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Abstract
It is well-known that Mann’s algorithm fails to converge for Lipschitzian
pseudocontractions and strong convergence of Ishikawa’s algorithm for Lipschitzian
pseudocontractions have not been achieved without compactness assumption on
pseudocontractive mapping T or underlying space C. A new algorithm, which
couples Ishikawa algorithms with hybrid techniques for finding the fixed points of a
Lipschitzian pseudocontractive mapping, is constructed in this paper. Strong
convergence of the presented algorithm is shown without any compactness
assumption.
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1 Introduction
In the present article, we are devoted to finding the fixed points of pseudocontractivemap-
pings. Interest in pseudocontractive mappings stems mainly from their firm connection
with the class of nonlinear accretive operators. It is a classical result, see Deimling [], that
if T is an accretive operator, then the solutions of the equations Tx =  correspond to the
equilibrium points of some evolution systems. This explains why a considerable research
effort has been devoted to iterative methods for approximating solutions of the equation
above, when T is accretive or corresponding to the iterative approximation of fixed points
of pseudocontractions. Results of this kind have been obtained firstly inHilbert spaces, but
only for Lipschitz operators, and then they have been extended to more general Banach
spaces (thanks to several geometric inequalities for general Banach spaces developed) and
to more general classes of operators. There are still no results for the case of arbitrary
Lipschitzian and pseudocontractive operators, even when the domain of the operator is a
compact and convex subset of a Hilbert space. It is nowwell known thatMann’s algorithm
[] fails to converge for Lipschitzian pseudocontractions. This explains the importance,
from this point of view, of the improvement brought by the Ishikawa iteration, which was
introduced by Ishikawa [] in .
The original result of Ishikawa involves a Lipschitzian pseudocontractive self-mapping

T on a convex and compact subset C of a Hilbert space. It establishes sufficient conditions
such that Ishikawa iteration converges strongly to a fixed point of T .
However, a strong convergence has not been achieved without a compactness assump-

tion on T or C. Consequently, considerable research efforts, especially within the past 
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years or so, have been devoted to iterative methods for approximating fixed points of T ,
when T is pseudocontractive (see, for example, [–] and the references therein). On the
other hand, some convergence results are obtained by using the hybrid method in mathe-
matical programming, see, for example, [, –]. Especially, Zegeye et al. [] assumed
that the interior of Fix(T) is nonempty (int Fix(T) �= ∅) to achieve a strong convergence,
when T is a self-mapping of a nonempty closed convex subset of a real Hilbert space. This
appears very restrictive, since even inRwith the usual norm, Lipschitz pseudocontractive
maps with finite number of fixed points do not enjoy this condition that int Fix(T) �= ∅.
The purpose of this article is to construct a new algorithm, which couples Ishikawa al-

gorithms with hybrid techniques for finding the fixed points of a Lipschitzian pseudo-
contractive mapping. Strong convergence of the presented algorithm is given without any
compactness assumption.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset ofH . Recall that a mapping T : C → C is called
pseudocontractive (or a pseudocontraction) if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖

for all x, y ∈ C.
It is easily seen that T is pseudocontractive if and only if T satisfies the condition

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥ (.)

for all x, y ∈ C.
A mapping T : C → C is called L-Lipschitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ C.
We will use Fix(T) to denote the set of fixed points of T , that is,

Fix(T) = {x ∈ C : x = Tx}.

The original result of Ishikawa is stated in the following.

Theorem. Let C be a convex and compact subset of aHilbert spaceH ,and let T : C → C
be a Lipschitzian pseudocontractive mapping. Given x ∈ C, then the Ishikawa iteration
{xn} defined by

⎧⎨
⎩
yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)xn + αnTyn,
(.)

for all n ∈N, where {αn}, {βn} are sequences of positive numbers satisfying
(a)  ≤ αn ≤ βn ≤ ,
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(b) limn→∞ βn = ,
(c)

∑∞
n= αnβn = ∞,

converges strongly to a fixed point of T .

To make our exposition self-contained, we have to recall that the (nearest point or met-
ric) projection from H onto C, denoted by PC , assigns to each x ∈ H the unique point
PC(x) ∈ C with the property

∥∥x – PC(x)
∥∥ = inf

{‖x – y‖ : y ∈ C
}
.

It is well known that the metric projection PC of H onto C is characterized by

〈
x – PC(x), y – PC(x)

〉 ≤  (.)

for all x ∈ H , y ∈ C. Also, it is well known that in a real Hilbert space H , the following
equality holds

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ (.)

for all x, y ∈ H and t ∈ [, ].

Lemma . [] Let H be a real Hilbert space, let C be a closed convex subset of H . Let
T : C → C be a continuous pseudocontractive mapping. Then

(i) Fix(T) is a closed convex subset of C.
(ii) (I – T) is demiclosed at zero.

In the sequel, we shall use the following notations:
• ωw(xn) = {x : ∃xnj → x weakly} denote the weak ω-limit set of {xn};
• xn ⇀ x stands for the weak convergence of {xn} to x;
• xn → x stands for the strong convergence of {xn} to x.

Lemma . [] Let C be a closed convex subset of H . Let {xn} be a sequence in H , and let
u ∈ H . Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖xn – u‖ ≤ ‖u – q‖ for all n ∈N,

then xn → q.

3 Main results
In this section, we state our main results.
Let C be a nonempty, closed and convex subset of a real Hilbert spaceH . Let T : C → C

be an L-Lipschitzian pseudocontractive mapping with Fix(T) �= ∅.
Firstly, we present our new algorithm, which couples Ishikawa’s algorithm (.) with the

hybrid projection algorithm.
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Algorithm . Let x ∈ H . For C = C and x = PC (x), define a sequence {xn} of C as
follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = ( – αn)xn + αnTxn,

zn = βnxn + ( – βn)Tyn,

Cn+ = {x∗ ∈ Cn,‖zn – x∗‖ ≤ ‖xn – x∗‖},
xn+ = PCn+ (x),

(.)

for all n ≥ , where {αn} and {βn} are two sequences in [, ].

In the sequel, we assume that the sequences {αn} and {βn} satisfy the following condi-
tions

 < k ≤  – βn ≤ αn <
√

 + L + 

for all n ∈N.

Remark . Without loss of generality, we can assume that the Lipschitz constant L > .
If not, then T is nonexpansive. In this case, algorithm (.) is trivial. So, in this article, we
assume L > . It is obvious that √

+L+
< 

L for all n≥ .

We prove the following several lemmas, which will support our main theorem below.

Lemma . Fix(T) ⊂ Cn for n≥  and {xn} is well defined.

Proof We use mathematical induction to prove Fix(T) ⊂ Cn for all n ∈N.
(i) Fix(T)⊂ C = C is obvious.
(ii) Suppose that Fix(T) ⊂ Ck for some k ∈ N. Take u ∈ Fix(T)⊂ Ck . From (.), by

using (.), we have

‖zn – u‖ = ∥∥βn(xn – u) + ( – βn)
(
T

(
( – αn)xn + αnTxn

)
– u

)∥∥

= βn‖xn – u‖ + ( – βn)
∥∥T(

( – αn)xn + αnTxn
)
– u

∥∥

– βn( – βn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥. (.)

Since u ∈ Fix(T), from (.), we have

‖Tx – u‖ ≤ ‖x – u‖ + ‖x – Tx‖ (.)

for all x ∈ C.
From (.) and (.), we obtain

∥∥T(
( – αn)xn + αnTxn

)
– u

∥∥

≤ ∥∥( – αn)xn + αnTxn – T
(
( – αn)xn + αnTxn

)∥∥ +
∥∥( – αn)xn + αnTxn – u

∥∥

=
∥∥( – αn)

(
xn – T

(
( – αn)xn + αnTxn

))
+ αn

(
Txn – T

(
( – αn)xn + αnTxn

))∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/211


Yao et al. Fixed Point Theory and Applications 2013, 2013:211 Page 5 of 8
http://www.fixedpointtheoryandapplications.com/content/2013/1/211

+
∥∥( – αn)(xn – u) + αn(Txn – u)

∥∥

= ( – αn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥ + αn
∥∥Txn – T

(
( – αn)xn + αnTxn

)∥∥

– αn( – αn)‖xn – Txn‖ + ( – αn)‖xn – u‖ + αn‖Txn – u‖

– αn( – αn)‖xn – Txn‖

≤ ( – αn)‖xn – u‖ + αn
(‖xn – u‖ + ‖xn – Txn‖

)
– αn( – αn)‖xn – Txn‖

+ ( – αn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥ + αn
∥∥Txn – T

(
( – αn)xn + αnTxn

)∥∥

– αn( – αn)‖xn – Txn‖.

Note that T is L-Lipschitzian. It follows that

∥∥T(
( – αn)xn + αnTxn

)
– u

∥∥

≤ ( – αn)‖xn – u‖ + αn
(‖xn – u‖ + ‖xn – Txn‖

)
– αn( – αn)‖xn – Txn‖

+ ( – αn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥ + α
nL

‖xn – Txn‖

– αn( – αn)‖xn – Txn‖

= ‖xn – u‖ + ( – αn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥

– αn
(
 – αn – α

nL
)‖xn – Txn‖. (.)

By condition αn < √
+L+

, we have –αn –α
nL > . Substituting (.) to (.), we obtain

‖zn – u‖ = βn‖xn – u‖ + ( – βn)
∥∥T(

( – αn)xn + αnTxn
)
– u

∥∥

– βn( – βn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥

≤ βn‖xn – u‖ + ( – βn)
[‖xn – u‖

+ ( – αn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥]

– βn( – βn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥

= ‖xn – u‖ + ( – βn)( – αn – βn)
∥∥xn – T

(
( – αn)xn + αnTxn

)∥∥.

Since αn + βn ≥ , we deduce

‖zn – u‖ ≤ ‖xn – u‖. (.)

Hence u ∈ Ck+. This implies that

Fix(T)⊂ Cn

for all n ∈N.
Next, we show that Cn is closed and convex for all n ∈N.
It is obvious that C = C is closed and convex.
Suppose that Ck is closed and convex for some k ∈ N. For u ∈ Ck , it is obvious that

‖zk – u‖ ≤ ‖xk – u‖ is equivalent to ‖zk – xk‖ + 〈zk – xk ,xk – u〉 ≤ . So, Ck+ is closed

http://www.fixedpointtheoryandapplications.com/content/2013/1/211
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and convex. Then, for any n ∈ N, the set Cn is closed and convex. This implies that {xn} is
well defined. �

Lemma . The sequence {xn} is bounded.

Proof Using the characterization inequality (.) of metric projection, from xn = PCn (x),
we have

〈x – xn,xn – y〉 ≥  for all y ∈ Cn.

Since Fix(T) ⊂ Cn, we also have

〈x – xn,xn – u〉 ≥  for all u ∈ Fix(T).

So, for u ∈ Fix(T), we obtain

 ≤ 〈x – xn,xn – u〉
= 〈x – xn,xn – x + x – u〉
= –‖x – xn‖ + 〈x – xn,x – u〉
≤ –‖x – xn‖ + ‖x – xn‖‖x – u‖.

Hence,

‖x – xn‖ ≤ ‖x – u‖ for all u ∈ Fix(T). (.)

This implies that the sequence {xn} is bounded. �

Lemma . limn→∞ ‖xn+ – xn‖ = .

Proof From xn = PCn (x) and xn+ = PCn+ (x) ∈ Cn+ ⊂ Cn, we have

〈x – xn,xn – xn+〉 ≥ .

Hence,

 ≤ 〈x – xn,xn – xn+〉
= 〈x – xn,xn – x + x – xn+〉
= –‖x – xn‖ + 〈x – xn,x – xn+〉
≤ –‖x – xn‖ + ‖x – xn‖‖x – xn+‖,

and, therefore,

‖x – xn‖ ≤ ‖x – xn+‖,

http://www.fixedpointtheoryandapplications.com/content/2013/1/211
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which implies that limn→∞ ‖xn – x‖ exists. Thus,

‖xn+ – xn‖ =
∥∥(xn+ – x) – (xn – x)

∥∥

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn,xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖

→ . �

Theorem . The sequence {xn} defined by (.) converges strongly to PFix(T)(x).

Remark . Note that Fix(T) is closed and convex. Thus, the projection PFix(T) is well
defined.

Proof Since xn+ ∈ Cn+ ⊂ Cn, we have

‖zn – xn+‖ ≤ ‖xn – xn+‖ → .

Further, we obtain

‖zn – xn‖ ≤ ‖zn – xn+‖ + ‖xn+ – xn‖ → .

From (.), we get

‖xn – Txn‖ ≤ ‖xn – zn‖ + ‖zn – Txn‖
≤ ‖xn – zn‖ + βn‖xn – Txn‖ + ( – βn)‖Tyn – Txn‖
≤ ‖xn – zn‖ + βn‖xn – Txn‖ + ( – βn)Lαn‖xn – Txn‖
= ‖xn – zn‖ +

[
βn + ( – βn)Lαn

]‖xn – Txn‖.

Since  < k ≤  –βn ≤ αn < √
+L+

and  – [βn + ( –βn)Lαn] > k( – L√
+L+

) > , it follows
that

‖xn – Txn‖ ≤ 
 – [βn + ( – βn)Lαn]

‖xn – zn‖

≤ 
k( – L√

+L+
)
‖xn – zn‖ → . (.)

Now, (.) and Lemma . guarantee that every weak limit point of {xn} is a fixed point
of T . That is, ωw(xn) ⊂ Fix(T). This fact, inequality (.) and Lemma . ensure the strong
convergence of {xn} to PFix(T)(x). This completes the proof. �

Remark . It is easily seen that all of the results above hold for nonexpansive mappings.

Remark . It is nowadays quite clear that, for large classes of contractive type oper-
ators, it suffices to consider the simpler Mann iteration, even if the Ishikawa iteration,
which is more general but also computationally more complicated than the Mann itera-
tion, could always be used. But if T is only a pseudocontractive mapping, then generally,

http://www.fixedpointtheoryandapplications.com/content/2013/1/211
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the Mann iterative process does not converge to the fixed point, and strong convergence
of the Ishikawa iteration has not been achieved without the compactness assumption on
T or C. However, our algorithm (.) has a strong convergence without the compactness
assumption.
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