[f (&, u1,u5)| < Po + Py|us| + Palus),

gt v, )| < Qo + Qulvi| + Qa|val.
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In addition it is assumed that
Ei+F <1 and E,+F<l1.

Then there exists at least one solution for the system (1.1).

Proof We first prove that the operator K: X x ¥ — X x Y is completely continuous. The
continuity of functions f and g imply that the operator K is continuous. Let ® C X x YV
be a bounded set. Then there exist positive constants D; and D, such that

If (& w1 (), u2(2))| < Dy, lg(&v1(0),v2(0))| < D2y Y(u1,12), (v1,12) € ®.

Then for any (i1, u2), (v1,v2) € @, and using Lemma 3.1, we have

||IC1(x,y) H <I [f(s,x(s),]ay(s))|(t) T"‘ 11“1‘3 |g(s,y(s) st(s))|( )

%T" 1y I“[f(s,x(s I‘Sy(s))|(t

[A1llA2]€24
€2
|M|Q4

T2 | (s,%(5), Iy(s)) | (n)

=TI g (s, y(s), Lo x(s)) | €)

A Dl | D
- €2 12|
D |A]|A2]€24 T4, 4 Dy | 27824

|€2] 12|

T 1A8

T Ag.

In the same way, we deduce that

[A1]€2
[€2

o 2 e D (|e(s, (), Lx(5)[) §)
Pll22[$23
12|

L Pl
|€2]

”lCz X,y || <I‘S(’g(s, st(s))|)(t) LR - IIVIQ(V( (5)’1;;)’(5))0(77)

Tﬂ_ll;/flﬁ (|g(s,y(s),1§x(S)) |)(9)

LB b (|f (s, %(5), I¥(9)) ) (0)

Di|A|R2 Dy, Q2
§D2A2+ 1| 1| 2T,3,1A5+ 2842
12| €2

Dy |A1]|A2| 2 Dq|A1|R2

2| A1[|A2] 3l 11211823

7
|€2] 1€2]

TP 14,
TP 14,.

Thus, it follows from the above inequalities that the operator C is uniformly bounded.
Next, we show that K is equicontinuous. Let £}, £, € [0, T] with < £,. Then we have

|’C1 (x, y)(t2) - /Cl(x,y)(tl)|
< |19 (5,%(9), 9(9)) (82) — I2F (5,(5), I'y(5)) (81|



Suantai et al. Advances in Difference Equations (2015) 2015:124 Page 12 of 21

|)‘|2§|2§|21|tg LMD g (s, v2(s), La(s)) | (6)
%%gl NI |f (5,0, 12(9)) | (2)
Mﬂgmq NI f (5,x(), I (s)) | ()

. M|2s|2§|24 |57 = 67 |1 g (5 9(s), L2x(9)) | 6)
(a) 5) ) — (61— 45)* V] dys

+ Fq(;) ftl (tr —qs)“dys
%W-l—f;-% + %fltﬁ‘ -4 As
%}t — 0 As + %! =474

Analogously, we can get

|/C2(x,y)(tz) - ’Cz(x,)/)(tl)|

< |IDg(s,y(s), L5x(5)) (£2) — I g (s, y(s), L5 x(s)) (1) |

|Alls|2s|22|t S A CEEOR RO ()

Q

+@t2 L U g (5,92(5), Lo (5)) | 8)
[A1]1A2]€23
[€2]
|A1]€23
1€2]

Dy (2. 6
Ium/(“p” i

= 150 L9) )

|7 = 7|2 |f (5, %206), L292(9)) | (7)

M|22D _ QoD _ _

|1| 2 l|tﬁ1 | L5 2|t2ﬂl—tfl|A6
12| 12|

[A1122|€23D2 |A11€23 D1

&5 =t Ay + |ty =7 As.

|€2] |€2]

Therefore, the operator /C(x,y) is equicontinuous, and thus the operator K(x,y) is com-
pletely continuous.

Finally, it will be verified that the set £ = {(x,y) € X x Y : (x,5) = AL(x,9),0 <X <1} is
bounded. Let (x,y) € &, then (x,y) = LK(x,y). For any t € [0, T'], we have

x(t) = A1 (%)), y(8) = Ao, y)(2).
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Then we have

|%(8)] < Polg (V)(®) + PullxII5 (1)(2) + Pa Iy I3 7 (1)(2)

|A2]€2
|€2]

T QoI 1, (1)(6) + QllyllZ; I (1)(6) + Qa llxI| [ I I (1)(6))
Q
* ﬁT“_l(Polk”IZ(l)(r)+P1||x||1k”1,‘;( )(z) + PallyllIRIE 1 (1)(7))

|€2]

Ao |2
| |2S'2| T (Qu ) + QUYL V) + QLI EM)©))

< Eo + Erllx[| + E2 1]

T (PoLl I () () + Prlll I L5 (D) () + PollyllZ 151 (1)())

m-q-r

and

(@) < QoI (1)(#) + Qully I (1)(8) + QulIxIIF I (1)(2)
[A1]€22
1
SZ
o TP (QuISIEW)(E) + QUYL W) (E) + Qall | EIL L (1)(E))
[A1l1A2]€23
Ie]
|)»1|Q3
Ie]
< Fo + Alix|l + B2yl

== TP (Pl 15 (1)(n) + Pollx 1,5 (1) (n) + Py I I I5 17 (1) ()

m-q-r

TP QoI IS (1)(6) + Qully L, I (1)(6) + Qs lIxIIT; IV I (1)(6))

——— TP (P I (1)(x) + Py I (1)(7) + Pyl IR I T (1)(7))

which yields
%l < Eo + Exllxll + Ex |1y
and
¥l < Fo + Fullx|l + Fallyll.
Therefore, we have
llxll + llyll < (Eo + Fo) + (Ex + Fy) x|l + (E2 + EB2)lyll,

and, consequently,

Eo +F()
G*

|Gyl =

for any ¢ € [0, T], which proves that £ is bounded. Thus, by Lemma 4.2, the operator
has at least one fixed point. Hence the system (1.1) has at least one solution. The proof is
complete. d

4.1 Examples
In this subsection, we present some examples to illustrate our results.
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Example 4.4 Consider the following coupled system of fractional g-integro-difference

equations:

Dia(t) = s2fmt . BOL 4 et oy 2 cped
12%0) = 2~ aewo] T rez A1aY 2 )

4/3 in% ly(@®)| 1 2
DY) = S5t - ot * s - A0 + 3,
X0)=0,  ~2I[5x(3) = 12y(b),

y0)=0, LIy =12x(3).

(4.5)

Here  =3/2,8 =m, B=4/3,e=m/2,y =716,k =~/2, u =€, v =+/3, g =1/2, r = 1/4,
p=1/3,z=1/5,m=1/8,n=1/6,h=1/9,k=1/7,n=3/2,& =1/2,0 =1/3,7 = 5/3, ;1 = /2,
Ao =~/3/2, T =2,f(t,x,I’y) = (x| cos® wt)/((e* + 4)>(4 + |x|)) + e /((t + 8N ITuy + V212,
and g(¢,, 12x) = (|| sin? w£)/((11 + £)>(1 + [y])) + (1/(e* + 8)2)1{%296 + /3. Since

1 1
t,uy, ) —f (v, )| < —— Uy —vi| + — Uy — v:
If (&, w1, u2) = f (£, 11 2)‘_100|1 1] 64| 2 = V2

and
g (6 u1, 1) — g(t, v, v0)| < L |t — 1] + i|Mz - Val,
— 121 81

then the assumptions of Theorem 4.1 are satisfied with M; =1/100, M, =1/64, N; =1/121,
and N, = 1/81. By using the Maple program, we can find that

Q= QQy — AAaQ23824 ~ 0.61154471 #0

and
2| T Qe
B = MA; + T(szINZA11 + MM A5 + QaNrAyg) + @T M, Ag
~ 0.0577709,
Ao | T Qe
By = MyAs + T(QlNlA7 + | M|QuMrAg + QaN1Ag) + a T 'MyA,
~ 0.1489994,
M| TP Q4
C1 = N2A4 + T (92M1A5 + |)\.2|93N2A11 + QngAg) + @T N2A10
~0.22629179,
|)L1| Tﬁ_l QZ B-1
C2 = N1A2 + |Q| (QzMzAg + |)\2|93N1A7 + QgMgAlz) + @T N1A6
=~ (0.28656994.

Therefore, we get
By + By + G + C, 2 0.71963204 < 1.

Hence, by Theorem 4.1, the problem (4.5) has a unique solution on [0, 2].
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Example 4.5 Consider the following coupled system of fractional g-integro-difference
equations with fractional g-integral conditions:

—t
Df//gx(t): de”t (@l t21+8 1\//;y() V2, O<t<m,

(t+11)2 2+|x(2)] (e~ )2
7/ cos? 2t | _y@)l 1
Diay(®) = oy~ T * (etmz Lex(®)+ 3,

(4.6)
%(0) =0, 111/33’(2”)‘”/_ 1/2x( )=0,

Y0 =0,  L2Px(3E)+ V2L y(3E) =o.

Here o = 4/3,8 =+/3, B=7/5, e =~/2,y =~/5,k =1/3, u = /7, v = /2/2, ¢ = 1/3,
r=1/5,p=1/4z=1/6,m=1/2, n=1/3,h=1/7, k=1/8 1 =n/5 & = 21/5, 6 = 31/5,
T= 471/5 M=, Ay = /2, T =, f(t,%,I29) = (4e/(t + 12 (x/(2 + |x]) + (L (e +
8)2) Y3 Yoy ++/2, and g(t,y, I°x) = (cos® 27 ¢/(10 + O)*)(|yI/(1 + |y])) + (1/(e" + 7)2)11/6x + (1/2)

Since
[f (6, ur,u0)| < V2 + —|M1| + 1|M2|
and

gt v2)| = 5+ — [l + - Iva]
g11’2_2 1001 121

then the assumptions of Theorem 4.3 are satisfied with Py = /2, P; = 1/72, P, = 1/81,
Qo =1/2, Q; =1/100, and Q, = 1/81. By using the Maple program, we can find that

Q= QQy — A A3 ~ —4.18385985 # 0

and
2| T Q1 e
Eo = PoA; + 2|T|(§21Q0A7 + [2|QaPoAs + 2uQoAs) + I—Qll T*'PoAsg
~11.08984581,
Ao | T |
Ey = PiA; + T(QleAu + | M[QaP1As + Q4QaA1) + ﬁT P Ag
~ 0.1629615871,
|Ag| T Q0
Ey=PyAz+ ——— Is] (QQiA7 +|M[QaPrAg + QuQiAg) + @T PyAr
~ 0.34091157,
M| TP Qo 51
Fo=QoAz + T(szoz‘ls +|A2|R23QoA7 + 23PoAs) + ] TP QoAs
~ 25.68580671,
|| TP Qo 51
Fi= QA + (Q2P1A5 + | A2 Q23QoAn + Q3P Ag) + 2T QA

|€2] 9]

~ 0.68153261,
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|ha | TP
|€2]

Q
Fy= QiA; + (QPsAg + [A2|Q2QIA7 + 3PrA) + |—2T5-1Q1A6

Y
~ 0.5902944

and

G* =max{1- (B, + F1),1 - (Es + F)} = max{0.1555058,0.06879403} = 0.1555058.
Therefore, we get

E; + F1 ~0.8444942 <1 and E,+ F,~0.93120597 < 1.
Hence, by Theorem 4.3, the problem (4.6) has at least one solution on [0, 7].

5 Uncoupled integral boundary conditions case
In this section we consider the following system:

Dg«(t) =f(t,x(t), 2y(t)), te[0,T1<a<2,
Dhy(t) = g(t,y(0), Ex(t)), te[0,T],1<B<2,
x(0)=0,  Alyx(n) = Ikx(§),
¥(0)=0,  Aalyy(0) = Iy(2).

(5.1)

Lemma 5.1 (Auxiliary lemma, see [20]) For h € C([0, T],R), the unique solution of the

problem
“ = ’ ) T yl )

qu(t) h(t) tye [0,T],1<ax<2 (5.2)

x(0) =0, Mlmx(n) = Iix(&),
is given by

N )\.lta—l - ta—l -
x(2) :Iqh(t) + X Imlqh(n) X Inlqh(é), (5.3)

where

— F”(a) ka1 _ 1 Fm(oz) 77y+ot—1 7./0

Ik +a) Ty + )

5.1 Existence results for uncoupled case
In view of Lemma 5.1, we define an operator 7 : X x ¥ — X x Y by

Tl - (ﬂ(m)(t)) ,

T2 (%, y)(2)

where

)\11’“71
A

LI (s,(5), Iy(9)) (6)

T 2)(0) = 127 (5,%(9), 1 ¥(6)) (8) +
a-1

A

II2f (s,%(5), Iy(s)) ()
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and

Az

p-1
Tol,0)(0) = 25y LX) O + 20— I 1g(5,5(5), 1) 6)

P
- F[}jlﬁg(s,y(s),Iﬁx(s))(f),

where

I'r(B) RN I'n(B)

= o*+F1 0.
T+ f) g 7

In the sequel, we set constants

Lo + 1)E<

Az = ,

1 Cyle +a+1Tg(a +1)

e Tyl + 8 + 1)Ty(8 + 1)g«ra+

1= Pyl +a+8+ 1)y +6 + 1,6 +1)

~ (B +1)z"*P

P T+ B+ DT, (B+1)

o T(B +e&+1)Ty(e +1)rVrhre

1= Frw+B+e+1)IL(B +e+1)Le+1)

H, =MA Ml'Ta_l]WA ‘HA_/IA

1=MiAr+ ———VhiAs + 1413,
[A] [A]

Hy = MyAs + ) 1|T(H_A T‘HMA

2 = MaA3 249 t+ 2414,
Al [A]

Pl TP T

L =NAy + NyAp + NjAsg,
|| ||

L,=N,A MTIHNA TB_lNA

2 = IN1A2 147 + 14115
(W] (W]

Page 17 of 21

Now we present the existence and the uniqueness result for the problem (5.1). We do

not provide the proof of this result as it is similar to the one for Theorem 4.1.

Theorem 5.2 Assume that f,g : [0, T] x R?2 — R are continuous functions and there exist

constants K;, L;, i = 1,2 such that for all t € [0, T and u;,v; e R, i=1,2,
f (&, w1, u2) = f (£, v1,v2) | < Milug = vi| + Malua — v,

and
\g(t, w1, u2) — g(t,v1,v2)| < Niluy — vi| + Naluy — va).

In addition, assume that
Hi+Hy+Li+Ly<1.

Then the boundary value problem (5.1) has a unique solution on [0, T).
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The second result deals with the existence of solutions for the problem (5.1), is analogous

to Theorem 4.3 and is given below.

Theorem 5.3 Assume that there exist real constants m;, n; > 0 (i = 1,2), and mqo > 0, g > 0
such thatVx; € R (i =1,2) we have

[f (6,1, %0) | < 70 + i |1 | + 7722 ]%s ,

gt 21, %2)| < 70 + x| + 7z ).
In addition it is assumed that
U1+V1<1 and U2+V2<1,

where U;, V;, i =1,2, are given by

L[l = }’7/11A1 + Mﬁ’l1A5 + Ta_l }’;llAlg,
[A] |A]

U2 = }’;’12A3 + Mﬁ’lzz‘lg + Tu_l l’l’l2A14,
|Al |A]

Vi =npAqg + Mﬁzz‘\u + - ——2416,
g A

V= i+ 22T A, + r 1n1A15
g W]

Then the boundary value problem (5.1) has at least one solution on [0, T].
Proof By setting
G* =min{l1 - (Uy + V1),1- (U + V2)},
the proof is similar to that of Theorem 4.3. So we omit it. O

5.2 Examples
In this subsection, we present two examples of uncoupled case of nonlocal conditions.

Example 5.4 Consider the following system of fractional g-integro-difference equations

with g-integral conditions:

—timnt
DY3x(t) = g+ sy + COZ;” L0 -1, 0<t<3,
5/ “2 )l V3
Dizy(t) = E - s + Geap - Do) + 5
L2 (5.4)
(0) = O 11/3 x( ) 1/4x( )
¥(0) =0, f//a_y( 3)+ § 1/5)’(§)=

Here o =3/2,8 =+/2,8=5/4,6 =3,y =~/2/2,k =/3/2, w=m,v =7, q=1/9, r =
1/8,p=1/7,z=1/6, m=1/3,n=1/4, h=1/5,k=1/6,n=3/4,§ =9/4,0 =3/2, 71 =3, A\ =
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1/2, kg = =1/3, T = 3, f(t, %, I°y) = (e™**"7¢ /(¢ + 3)*)(|%]/(9 + |x])) + (cos? nt/n(t +72)2 l/sy—
(1/3), and g(t,y, I°x) = (2we™ /(7 + £)*)(|y|/(2 +|y])) + (sin 27w £/ (3€’ L5213 Yox+(1/3). Since

1 1
t,uy, uy) —fE, v, )| < — Uy —vi|+ —— Uy —v
[f(t, w1, u2) = f (£, 1 2)|_81| 1| 497T| 2=V

and

1
gt w1, u2) — g(t,v1,v2)| < —|u1 v+ —

367 622 72b

then the assumptions of Theorem 5.2 are satisfied with M, =1/81, M, = 1/497, N =
1/367, and N, = 1/64. By using the Maple program, we can find that

RYICN grra-l_ 141*’”(“) n’ 1 ~1.9245172 40
Tk + o) oy +) ' ’
= Mr““‘“ — o Meﬂﬂ“ ~ 8.37494759 # 0
Te(v+B) Tu(p + B)
and
_ | 1|Ta -1 TDt—l
H1 =M1A1 + TMIAS + |A| M1A13 ~0.11268247,
. |)\_1|T01—1_ Toz—l_
Hz = MzAg + TMZAQ + WMQAM ~ 019713212,
TP A _
Li=NyA4 + TNQAH + | ——NyA16 ~ 0.58490031,
_ |ho| TA1 Th-1
L2 :N1A2 + TN1A7 + |\IJ| N1A15 ~ 0.06286768.

Therefore, we get
H; + Hy + Ly + L, ~ 0.95758259 < 1.

Hence, by Theorem 5.2, the problem (5.4) has a unique solution on [0, 3].

Example 5.5 Consider the following system of fractional g-integro-difference equations:

25e7t Jx(2)] 3 1/2 1
f/zx(t) -fi4) "B T <t+;n 1 /2y(t) 7 0<i<l,
tcusznt | (t)| 3/ \/5
Dr0) = * e i + mep - asr@) + 5 (5.5)
x(0)=0,  Lx1)+12x(3) =0,
y0)=0, 534y =13y

Here a = /7,8 =1/2, B =m/2, 6 =3/2, y =4/5, k =2/3, u = /3, v =1/3, g = /2/2,
r=+312,p=nld,z=n/5,m=nl6,n=m/7,h=m/8 k=m/9,n=1,&=3/4,0 =1/2,
T=1/4, k= —/3/2, Ay =5, T =1, f(t,x,I°y) = (257t /(e™* + 4)*)(|x|/(5 + |x])) + (B3r2/(t +
37'()2)11/2 e (1/+/5), and g(t, y, I’x) = (9e 05> 7t (¢ 4 6)2)(lyl/(L + |y]) + (6/(¢ + 6)2)13/596 +
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(+/2/3). Since
If(t,x x)|<i+l|x|+l|x|
) %1, %2 =5 i gihe
and
V2 1 1
!g(t,xl,xz)! =< 3 + E|xl| + g|x2|:

then the assumptions of Theorem 5.3 are satisfied with g =1/ 5, my = 1/5, iy = 1/3,
il = A/2/3, i1y = 1/4, and 715 = 1/6. By using the Maple program, we can find that

T r
_ %5K+D{—l _ )\1#(0[))1]}/“1_1 ~1.21235918 7—’/0;
n(k + o m\y +
r r
_ % vy, % 011 x _0.32647283 # 0
Y+ AV
and
_ | T _ ™t
Ul = mlAl + TmlAS + mmlAlg' ~ 0‘23965603’
_ [Ja| T _ Tt
L[2 = m2A3 + Tm2A9 + WmZAM ~ 0'27471434’
_ Ao T _ T
V1 = VIZA4 + TVIZAH + mnzAm ~0.04758258,
I o L L
Vo= iy 4 P2y ¢ A ~ 0.36424461.

Therefore, we get

U, + V1~ 0.28723861 <1 and U, + V,~0.63895895<1.

Hence, by Theorem 5.3, the problem (5.5) has at least one solution on [0, 1].
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