
Qin et al. Fixed Point Theory and Applications 2013, 2013:298
http://www.fixedpointtheoryandapplications.com/content/2013/1/298

RESEARCH Open Access

Common fixed points of a family of strictly
pseudocontractive mappings
Xiaolong Qin1, Meijuan Shang2,3* and Yuan Qing1

*Correspondence:
meijuanshang@163.com
2Department of Mathematics,
Shijiazhuang University,
Shijiazhuang, China
3School of Science, Beijing Jiaotong
University, Beijing, China
Full list of author information is
available at the end of the article

Abstract
In this article, fixed point problems of a family of strictly pseudocontractive mappings
are investigated based on a viscosity iterative process. Strong convergence theorems
are established in a real q-uniformly Banach space.
MSC: 47H09; 47J05; 47J25

Keywords: accretive operator; iterative process; fixed point; nonexpansive mapping;
zero point

1 Introduction
Fixed point problems of nonlinear mappings as an important branch of nonlinear analysis
theory have been applied in many disciplines, including economics, optimization, image
recovery, mechanics, quantum physics, transportation and control theory; for more de-
tails, see [–] and the references therein.
Strictly pseudocontractive mappings, which act as a link between nonexpansive map-

pings and pseudocontractive mappings, have been extensively studied by many authors;
see [–] and the references therein. The computation of fixed points is important in
the study of many real world problems, including inverse problems; for instance, it is not
hard to show that the split feasibility problem and the convex feasibility problem in signal
processing and image reconstruction can both be formulated as a problem of finding fixed
points of certain operators, respectively.
Recently, many authors studied the following convex feasibility problem (CFP): x ∈⋂N
i= �i, where N ≥  is an integer, and each �i is assumed to be the fixed point set of

a nonlinear mapping Ti, i = , , . . . ,N . There is a considerable investigation on CFP in the
setting of Hilbert spaces which captures applications in various disciplines such as im-
age restoration [], computer tomography [] and radiation therapy treatment planning
[].
In this paper, we investigate the problem of finding a common fixed point of a finite

family of strictly pseudocontractivemappings based on a viscosity approximation iterative
process. Strong convergence theorems of common fixed points are established in a real
q-uniformly Banach space.
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2 Preliminaries
Throughout this paper, we always assume that E is a real Banach space. Let E∗ be the dual
space of E. Let Jq (q > ) denote the generalized duality mapping from E into E∗ given by

Jq(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖q,∥∥f ∗∥∥ = ‖x‖q–}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. In particular, J is called the normalized
duality mapping, which is usually denoted by J . In this paper, we use j to denote the single-
valued normalized duality mapping. It is known that Jq(x) = ‖x‖q–J(x) if x 	= . If E is a
Hilbert space, then J = I , the identity mapping. Further, we have the following properties
of the generalized duality mapping Jq:
() Jq(tx) = tq–Jq(x) for all x ∈ E and t ∈ [,∞);
() Jq(–x) = –Jq(x) for all x ∈ E.
A Banach space E is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈UE . It is also said to be uniformly smooth if the limit is attained uniformly
for all x, y ∈ UE . The norm of E is said to be Fréchet differentiable if, for any x ∈ UE , the
above limit is attained uniformly for all y ∈ UE . The modulus of smoothness of E is the
function ρE : [,∞) → [,∞) defined by

ρE(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ τ

}
, ∀τ ≥ .

The Banach space E is uniformly smooth if and only if limτ→∞ ρE(τ )
τ

= . Let q > . The
Banach space E is said to be q-uniformly smooth if there exists a constant c >  such that
ρE(τ ) ≤ cτ q. Indeed, there is no Banach space which is q-uniformly smooth with q > .
Hilbert spaces, Lp (or lp) spaces and Sobolev spaces Wp

m, where p ≥ , are -uniformly
smooth.
Let C be a nonempty closed convex subset of E and T : C → C be a mapping. In this pa-

per, we use F(T) to denote the fixed point set of T . Amapping T is said to be κ-contractive
iff there exists a constant κ ∈ () such that

‖Tx – Ty‖ ≤ κ‖x – y‖, ∀x, y ∈ C.

A mapping T is said to be nonexpansive iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T is said to be κ-strictly pseudocontractive iff there exist a constant κ ∈ (, )
and jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – κ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (.)

It is clear that (.) is equivalent to the following:

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ κ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (.)
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The class of κ-strictly pseudocontractive mappings was first introduced by Browder and
Petryshyn [] in Hilbert spaces.
One classical way to study nonexpansivemappings is to use contractions to approximate

a nonexpansive mapping. More precisely, take t ∈ (, ) and define a contraction Tt : C →
C by

Ttx = tu + ( – t)Tx, ∀x ∈ C, (.)

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt

has a unique fixed point xt in C. In the case of T having a fixed point, Browder [] proved
that xt converges strongly to a fixed point of T in the framework of Hilbert spaces. Reich
[] extended Browder’s result to the setting of Banach spaces and proved that if E is a
uniformly smooth Banach space, then xt converges strongly to a fixed point of T , and
the limit defines the (unique) sunny nonexpansive retraction from C onto F(T); for more
details, see [] and the reference therein.
Recently, Xu [] investigated the viscosity approximation process in a smooth Banach

space. Let f : C → C be a contraction. Take t ∈ (, ) and define a mapping Tt : C → C by

Ttx = tf (x) + ( – t)Tx, ∀x ∈ C. (.)

It is not hard to see thatTt also enjoys a unique fixedpoint. Xuproved that {zt} converges to
a fixed point ofT as t → , andQ(f ) = s– limt→ zt defines the unique sunny nonexpansive
retraction from C onto F(T).
Recently, construction of fixed points for nonexpansive mappings via the normal Mann

iterative process has been extensively investigated by many authors. The normal Mann
iterative process generates a sequence {xn} in the following manner:

⎧⎨
⎩
x ∈ C chosen arbitrarily,

xn+ = ( – αn)xn + αnTxn, ∀n≥ ,
(.)

where the sequence {αn} is in the interval (, ).
In an infinite-dimensional Hilbert space, the normal Mann iteration algorithm has only

weak convergence. In many disciplines, including economics, image recovery and control
theory, problems arise in infinite dimension spaces. In such problems, strong convergence
is often much more desirable than weak convergence, for it translates the physically tan-
gible property that the energy ‖xn – x‖ of the error between the iterate xn and the solution
x eventually becomes arbitrarily small. We also remark here that many authors have been
instigating the problem of modifying the normal Mann iteration process to have strong
convergence for κ-strictly pseudocontractive mappings; see [–] and the references
therein.
LetD be a nonempty subset of C. LetQ : C →D.Q is said to be a contraction iffQ =Q;

sunny iff for each x ∈ C and t ∈ (, ), we have Q(tx+ ( – t)Qx) =Qx; sunny nonexpansive
retraction iff Q is sunny, nonexpansive and a contraction. K is said to be a nonexpansive
retract of C if there exists a nonexpansive retraction from C onto D. The following re-
sult, which was established in [], describes a characterization of sunny nonexpansive
retractions on a smooth Banach space.
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Let Q : E → C be a retraction, and let j be the normalized duality mapping on E. Then
the following are equivalent:
() Q is sunny and nonexpansive;
() ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉, ∀x, y ∈ E;
() 〈x –Qx, j(y –Qx)〉 ≤ , ∀x ∈ E, y ∈ C.
In this paper, we investigate the problem of modifying the normal Mann iteration pro-

cess for a family of κ-strictly pseudocontractive mappings. Strong convergence of the pur-
posed iterative process is obtained in a real q-uniformly Banach space. In order to prove
our main results, we need the following tools.

Lemma . [] Let C be a nonempty subset of a real q-uniformly smooth Banach space E,
and let T : C → C be a κ-strict pseudocontraction. For α ∈ (, ),we define Tαx = (–α)x+
αTx for every x ∈ C.Then, as α ∈ (,μ],whereμ =min{, { qκD } 

q– }, Tα is nonexpansive such
that F(Tα) = F(T).

Lemma . [] Let E be a real q-uniformly smooth Banach space. Then the following
inequality holds:

‖x + y‖q ≤ ‖x‖q + q〈y, Jqx〉 +D‖y‖q, ∀x, y ∈ E,

where D is some fixed positive constant.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – tn)an + bn + (tn),

where {bn} and {tn} satisfy the following restrictions:
(i) tn → ,

∑∞
n= tn =∞;

(ii)
∑∞

n= |bn| <∞.
Then limn→∞ an = .

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X , and let {βn}
be a sequence in [, ] with

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Suppose xn+ = ( – βn)yn + βnxn for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let E be a smooth Banach space, and let C be a nonempty convex sub-
set of E. Given an integer N ≥ , assume that {Ti}Ni= : C → C is a finite family of κi-strict
pseudocontractions such that

⋂N
i= F(Ti) 	= ∅.Assume that {λi}ri= is a positive sequence such

that
∑N

i= λi = . Then F(
∑N

i= F(Ti)) =
⋂N

i= F(Ti).
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Lemma . [] Let q > . Then the following inequality holds:

ab ≤ aq

q
+
(q – )b

q
q–

q

for arbitrary positive real numbers a and b.

3 Main results
Theorem . Let C be a nonempty closed convex subset of a real q-uniformly smooth Ba-
nach space E, and let N be some positive integer. Let Ti : C → C be a κi-strictly pseudocon-
tractive mapping for each ≤ i≤N . Assume that

⋂N
i= F(Ti) 	= ∅. Let f be an α-contractive

mapping. Let {xn} be a sequence generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = ( – δn)xn + δn
∑N

i= λiTixn,

xn+ = αnf (xn) + βnxn + γnyn, n≥ ,

where {αn}, {βn} and {λi} are real number sequences in [, ] satisfying the following restric-
tions:
(a) αn + βn + γn = ;
(b)

∑∞
n= αn =∞, limn→∞ αn = ;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ ‖δn+ – δn‖ = , δ ≤ δn ≤min{, { qκD } 

q– };
(e)

∑N
i= λi = ,

where δ >  is some real number, and κ :=min{κi : ≤ i≤N}. Then {xn} converges strongly
as n → ∞ to some point in

⋂N
i= F(Ti), which is the unique solution in

⋂N
i= F(Ti) to the

following variational inequality:

〈
f (z) – z, jq(z – p)

〉 ≥ , ∀p ∈
N⋂
i=

F(Ti).

Proof First, we show that {xn} and {yn} are bounded. Putting T :=
∑N

i= λiTi, we see that T
is a κ-strictly pseudocontractive mapping. Indeed, we have the following:

〈
Tx – Ty, j(x – y)

〉
= λ

〈
Tx – Ty, j(x – y)

〉
+ λ

〈
Tx – Ty, j(x – y)

〉
+ · · · + λN

〈
TNx – TNy, j(x – y)

〉
≤ λ

(‖x – y‖ – κ
∥∥(I – T)x – (I – T)y

∥∥)
+ λ

(‖x – y‖ – κ
∥∥(I – T)x – (I – T)y

∥∥) + · · ·
+ λN

(‖x – y‖ – κN
∥∥(I – TN )x – (I – TN )y

∥∥)
≤ ‖x – y‖ – κ

(
λ

∥∥(I – T)x – (I – T)y
∥∥

+ λ
∥∥(I – T)x – (I – T)y

∥∥ + · · · + λN
∥∥(I – TN )x – (I – TN )y

∥∥)
≤ ‖x – y‖ – κ

∥∥(I – T)x – (I – T)y
∥∥.
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This proves that T is a κ-strictly pseudocontractive mapping. Fix p ∈ ⋂N
i= F(Ti) and put

Tδnx = ( – δn)x + δnTx, ∀x ∈ C. It follows from Lemma . that Tδn is nonexpansive. This
in turn implies that

‖yn – p‖ ≤ ‖xn – p‖. (.)

It follows that

‖xn+ – p‖ = ∥∥αn
(
f (xn) – p

)
+ βn(xn – p) + γn(yn – p)

∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥p – f (p)
∥∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αnα‖xn – p‖ + αn
∥∥p – f (p)

∥∥ + βn‖xn – p‖ + γn‖yn – p‖
≤ (

 – αn( – α)
)‖xn – p‖ + αn

∥∥p – f (p)
∥∥

≤max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
.

This in turn implies that

‖xn – p‖ ≤max

{
‖x – p‖, ‖p – f (p)‖

 – α

}
,

which gives that the sequence {xn} is bounded, so is {yn}. Notice that

‖yn+ – yn‖ = ‖Tδn+xn+ – Tδnxn‖
≤ ‖Tδn+xn+ – Tδn+xn‖ + ‖Tδn+xn – Tδnxn‖
≤ ‖xn+ – xn‖ +

∥∥δn+xn + ( – δn+)Txn – δnxn – ( – δn)Txn
∥∥

≤ ‖xn+ – xn‖ + |δn+ – δn|‖xn – Txn‖. (.)

Putting tn = xn+–βnxn
–βn

, we see that

xn+ = ( – βn)tn + βnxn. (.)

Now, we compute tn+ – tn. Noticing that

tn+ – tn =
αn+f (xn+) + γn+yn+

 – βn+
–

αnf (xn) + γnyn
 – βn

=
αn+

 – βn+
f (xn+) +

 – βn+ – αn+

 – βn+
yn+ –

αn

 – βn
f (xn) –

 – βn – αn

 – βn
yn

=
αn+

 – βn+

(
f (xn+) – yn+

)
+

αn

 – βn

(
yn – f (xn)

)
+ yn+ – yn,

we have

‖tn+ – tn‖ ≤ αn+

 – βn+

∥∥f (xn+) – yn+
∥∥ +

αn

 – βn

∥∥yn – f (xn)
∥∥ + ‖yn+ – yn‖. (.)
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Substituting (.) into (.), we arrive at

‖tn+ – tn‖ – ‖xn+ – xn‖ ≤ αn+

 – βn+

∥∥f (xn+) – yn+
∥∥ +

αn

 – βn

∥∥yn – f (xn)
∥∥

+ |δn+ – δn|‖xn – Txn‖.

It follows from the restrictions (b) and (c) that

lim
n→∞‖tn+ – tn‖ – ‖xn+ – xn+‖ < .

In view of Lemma ., we obtain that limn→∞ ‖tn – xn‖ = . This implies from the restric-
tion (c) that

lim
n→∞‖xn+ – xn‖ = . (.)

Notice that

xn+ – xn = αn
(
f (xn) – xn

)
+ γn(yn – xn).

It follows that limn→∞ ‖yn – xn‖ = . On the other hand, we have yn – xn = δn(Txn – xn). It
follows that limn→∞ ‖Txn – xn‖ = . This in turn implies that

lim
n→∞‖Tμxn – xn‖ = , (.)

where μ =min{, { qκD } 
q– }. Next, we show that

lim sup
n→∞

〈
z – f (z), jq(z – xn)

〉 ≤ , (.)

where z = Qf (z), where Q is a sunny nonexpansive retraction from C onto
⋂N

i= F(Ti), is
the strong limit of the sequence zt defined by

zt = tf (zt) + ( – t)Tμzt , ∀t ∈ (, ).

It follows that

zt – xn = ( – t)(Tμzt – xn) + t
(
f (zt) – xn

)
, ∀t ∈ (, ).

For any t ∈ (, ), we see that

‖zt – xn‖q = t
〈
f (zt) – xn, jq(zt – xn)

〉
+ ( – t)

〈
Tμzt – xn, jq(zt – xn)

〉
≤ t

〈
f (zt) – xn, jq(zt – xn)

〉
+ ( – t)‖zt – xn‖q +M‖Tμxn – xn‖,

whereM = sup{‖xn – zt‖q– : t ∈ (, ),n≥ }. It follows that
〈
f (zt) – xt , jq(xn – zt)

〉 ≤ M
t

‖Tμxn – xn‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/298
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Fixing t and letting n→ ∞ yields that

lim sup
n→∞

〈
f (zt) – xt , jq(xn – zt)

〉 ≤ .

Since E is q-uniformly smooth, Jq : E → E∗ is uniformly continuous on any bounded sets
of E, which ensures that lim supn→∞ and lim supt→ are interchangeable, hence

lim sup
n→∞

〈
z – f (z), jq(z – xn)

〉 ≤ .

Finally, we show that xn → z as n→ ∞. In view of Lemma ., we see that

‖xn+ – z‖q = αn
〈
f (xn) – z, jq(xn+ – z)

〉
+ βn

〈
xn – z, jq(xn+ – z)

〉
+ γn

〈
yn – z, jq(xn+ – z)

〉
≤ αn

〈
f (xn) – z, jq(xn+ – z)

〉
+ βn‖xn – z‖‖xn+ – z‖q–

+ γn‖yn – z‖‖xn+ – z‖q–

≤ αnλn + ( – αn)‖xn – z‖‖xn+ – z‖q–

≤ αnλn + ( – αn)
‖xn – z‖q

q
+
q – 
q

‖xn+ – z‖q,

where λn =max{〈f (xn) – z, jq(xn+ – z)〉, }. This implies that

‖xn+ – z‖q ≤ qαnλn + ( – αn)‖xn – z‖q.

In view of Lemma ., we find the desired conclusion immediately. This completes the
proof. �

Remark . Theorem . mainly improves the corresponding results in Yuan et al. []
from -uniformly smooth Banach spaces to q-uniformly smooth Banach spaces. Theo-
rem . is applicable to the spaces lp and Lp for all q > .

From Theorem ., we have the following result immediately.

Corollary . Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space E, and let N be some positive integer. Let Ti : C → C be a κi-strictly pseudo-
contractive mapping for each ≤ i ≤N . Assume that

⋂N
i= F(Ti) 	= ∅. Let {xn} be a sequence

generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrarily chosen,

yn = ( – δn)xn + δn
∑N

i= λiTixn,

xn+ = αnu + βnxn + γnyn, n ≥ ,

where u is a fixed element in C, {αn}, {βn} and {λi} are real number sequences in [, ]
satisfying the following restrictions:
(a) αn + βn + γn = ;
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(b)
∑∞

n= αn =∞, limn→∞ αn = ;
(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ ‖δn+ – δn‖ = , δ ≤ δn ≤min{, { qκD } 

q– };
(e)

∑N
i= λi = ,

where δ >  is some real number, and κ :=min{κi : ≤ i≤N}. Then {xn} converges strongly
as n → ∞ to some point in

⋂N
i= F(Ti), which is the unique solution in

⋂N
i= F(Ti) to the

following variational inequality:

〈
u – z, j(z – p)

〉 ≥ , ∀p ∈
N⋂
i=

F(Ti).

Remark . Corollary . improves the corresponding results in Zhou [] from -
uniformly smooth Banach spaces to q-uniformly smooth Banach spaces and relaxes the
restrictions imposed on the parameter {λi} in Zhang and Su [].
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