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of China Lotka-Volterra mutualism system with time varying delays on time scales. By
establishing some dynamic inequalities on time scales, a permanence result for the
model is obtained. Furthermore, by means of the almost periodic functional hull
theory on time scales and Lyapunov functional, some criteria are obtained for the
existence, uniqueness and global attractivity of almost periodic solutions of the
model. Our results complement and extend some scientific work in recent years.
Finally, an example is given to illustrate the main results.
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1 Introduction

Recently, there have been many scholars concerned with the dynamics of the mutualism
model. Topics such as permanence, global attractivity, and periodicity of mutualism sys-
tems governed by differential equations were extensively investigated (see [1-10]). For ex-
ample, in [10], the author studied the existence of positive periodic solutions of the peri-
odic mutualism model

d K _
0 = gy (1) [LOO NG O O) () (£ - 01 (8))],

d: _
820  xy (1) [ 20000000 _ ) (£)xy (¢ - 05 (1)),

(1.1)

where r;, K;,a; € C(R,R"), o; > K;, i = 1,2, 1;,0; € CIR,RY), i = 1,2, 1, K;, oy, T, 05 (i = 1,2)
are functions of period w > 0.

However, in applications, if the various constituent components of the temporally
nonuniform environment are with incommensurable periods, then one has to consider
the environment to be almost periodic since there is no a priori reason to expect the exis-
tence of periodic solutions. Hence, if we consider the effects of the environmental factors,
almost periodicity is sometimes more realistic and more general than periodicity. In re-
cent years, the almost periodic solution of the models in biological populations has been
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studied extensively (see [11-18] and the references cited therein). In addition, some recent
attention was on the permanence and global stability of discrete mutualism system, and
many excellent results have been derived (see [19-24]). For example, in [24], the authors

considered the following discrete multispecies Lotka-Volterra mutualism system:

: (k)
xi(k +1) = x;(k) expq ai(k) — bi(k)x;(k) +/;M clj(k)m , 1.2)

wherei=1,2,...,%;(k) stand for the densities of species x; at the kth generation, a;(k) rep-
resent the natural growth rates of species x; at the kth generation, ;(k) are the intraspecific
effects of the kth generation of species x; on own population, c;;(k) measure the interspe-
cific mutualism effects of the kth generation of species x; on species x; (i,j = 1,2,...,,
i #j), and dj (> 1) are positive control constants. By means of the theory of difference
inequality and Lyapunov function, they established sufficient conditions for the existence
and uniformly asymptotic stability of a unique positive almost periodic solution to sys-
tem (1.2).

Furthermore, so many processes, both natural and manmade, in biology, medicine,
chemistry, physics, engineering, economics, etc. involve time delays. Time delays occur
so often, so if we ignore them, we ignore reality. Generally, the meaning of time delay is
that some time elapses between causes and their effects (for instance, in population dy-
namics, individuals always need some time to mature, or in medicine, infectious diseases
have incubation periods). Specially, in the real world, the delays in differential equations
of biological phenomena are usually time varying. Thus, it is worthwhile continuing to
study the existence and stability of a unique almost periodic solution of the multispecies
Lotka-Volterra mutualism system with time varying delays.

Since permanence is one of the most important topics in the study of population dy-
namics, one of the most interesting questions in mathematical biology concerns the sur-
vival of species in ecological models. Biologically, when a system of interacting species is
persistent in a suitable sense, it means that all the species survive in the long term. It is
reasonable to ask for conditions under which the system is permanent.

Also, as we know, the study of dynamical systems on time scales is now an active area
of research. The theory of times scales has received a lot of attention which was intro-
duced by Stefan Hilger in his PhD thesis in 1988, providing a rich theory that unifies
and extends continuous and discrete analysis [25]. In fact, both continuous and discrete
systems are very important in implementation and applications. But it is troublesome to
study the dynamics for continuous and discrete systems respectively. Therefore, it is sig-
nificant to study that on time scales which can unify the continuous and discrete situa-
tions.

Motivated by the above reasons, in this paper, we are concerned with the following mul-
tispecies Lotka-Volterra mutualism system with time varying delays on time scales:

% (t=5(®)

X2 (8) = ai(®) - b(0)e O 1+ Y " eyi(e)

i di/ + 550’
j=Lj#

i=1,2,...,n,t2t0,t,t0€T, (13)

where T is an almost periodic time scale.
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Remark 1.1 Let y;(¢) = ¢, if T = R, then system (1.3) is reduced to the following system:
- ;£ = &(¢))
i(t) = yi(6)} ai(®) - bi()yi(t - @) + D cyt) =1,
yi(t) = yi( ){a (t) - bi(t)yi(t — (1)) +j=1j;!iC]( )djj+yj(t—5j(t))

i=1,2,...,nteR, (1.4)

which is a generalization of (1.1). If T = Z, then system (1.3) is reduced to the following
system:

(k+1) =y, ) — (ki (K - 7. e k= 50)
He = exp{ﬂz(k) Hlm o) /:IZ/;i i) dij + y;(k = 8;(k)) } ’

i=12,...,te’, (1.5)
let ;(k) = 0, §;(k) = 0, then system (1.3) is reduced to system (1.2).

By the biological meaning, we will focus our discussion on the positive solutions of sys-
tem (1.3). So, it is assumed that the initial condition of system (1.3) is of the form

xi(s) = ‘/’i(s) = O; %(to) > 07 NS [tO - HJtO]T’i = 17 2’---;’/1’ (16)
where 6 = max{t*,é*}, v+ = maxj<<,sup,p{w(#)}, T = min<;o, infrer{ri(t)}, 8% =

max<j<, SUP,{8j(£)}, 67 = mini<j<, infyer{8;(2)}.

For convenience, we denote

! _ -
=i

;o S =suplf (o).
teT

Throughout this paper, we assume that:

(H1) ai(t), bi(t), c;j(t), 7i(£), §;(¢) are all almost periodic functions such that aﬁ >0, bﬁ >0,
cfj >0,77>0and 8™ >0;d;>1Lt—7(t) e Tandt-6;(t) e Tfort e T, i,j=1,2,...,n,
j#i

(Ha) 72 = max<j<, sup,cp{t/(8)}, 8% = max; <<, supteT{SjA(t)} and1-72>0,1-8%>0.

To the best of our knowledge, there is no paper published on the permanence, the exis-
tence and uniqueness of globally attractive almost periodic solutions to systems (1.4) and
(1.5). The main purpose of this paper is, by establishing some dynamic inequalities on
time scales, to discuss the permanence of system (1.3) and, by using the almost periodic
functional hull theory on time scales, to establish criteria for the existence and unique-
ness of globally attractive almost periodic solutions of system (1.3). For the preliminary
work which has investigated the permanence, the existence and uniqueness of globally
attractive almost periodic solutions to almost periodic systems governed by differential
or difference equations by using the almost periodic functional hull theory, we refer the
reader to [26-30].

The paper is organized as follows. In Section 2, we introduce some basic definitions,
necessary lemmas and establish some dynamic inequalities on time scales which will be
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used in later sections. In Section 3, we discuss the permanence of system (1.3). In Sec-
tion 4, we consider the global attractivity of almost periodic solutions of system (1.3) by
means of Lyapunov functional. In Section 5, some sufficient conditions are obtained for
the existence of positive almost periodic solutions of system (1.3) by use of the almost
periodic functional hull theory on time scales. The main results in Sections 4 and 5 are
illustrated by giving an example in Section 6.

2 Preliminaries
In this section, we shall recall some basic definitions, lemmas which are used in what
follows.

A time scale T is an arbitrary nonempty closed subset of the real numbers, the forward
and backward jump operators o, p : T — T and the forward graininess p : T — R* are
defined, respectively, by

o(t):=inf{s€T:s>¢}, o(t):=sup{seT:s<¢t} and wu(t)=0o(t)-t.

A point ¢ € T is called left-dense if ¢ > inf T and p(t) = ¢, left-scattered if p(t) < ¢, right-
dense if t < sup T and o () = ¢, and right-scattered if o () > t. If T has a left-scattered maxi-
mum 1, then T = T\ {m}; otherwise T = T. If T has a right-scattered minimum 1, then
Ty =T \ {m}; otherwise Ty = T.

A function f : T — R is right-dense continuous provided it is continuous at right-dense
point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
onT.

Fory:T — Rand t € TX, we define the delta derivative of y(), y* (£) to be the number (if
it exists) with the property that for a given ¢ > 0, there exists a neighborhood U of ¢ such
that

(e (®) =3(5)] -y O[o (&) =s]| <e|o(t) —s]

foralls e U.

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at ¢,
then y is continuous at £.

Let f be right-dense continuous, if F2(t) = f(¢), then we define the delta integral by

/ HOAE=E(6)—E(), rseT,

Lemma 2.1 [25] Assume f,g:T — R are delta differentiable at t € Tk, then
D) (f+9%(6) =f2(0) +g"(t);
(u) (1)™(6) =" (0g() +f7 (0" (1) = (g (1) + £ (D)g” (0);
(i) ifg(e)g” (£) 70, then (L) = HUEGLUE0,
(iv) if f and f* are continuous, then (f f(t,s)As)? )+ [, LFA(Es)A

A function p: T — R is called regressive provided 1 + u(£)p(t) # 0 for all £ € T*. The set
of all regressive and rd-continuous functions p : T — R will be denoted by R = R(T) =
R(T,R). We define the set R* = R*(T,R) ={p € R:1+ u(t)p(t) >0,Vet € T}.
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If r € R, then the generalized exponential function e, is defined by

e.(t,s) = exp{/ fu(r)(}’(l’))A‘L’}

for all s,¢ € T, with the cylinder transformation

Log(1+h
og(h+ z)’ h7!0,

&n(2) = {z, o,

Let p,q: T — R be two regressive functions, we define

b4
1+pup

r-4q
1+uq

pOg=p+q+upq, op=- , pPOq=pd(©q) =

Then the generalized exponential function has the following properties.

Lemma 2.2 [25] Assume that p,q:T — R are two regressive functions, then
(1) eolt,s) =1andey(t,t) =1;
(ii) ep(o(t),s) = (L + w()p(t))ey(t,s);
(iil) e,(t,5) =1/ey(s, t) = egp(s, t);
ey(t,s)ey(s,1) = ey(t,1);
e,(t,8)ey(t,s) = epgq(t, s);
ey(t,8)/eq(t,5) = epoq(t,s);

(=LA - -p(t)
ep(t,s) eg (t,s)"

(iv
v

(vi

R N 2 =

(vii

Lemma 2.3 [31] Letf: T — R bea continuously increasing function and f(t) > 0 for t € T,
then

VU] <Tin A <fAﬁ
fr = VO =Ty

Definition 2.1 [32] A time scale T is called an almost periodic time scale if
[M={reR:t£teT,VteT}#{0}.

Throughout this paper, E” denotes R” or C”, D denotes an open set in E” or D = E”,
and S denotes an arbitrary compact subset of D.

Definition 2.2 [32] Let T be an almost periodic time scale. A function f € C(T x D,[E")
is called an almost periodic function in ¢ € T uniformly for x € D if the e-translation set

of f,
Ele,f,S}={teT:|f(t+7,x) - f(t,x)| <&,V(t,x) € T x S}

is a relatively dense set in T for all ¢ > 0 and for each compact subset S of D; that is, for
any given ¢ > 0 and for each compact subset S of D, there exists a constant [(¢, S) > 0 such
that each interval of length (¢, S) contains 7 (g, S) € E{e, f, S} such that

V(t+ T,X) —f(t,x)| <g, V(t,x)eTxS.
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7 is called the e-translation number of f and (¢, S) is called the inclusion length of
E{e,f,S}.

For convenience, we denote AP(T) = {f : f € C(T,E"),f is almost periodic} and intro-
duce some notations: let & = {«,,} and B = {8,} be two sequences. Then 8 C o means that
B is a subsequence of o, @ + B = {, + B}, —o = {~,}. @ and B are common subsequences
of &’ and B/, respectively, which means that a, = o, ;) and B, = B, for some given func-
tion n(k).

We will introduce the translation operator T, T,f(t,x) = g(t,x), which means that
g(t,x) = lim,_, ;00 f (t + ¢y, x) and is written only when the limit exists. The mode of con-
vergence, for example, pointwise, uniform, and so forth, will be specified at each use of
the symbol.

Definition 2.3 [32] Letf € C(T x D,E"), H(f) = {g: T x D — E" | there exists « € IT such
that T,f(¢,x) = g(¢,x) exists uniformly on T x S} is called the hull of f.

Lemma 2.4 [32] If f(t,x) is almost periodic in t € T uniformly for x € D, then, for any
g(t,x) € H(f), g(¢t,x) is almost periodic in t € T uniformly for x € D.

Lemma 2.5 [32] Iff(¢,x) is almost periodic in t € T uniformly for x € D, denote F(t,x) =
fotf(s, x)As, then F(t,x) is almost periodic in t € T uniformly for x € D if and only if F(¢, x)
is bounded on T x S.

Lemma 2.6 [32] A function f(t,x) is almost periodic in t € T uniformly for x € D if and
only if from every pair of sequences o' C 1, B’ C Il one can extract common subsequences
a Co, B CpB suchthat

Ta+ﬁf(t’x) =T, Tﬁf(tix)~
Lemma 2.7 [32] A function f(t) is almost periodic if and only if for any sequence {«,} C I
there exists a subsequence {a,} C {a),} such that f(t + «,) converges uniformly ont € T as

n — oo. Furthermore, the limit function is also almost periodic.

Consider the following equation:
x2() =f(t,x), teT (2.1)
and the corresponding hull equation
x(t) =g(t,x), teT, (2.2)

where f: T x S — E”, f(¢,x) is almost periodic in ¢ uniformly for x € S, g(¢,x) € H(f).
Similar to the proof of Theorem 3.2 in [33], one can easily get the following.

Lemma 2.8 Let f(t,x) € C(T x S,E") be an almost periodic in t uniformly for x € S. For
every g(t,x) € H(f), the hull equation (2.2) has a unique solution, then these solutions are
almost periodic.
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Definition 2.4 Suppose that ¢(t) is any solution of (2.1) on T. ¢(t) is said to be a strictly
positive solution on T if for £ € T,

0 < inf ¢(£) < sup ¢(¢) < 0.
teT teT

Lemma 2.9 Ifeach of the hull equations of system (2.1) has a unique strictly positive solu-
tion, then system (2.1) has a unique strictly positive almost periodic solution.

Proof Suppose that ¢(¢) is a strictly positive solution of system (2.2). Since f is almost
periodic in ¢ uniformly for x € S, by Lemma 2.6, for any sequences «’, 8’ C II, there exist
common subsequences o C o', B C B’ such that Ty, gf (t,x) = To Tpf (¢, %) holds uniformly
intforx €S, To,pe(t) and T, Tge(t) uniformly exist on a compact set of T. Then Ty, g (£)
and T, Tg¢(t) are solutions of the equation

x%(t) = Tospf(t,%), teT,

which is the common hull equation of system (2.1), with respect to « and B, respectively.
Therefore, we have T,,5¢(t) = T, Tp¢(t), then by Lemma 2.6, ¢(t) is an almost periodic
solution of (2.1). Since C o’ C I and lim,,_, o, &), = +00, T f (¢, %) = g(2, %) exists uniformly
int € T for x € S. For the sequence @ C o', we conclude that T, ¢(£) = ¥ (¢) exists uniformly
in t € T. According to the uniqueness of the solution and T,y (t) = ¥ (), one obtains that
@(t) = ¥ (¢). The proof is completed. O

Lemma 2.10 [25] Assume thata € R and ty € T, ifa € R* on T, then e,(t, ty) > 0 for all
teT.

Lemma 2.11 Assume that x(¢) >0 onT,-be R*,b>0,a,d>0,t—-1t(t) € T, where T :
T — R* is an rd-continuous function and T = sup,.p{t(¢)}.
(1) Ifx2(t) <x° ()b — ax(t — (t)) + d for t > to, to € T, with the initial condition
x(2) = ¢(t) > 0 for t € [ty — T, o] and ¢(ty) > 0, then

= loe(1 — bil
limsupx(£) < —% + i +X ) exp _rosn o og(_ bit) =M,
b b i

—+00

where [i = supycp{(0)} and x is the unique positive root of x(ax — b) —d = 0.
Especially, if d = 0, then

b T log(1 — b
M:_exp{_w},
a iz

(i) Ifx®(t) > x°(t)(b — ax(t — T(¢))) + d for t > to, to € T, with the initial condition
x(2) = ¢(t) > 0 for t € [t — T, tolT, P(to) > 0 and there exists a positive constant N > 0
such that limsup,_, , . x(t) <N < +00, then

liminfx(t) > —e™ N := m.

t—+00

Q>

Proof The proof of (i). It is obvious that there exists a unique positive root of the equation
x(ax — b) — d = 0. Suppose that limsup,_, ,, x(£) = +00. Then there exists a subsequence
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{tx}32, C T with ¢ — +00 as k — +oo such that
lim x(t) = +00, x% () > X, xA(t)|c=zk >0,
k—+00
Thus, we have

%7 (t) (b — ax(te — T(t))) +d = 0,

SO

x(tk—r(tk))fl(b+ d >§l<b+6tl>=9_6, k
a a

x7 (6)
Consider the following inequality:
x(t) <ba”(t) +d,  withx(t)) > 0,5 > to.
Notice that
[ (6,25)]" = eu(t,£5)x" (8) — be_y (2, £5)a° (2)

= e_p(t, £5) (6 (2) - b (1))

<de_y(t,83).

Integrating inequality (2.4) from £} to ¢, we have

t

e_o(6,8)x(0)  5(53) < / de_y(6,12) A6

X
to

- _%/;t[e_b(é’,ta‘)]AAG

*
0

d
= —Z[e_b(t, t5) -1],
then
d d
x(t) < - (Z + x(tg))e@(b) (t. £3).

In view of (2.3) and (2.5), we obtain

d d
x(tx) < 5t (Z + (8 - T(tk)))ee(—b> (t tx — T(80))

b
For every 0 € T, if u(0) = 0, then

b
£.(S(-b)) = ©(-b) = e b,

k=1,2,....

d d
<-4 (Z +9_C)€e(b)(tk,tk—‘[(tk)), k=1,2,....

Page 8 of 29

(2.3)

(2.4)

(2.5)

(2.6)
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if u(0) #0, then

_log(l+ 265 log(1—bu(6)) _log(1 - bj1)

e O R S

(> b).

Hence, for every 6 € T, we have

[ eeemaosmnl [* pao [* I AL

—7(%) k=7 () =7 (%) M
_()log(1~ bi)
i
Tlog(1-bi
o Tloel=bi) 4y
I
Thus
T log(1 - bi)
es(-b) (tk, tk — ‘E(tk)) < eXp{—gf , k=12,.... (2.7)

It follows from (2.6) and (2.7) that

d d T log(1l - bjx
x(ty) <——+ (- +x)exp —M =M, k=12,...,
b b I

then

lim supx(tx) < M.

k—+00

b

a’

= loo(l — bi
M:éexp{——T og(_ bu)}'
a H

Especially, if d = 0, then x = 7, we can easily know that

Hence limsup,_, , ., %(¢) < +00. This contradicts the assumption.
We claim

lim supx(¢) < M.

t—+00

Otherwise,

lim supx(¢) > M,

t—+00

there exists ¢ such that x(t) > M + ¢ for any ¢ € T. So we can choose {£}32; C T such that
x(t) >M + ¢, x% () > X, xA(t)|[:tk >0, k=1,2,....

By a similar process as above, we can derive that
x(tk) <M,

which is a contradiction. Hence, our claim holds.
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The proof of (ii). Suppose that liminf;_, .o, x(¢) = 0. Then there exists a subsequence

{&15° € T with & — +00 as k — +00 such that

lim () =0, %@ <0, k=1,2,....

k—+00

We have b — ax(t; — t()) < 0, then x(f — t(t)) > 2' For any positive constant & small

enough, it follows from limsup,_, , . #(£) < N that there exists large enough T; such that

x(t)<N+eg, ¢t>T,
then x(f, — (£)) < N + ¢ for £ > Ty + t(£). So we have
a2 (H) = 2% () (b - ax(t - t(&)) +d
> &7 (6) (b — ax(k — (&)))
> —a(N+e)x’ (&), k=1,2,....
Consider the following inequality:
x2(t) > —a(N + &)a° (t), with x(t:;) >0,t5 > to.

For t >t} > t;, we have
x(8) = x(t5) ectavsen (6 £5)-
From (2.8) and (2.9), we obtain
x(Tx) = x (8 — 7)) esavse) (B i — T(E))-

For every 0 € T, if u(0) = 0, then

a(N + &)

1+ w(®a(N +¢) =-alN+2),

£,(0(alN +#))) = ©(alN +#)) =

if u(0) # 0, then

a(N+e)u(0)
IOg(l - 1+u(9)a(N+s))

w(®)
_ log(1+a(N +e)u(®))
o n(6)
> —a(N +¢).

£.(0(aN +¢)))

Hence, for every 6 € T, we have

[ slclanansoz [* —avreno
T (B) tr— (&)
=—a(N + &)t ()

>—-a(N+¢&)T, k=12,...,

(2.9)

(2.10)
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SO

£
exp{fk Eu(e(“(N‘H?)))}A@Ze_a(N+g)T, k=1,2,....

k- (f)

Thus
eo(a(N+s)) (Zk, t— r(Zk)) > e_a(N”)f, k=1,2,.... (2.11)

By use of (2.10) and (2.11), we obtain

S

x(F) = x(B - T(H)) e NTOT > —e W f=1,0,

Q

Letting ¢ — 0, then
CI 7 b —aNT
liminfx(f;) > —e =m, k=1,2,....
k—+00 a
Similarly, we can get

liminfx(¢) > m.
t—+00

The proof of Lemma 2.11 is completed. g
Similar to the proof of Lemma 2.11, we can easily obtain the following results.

Lemma 2.12 Assume that x(t) >0onT,b>0,a,d >0,t—1(t) € T, where t(¢t) : T — R*
is an rd-continuous function and T = sup, {7 (t)}.
(1) Ifx2(t) <x@)(b—ax(t - t(t)) + d for t > to, to € T, with initial condition
x(2) = ¢(t) = 0 for t € [ty — T, to]T, P(to) > O, then

d (d -
limsupx(t) < —— + ( — + % |*7 := M,
t—>+00 b b
where X is the unique positive root of x(ax — b) —d = 0.
Especially, ifd = 0, then

ir=be
a

(ii) Ifx2(t) = x(t)(b — ax(t — T(2))) + d for t > t, to € T, with initial condition
x(2) = ¢(t) > 0 for t € [to — T, tolT, P(to) > 0 and there exists a positive constant N > 0
such that limsup,_, . x(t) < N < +00 and —aN € R*, then

=m,

b 7 log(1 - aNji
liminfx(t) > — GXP{M} — 77
t—>+00 a

where fi = supyr (1(0)).
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Proof The proof of (i). Suppose that limsup,_, , ., x(¢) = +c0. Then there exists a subse-
quence {tx}2; C T with £ — +00 as k — +00 such that

klim x(t) = +00, x(tg) > %, 2Oy, =0, k=1,2,....
Thus, we have
x(tk)(b - ux(tk - 'E(tk))) +d>0,

SO

x(te - T(t) < l(lo+ i) < i(m 6—l> =% k=12,.... (212)

a x(tx)

Consider the following inequality:
x(6) <bx(t) +d, withx(£5) > 0,5 > to.
Notice that

[x(®)een(t,£5)]" = ecn(o @), 15)x> (1) — beay(o (1), £5)x(2)
= ecp (o (®), tg) (xA () - bx(t))
< degy(t, tg). (2.13)

Integrating inequality (2.13) from £} to ¢, we have

t

eeb(t,tg)x(t)—x(t’ok) 5/ dee;,(a(r),t(’;)Ar

X
to

d [t A
=3 ). [esn(T,85)]" AT
0
d
= = [eer(t.55) 1],
then
x(t) < —% + (% + x(t3)>eb(t, £). (2.14)

In view of (2.12) and (2.14), we obtain

d d
() < -+ + (— + (8 - T(tk))>eb(tk:tk - t(t))

b b
< —(g + (% +J_C>€b(tk,tk - ‘L'(tk)), k=1,2,.... (2.15)

For every 0 € T, if u(0) = 0, then
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if u(0) #0, then

_ log(1+ b(9))

b) = <b.
§.(b) 0 <

Hence, for every 6 € T, we have

173 174
/ E.(D)AD < f bAO <bt(ty) <bt, k=1,2,...,
17

k=T (k) L= (t)

SO

173 B
wﬂf a@}w§w,kﬂ@m.
L

=7 (k)

Thus
e;,(tk, ty — T(tk)) < ebf, k=1,2,.... (2.16)

It follows from (2.15) and (2.16) that

d d - T -
x(tk)f—z + (Z +x>eb =M, k=12,...,

then

limsup x(tx) < M.

k—+00

Especially, if d = 0, then % = 2, we can easily know that

a’

ir= b,
a

Hence limsup, _, , ., #(¢) < +00. This contradicts the assumption.

Similarly, we can get

limsupx(t) < M.

t—+00

The proof of (ii). Suppose that liminf;_, .o, x(¢) = 0. Then there exists a subsequence
{&1%° C T with & — +00 as k — +0o such that

lim x(%) =0, x2(O)), <0, k=1,2,....
k—+00

We have b — ax(f, — t(£)) < 0, then x(f — (%)) > S. For any positive constant & small

enough, it follows from limsup, _ , . x(£) < N that there exists large enough T such that

x(t)§N+8, t>T,,

Page 13 of 29
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then x(f — t(&)) <N + & for & > Tr + t(%) and b — a(N + ¢) < 0. So we have

x®(B) = x(@) (b - ax(tc — 1)) +d
> x(t) (b - ax (b — (&)

> —a(N +e)x(&), k=1,2,.... (2.17)
Consider the following inequality:

22(8) > —a(N + e)x(¢), with x(t5) > 0,£5 = to.
For t >t} > ¢, we have

x(t) = x(t5)e_gire) (6 25)- (2.18)
From (2.17) and (2.18), we obtain

x() = x(B — 1)) e—avre) (T & — T(&)). (2.19)
For every 0 € T, if u(0) = 0, then

&, (—a(N + 8)) =—a(N +¢),
if u(0) # 0, then

log(1 - a(N + £)(0))
w(®)
- log(1 - a(N +&)f1)

&, (—a(N' + s)) =

h (<-a(N +¢)).
Hence, for every 6 € T, we have
78 B
f &, (—a(N + s)) A6
t— (%)
i - b log(l-a(N + &)
> min{/ —a(N + E)AG,/ og( aE + ) AG}
Tx—t () -t () M
7(fx)log(1 — a(N + ) 1)

i
Tlog(l —a(N + &)jx)

- k=12,...,
I

SO

exp{ﬁtk 5#(—a(]§1+8))}A6 zexp{ﬂog(l_t;(N+8)m }, k=12,....

ty—(tx)
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Thus

7 log(1 - a(N +¢&)j1)
m

e_piee) Bt — T(@)) = exp{ }, k=12,.... (2.20)

By use of (2.19) and (2.20), we obtain

Tlog(l—a(N +&)f) }
i

b {flog(l—a(ﬂl+e),&)}
> —exp —

x(t) = x(tk — (&) eXP{

, k=1,2,....

Letting ¢ — 0, we have

{ 7log(1 — aNf)

}=ﬁ’l, k=1,2,....
m

P
liminfx(f) > — exp
k—+00 a

Similarly, we can get

liminfx(£) > 7.

t—+00

The proof of Lemma 2.12 is completed. g

3 Permanence
In this section, we give our main results about the permanence of system (1.3). For conve-

nience, we introduce the following notations:

e ln{ al + 30 sl exp{— tlog(1 - (af + 377, i ci)it) ”
l/L )

i ]
b;

" uﬁ T+ log(l - bYe"i 1) .
x" =1In] — exp - , i=1,2,...,n
b; I

L

where i = sup,.p{u(t)}.

(Hs) a! st TR S R and et e RY i 1,2
3) arexp{—————1}>bf, —(af + 3. 4cp) € R*and ~bfeT €R*,i=12,...,n.

Lemma 3.1 Assume that (H;)-(Hs) hold. Let x(£) = (x1(£),x2(t), . ..,x4(t)) be any solution
of system (1.3) with initial condition (1.6), then

xf" < liminfa;(¢) <limsupx;(f) < xf\'I, i=12,...,n.

I—>+00 t—+00
Proof Letx(t) = (x1(¢),x2(£), .. .,x,(¢)) be any solution of system (1.3) with initial condition

(1.6). From (1.3) it follows that

n
xMt) <al+ Z ¢ — bfe"i(t’”(‘)), i=1,2,...,n.
j-1ji
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Let N;(¢) = %), obviously N;(t) > 0, the above inequality yields that

[In(N;(®)]* < a +Z ~BINi(t-w(®), i=12...,n
j=Lj#i

In view of Lemma 2.4, we have

NA(t ;
N(G(t))_ ’ﬂ%c Soe )

then

NA®) < Ni(o ) [a + ch, BINi(t - r,(t))i| i=1,2,...,n

J=Lj#i

By applying Lemma 2.11, there exists a constant T such that

Ni(t) <

al + 30 . _r* log(1 - (af + 37 i ci)it)
b P )

i

fort> Ty +t". Thatis, fori=1,2,...,n,

lim sup x;(¢)
t—+00
. _
<in {a + 11 1 € exp{_f]og(l—(a}‘j-zjL#ic}j.)u)”
b; 7
=M,

On the other hand, from (1.3) it follows that
x2(t) = al - e i=1,2,.. .,
Let N;(¢) = %), obviously N;(t) > 0, then the above inequality yields that
[In(Ni(0))]* = @t - BEN (¢ - w(0)).

In view of Lemma 2.3, we have

NA®)
Ni(D) ©

L BN (e - Ti(0),
then

NA(®) = Ni@)[al - BNy (¢t - 1:(0)], i=1,2,...,n

M
T loglbel ;L)}>bu

= there exists a constant 77 such

By applying Lemma 2.12 and a’ exp{
that

N = xp{ v log(l -

brer i
i “)}, i=1,2,...n
I

!
b ©
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for t > T; + t*. Therefore,

i=12,...,n

! + u M

. log(1 - b¥e”i

liminfx;(t) > ln{ 2 exp{ v log( 2 } } ="
t—+00 b# m

i Y
The proof is complete. O

Theorem 3.1 Assume that (H,)-(Hs) hold, then system (1.3) with initial condition (1.6) is
permanent.

4 Global attractivity
In this section, we study the global attractivity of system (1.3).

Definition 4.1 System (1.3) is said to be globally attractive if any two positive solu-
tions x(£) = (x1(£), %2(£), ..., x,(¢)) with initial value ¢(s) = (¢1(s), 2(s), ..., u(s)) and y(£) =
(1 (8), y2(2), . .., yu(2£)) with initial value ¥ (s) = (Y1(s), ¥2(s), ..., ¥,(s)) of system (1.3) satisfy

lim ‘x,-(t) —yi(t)| =0, i=12,...,n
t—00

Theorem 4.1 Assume that (H;)-(Hs) hold. Suppose further that

(Hy) y;>0,wherei=1,2,...,n,

(brer 2 [2ubter +1](2T* — 1)
1-1t2

= bl - 2,11(19}‘6"?4)2 -

Z (cpe )2(2ub”et +1)(26% -6 X”: cﬂet 2,u,b”el +1)

j=1j#i (dij+e/ )4(1_8A) J=1j#i (dﬂ + e )

bre (vt + 8" - 57) el s - )
X |1+ ,
|: 1-44 1-74 ]
where x", xM are defined in Lemma 3.1 and ji = sup,p{iu(t)}.
Then system (1.3) is globally attractive.
Proof Assume that x(t) = (x1(¢),x2(¢), ..., %,(t)) and y(£) = (), y2(8),...,yx(£)) are any

solutions of system (1.3) with the initial values ¢(s) = (¢1(s), 92(s), ..., @u(s)) and ¥ (s) =
(Y1(), Yo (), - . ., Yu(s)), respectively. In view of system (1.3), we have

81(£))

(t) a;(t) - b; (t)exlt ue) 4 / Lj#i Cl]( )eli

oR i=12,...,n,

(Z 81()) )
Yi (t) = ﬂl‘(t) - b,(t)ey’(t Tl + j=1,j'7/i Cij( )dey]eij i=1, 2) e 1,
ij

then

(w6 - 31(6)
=—b (t)[ x;(t—7;(¢)) ey,t r,(t)]

£5(t=8(2) &i(t=3®)
+ C; (t)< — ), i=12,...,n (4.1)
}%;l Y + eh(t=9®) dij + (t=5®)
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Using the mean value theorem, we get

ettt _ @rit=ui®) — i) (x,(t — 1,(t)) — yi(t — T,(2))),
S50 i) M0

= (£ = 85(£)) — (& = 8(2))),

dye IO g O (g

(4.2)

where &(t) lies between x;(¢t — 7;(t)) and y;(t — 7;(¢)), n;(¢) lies between x;(¢t — §;(¢)) and
yi(t = 8;(t)), i,j=1,2,...,n, i #j. Then, by use of (4.2), (4.1) can be written as

() - i)
= b)) (x;(t - ) - yilt - T2))

5 (8)
+ Z CU nl(t )2( j(t_aj)_yi(t_aj))) i:1,2,.,.,n

J=Lj#i
Let u;(t) = x;(¢t) — y:(t), then
n el

_ &i
u,-A(t) =-b;(t)e’ t)Mi(t - Ti(t)) + Z Cij(t)m
L y

wi(t - (1)),
i=1,2,...,n

Consider the Lyapunov function

V() =) Vi),

i=1

Vi(t) = Va(t) + Vi (8) + Vis(8) + Viu(t) + Vis(2),

where
Via(6) = |u;
piet P2abten 1] [T [
Vo = LTI [ ) aras
1-7 -2t Js+t

i c;fjexyb7ex?4[2ﬂb7ex§w+1]

ZOEDS

t
= / \uj(r)|ArAs,
i (dy+ €T )2(1-68%) —T =8t s+t

" e br2jibte + 1)

Via(t) = Z

t
;T / |uj(r)| ArAs,
i (diprel P (1-t8)  Jorrost Jsw

" (cje” 7y Qable +1) - [t
Vis®)= f / |ui(r)| ArAs,
i (dj+ el 7)1 —s8)  Joast Jeu

then

DVt

< sign(uf (6))u;’ (¢)
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" 15 (£)

= sign(u? (1)) |:—bi(t)e§"(t)ui(t— n(t)+ Y c,,(t)e—
J=Lj# (d )2

- w»}

= sign(uf(t))bi(t)egi(t)[ui(t) +u;(t - ri(t)) - ui(t)]

5 (£)
+ Z ci(t n(t) sign(u (£))[u;(6) + u; (¢ - 8;(2)) — u(2)]

j=1j#i

< —bi()e" " sign(u? () u;(t) + be / ul(s)| As

e ¢
* Z Cl] ’ ui(t)] + Z CU 7 /t_aj(t)‘uf(s)‘As

17 (dj+e s (dij+e
t
—bi(0)e5 ) sign(u (8) [u? (£) — w(B)ul (0)] + b |ub (s)| As
t-7;(t)
t
A
+ Z Ct/ 1( )|+ Z Ct/ P / |” (s)|As
e (di v jerjsi (dij+ €7 )? Sy
t
—ble ! |uit) + p(Oul ()] + abte + bt / ( )|uiA(s)|As
t—7;(¢
o ¢
+ ¥ u;(t ¥ u?(s)| As
Y Aol Y a1 o)
Jj=1,j#i z/ Jj=1,j#i jte J

< —bfe"zm !ui(t)‘ + Zﬂb?exM

+ ble / - (s) } As

t
+ Z Cl/ | 1( )| Z Cz] P / |MA(S)|AS
dl,+el )2 Je-50)

J=Lj#i l/ j=Lj#i

< -ble |ui(®)] + 2/1b;.‘exM —b,»(t)esi(t)u,-(t - 7(t))

/ |uA(s)|As

xM .
E: A
: A
+Z ll x’m Ct/ dz1+e1m) -/t‘ |1(S)| s

Jj=Lj#i dij + J=Lj#i 50

" n;(2)

el
* Z () (djj +en®))2 (- 3/(0)

< —bﬁe"zm !ui(t)‘ + 2/1(bl’-‘ex?4)2‘ui(t - ri(t))’

2ubtcteti exjw

+ Z —— i |w(t - 50))|

Jj=1j#i dt/"'el)

xM

+ b uA(s As + c u;(t)

; ! .
Tt j=1,j#i ij e’ )
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Y a

j=lj#i

/ |ujA(s)|As
(dL,+el )2 Je-5;0)

t
< et |uw(0)| + 2 (bre ) Jwi0)| + 2 (bre )’ / |ul(s)| As

t-7;(t)
¢ 2ub”c“e"fwe/

+ bt | ()| As + Z e |uy(o)]
t-;(t) j=1ji (dl/ + e j )2

2ubtc t

+ Z cr; |u](t)| Z L/ |ujA(s)|As
)2 .
j=1j#i ij +e / ) Jj=1j#i (dij +e’/ ) £=8(1)

xM t
+ Z cl] /t.g(t)‘uf(s)‘As

j=Lj#i (d11+e ) 9
t
= ble? 0]+ 270t o)+ (220% ) + 1] [ o]
t—1;(t

i cel (2/Lb o +1)

+ )~ |“/(f)|

Jj=1,j#i (dl] t+e Y )2
" e’ (2/Lb”ez +1)
+ Z / |ujA(s)|As
d:: Vi )2 £t-8;(t)
j=1j#i ( ijte j

< e (o) + 20(bte) o)

t
+ble [Z,ub“e 1] / ~bi(5)e"u;(s - 7i(s))
t-7;(t)

ci(s)e” " cl e/ 2ub”
I s as+ 3 2o
o (i + €V) S el )
i ce/(2ub”et +1) ,
D ; f ()¢5 (s - (1))
J=1j#i (dt/ +é€ Y )2 £=3;(t)

c,,
Z (d,l+em i wi(s—8:(0)) | A

i=1,j#i

< —Be ()| + 264 | 0)|
t
etV loabtet 1] [ s w6 as
t—1;(t)

1 cgexlz'wb}‘e"fd [2,1119}‘6"?/1 +1]
[ Jwls-3)as
j=1ji (dij +e7l)? t-7;(2)

" c exjw(2//gb”ez +1)

+ ) - p |(2)|
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"o 2be”(2ub”ez +1)

+ i / u;(s—1,(t))|As
R G

j=Lj#i

(c ‘e ) (20 b”e i +1
+ ) " ) / ‘ui(s—S,»(t))’As
(dij+e 5 )4 t-8(¢)

< bl @) + 2 (bt ) |uio)]

M2 =y M -7

bie*i y:[2ubte’i +1

+( )l MAl ]/ |ui(s + )| As
1-7 _ort

" ched b“el[2 b”ez +1]
+ Z ’ H / |uj(s + £)| As
(djj +e% )2(1 - 82) —Tt-5

j=Lji
(2ub"
+ Z : |”/(f)|
j=Lj#i (dij +e ¥ )2
¢ b“ Qb +1)
+ Z ¢ / |uj(s + )| As
j=1j#i dl} +e 1 2(1 ) —tr-o*
(cke 5 (2ub”e i +1) -
+ Z 4 / |u,»(s + t)!As, (4.3)
fuyy’ dl,+el )41 -82) 25*

(b P [27bte T +1] /2 [Joas0)] = |uate + 5)[] s

+1/7A
D ‘/iZ(t): 1-1A
(b e 2 [2ablet +1](2TF —17)
= 1_74 |ui(t)\
u 2 2 U X 1
_ (bie )1[ MbAe * ]/ (t+5) |As, (4.4)
-7 2T+

M M- M _

" chel bieti [2pbtesi +1] b

Pvae= l (dy +€7)2(1-5%) f . 5+H”"(t)}_|u"(t+s)um
i - T

j=Lj
)3 cpe bet Rabtet’ s 1 + o =0
) " ui(t
j=1j#i (dj+ €7 )21 -82) j
n Cel bue, [2Mbuel +1]
o / (2 +5)| As, (4.5)
j=1j#i (dyj + €9 )2(1-85) gt

2:M
nooche bu2 bu 7 1
ERVCRD D sl il R AT PR O
j=l,ii (dij+€/ 2(1—18) Jorrost
g o e oo
j=Lj# (dij +€9 )21 —1b) /

“(2//,19“6 i +1)

n u b
_ Z B |uj(t + s)|As, (4.6)
f=y’ dl}+el )2(1-12)
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(cie 9y Qabte +1)
D+ViA(t): (t) _ (t )
i /:%';i (dyj + €7 )41 - 82) /_ [|u | = Juate + )]s
1 21 b” P+ 1)(28F =8
~ Z (che’ Y (2abiteri +1)( )|ui(t)|
Jj=1,j#i (d11+e/ )4(1 (SA)
1 ’ 2 bu i+ 1
_ Z (cpe” Y (2ubfeti + )/ |uilt +5)| As. (4.7)
j=1ji (dl,+el)(1—8A) 5j-5;

In view of (4.3)-(4.7), we can obtain
D* V—[A(t)
=D'VE(t) + D'V5(t) + D' V5 (8) + D V4 (t) + DYVE(E)

" c’-‘.ex;w(2ﬁb?‘exf\4+l)

—bﬁe";n|ui(t)| + 2ﬂ(b?exfw)2|u,-(t)| + Z i lxm 5 |uj(t)|
j=Lj#i (dj+e7)
(bt 2 [2ibtes +1](2T* — 1)
+ ‘ui t)’
1-14

i cel b”ez [2,ub"ez +1](z* +67=67)

oy 2 1G]

j=Lj#i (dl'j+ej) (I_SA)

ZxM
oo e bu2 bu A 5t —
oy GO I

j=1,j#i (dlj+e/)2(1_T )

(e )2(2ub”ez +1)(267 =87)

+ Z |ui(2)|

j=1,ji (dy+¢€7 )1 -88)

1-74

" bt V2 2kt + 1]t — 1
__[bfex,._m(b?exy)z_u PRabte! + 1@ - 1)

/ bu i 0t =6~
~ Z (c e ) 2pbteti +1)(2 ):||u,-(t)|
j=1j#i (dl] +€7 )4(1 54)

>

v (dy+ei)? j=Lji (dyj + €7 )2(1-68%)

|: " cgexfw(2/2b§‘ex?/[+1) " cgeleb?‘e"fWD/lb?‘e"?/[+1](r++8+—8‘)
ap>
Jj

n
1
oy

Jj=1j#i (dij‘"el )Z(I_tA)

cte b” Z/Lb“e"M+1 )Tt +8" - ‘)i|’ |
Uj

1-174

_{ bt — o by~ (b et 2 [2abte +1](2T* —17)

Z (c e/ (2,[,Lbu€l +1)(28Y -67) " cez Z,ub”el +1)

j=1j#i (dlj + e/ )4(1 (SA) 1121711 (dﬂ +e )2

n

Z cjie’ b"el [Z;Lb”e/ +1](t* +8"=67)
=L (dji + €)1 - 8)
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5 et b (2jibte’ +1)(r +5% 1) o)
— o u;(t
=y (dji + €)1 =74
u M\ 2 1o = pu M + —
m (bte*i Y [2ubteti +1]2t" —17)
- _Ape? Zon(bret)r — i
{ le M’( le ) 1 _ .L.A
" (cted P(2ubtet! +1)(26° - 5) 5 et (2ubte’ +1)
jLj (dj + €7 )H(1-5%) S (divel)?
b;‘exﬁw(fr +8"=37) e"fwbg‘(fr +8Y—17)
x|:1+ T 5a + s ] |ui(2)|
= —y;|ui(0)]. (4.8)
From (4.8), we get
DVA@) <Y -vilue)], teT,
i=1
then
D'VA®#) <0, teT,
and hence
V()< V(to), t=tytoeT. (4.9)
By use of (4.8) and (4.9), we have
t n
f Zyi|ul~(s)|As <Vt)-V@®), t>tytoeT,i=12,...,n.
-1
Consequently,
/ |ui(s)‘As <oo, HeT
to
and u;(£) = x;(t) — y;(t) > 0 for t > 00, i =1,2,...,n. This completes the proof. O

5 Almost periodic solutions
In this section, we investigate the existence and uniqueness of almost periodic solutions
of system (1.3) by use of the almost periodic functional hull theory on time scales.
Let {s,} C IT be any sequence such that s, — +00 as p — +00. According to Lemma 2.9,
taking a subsequence if necessary, we have
a;(t +sp) = aj (L),

bi(t +s,) = b} (1), cii(t +s,) = cj;-(t),

T(t +5p) = (), 8(t +5p) = 8;‘(15), p —> +00



Li and Wang Advances in Difference Equations (2015) 2015:230
forteT,i,j=1,2,...,n, i #j. Then we get the hull equations of system (1.3) as follows:
n exj(t—c?;‘(t))
X () = ap () - bi(e)e T 4 N en(e) i=1,2,...,n (51)

(=87 ()7
j=Lji jre’
By use of the almost periodic theory on time scales and Lemma 2.7, it is easy to obtain
the following lemma.

Lemma 5.1 Ifsystem (1.3) satisfies (Hy)-(Ha), then the hull equations (5.1) also satisfy (H;)-
(Ha).

Theorem 5.1 Assume that (Hy)-(Hy) hold, then there exists a unique strictly positive al-
most periodic solution of system (1.3).

Proof By Lemma 2.9, in order to prove the existence of a unique strictly positive almost
periodic solution of system (1.3), we only need to prove that each hull equation of system
(1.3) has a unique strictly positive solution.

Firstly, we prove the existence of a strictly positive solution of hull equations (5.1). By the
almost periodicity of a;(¢), b;(t) and c;(t), i,j = 1,2,...,n, i #j, for an arbitrary sequence
o = {w,} C IT with @, — +00 as p — +00, we have, for i,j=1,2,...,n, i #J,

a;(t + w,) — a; (t), bi(t + w,) — b} (1), c}'}(t +w,) = c}'}(t),

T (t + wpy) = T (1), 8;(1: +w,) = 8;‘(t), p — +00.

Suppose that x(t) = (x1(¢),x2(), ..., %,(£)) is any solution of hull equations (5.1). Let ¢ be
an arbitrary small positive number. Since (H;)-(H3) hold, by the proof of Lemma 3.1, then
there exists t; € T (#; > to) such that

xt—e §xi(t)§xf\4+s fort>t,i=1,2,...,n.

Write x;,(£) = xi(t + wp) for t > 1, p=1,2,...,i=1,2,...,n. For any positive integer g, it is
easy to see that there exist sequences {x;,(£) : p > g} such that the sequences {x;,(£)} have
subsequences, denoted by {x;,(t)} again, converging on any finite interval of T as p — +00,
respectively. Thus we have sequences {y;(¢)} such that

xXip(t) = y:(t) forteT,asp— +00,i=1,2,...,n.
Since

Xy (1) = a; (¢ + wp) — b} (t + )i rilrer)

exj(t+wp—8,~(t+wp))

n
+ E it + wy)
L T p dlj+exj(t+wp—8,‘(t+wp))’
J=Lj#i

by use of Lemma 3.5 in [32], we have

. n eyj(t—é;‘(t))
7O =af®) - b T 4 Y )y P2 L2
jvi dg+ el

Page 24 of 29
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We can easily see that y(t) = (y1(£),52(£), ..., y.(t)) is a solution of system (5.1) and 7" — & <
yi(t) <xM+efort € T,i=1,2,...,n Since ¢ is an arbitrary small positive number, it follows
that ¥ < y;(t) <xM for t € T, i = 1,2,...,n, which implies that each of the hull equations
(5.1) has at least one strictly positive solution.

Now, we prove the uniqueness of the strictly positive solution of each of the hull equa-
tions (5.1). Suppose that the hull equations (5.1) have two arbitrary strictly positive solu-
tions x*(£) = (%7 (£), x5(£), ..., x5(t)) and y*(£) = (y{ (£), 5 (1), ..., y: (1)) Let uf (£) = x} (£) - y7 (£),
i=1,2,...,n. Consider a Lyapunov function

Vi) =) Vi),
i=1

where

Vi) = V() + Vi () + Vi (@) + Vi (@) + Vi5(0),

1

’

u M\ 2 1 = pu M -7 t
“eti 2 “eti 1
V;;(t)=(b’e [2bte" + ]/ / |} (r)| Aras,
—2tt Js+t

Vi) = |uj @)

1-14

t
}u}* (r) | ArAs,

T8t Js+t

Z1GEDS

Jj=1,j#i (dij + €’ )2(1-82)

" cZex;Wb?exy[Zﬂb?exy+1] f-a

t
| u;.k(r) | ArAs,

Tt=0% Js+t

Vi)=Y

Jj=1,j#i (dy + e P(1-18)

n M o n = M e

(cke )y*2ubtei +1) -5 ¢

Vio)= 3 / / u; ()| aras.
Ara yretyra-ss) Jor L

" c;‘jezxyb;‘(Z,&b;‘e"fw+l) /—f

Similar to the proof of Theorem 4.1, we have

D (V)0 ==Y wlui o). (5.2)

i=1

From (5.2), we get

D' (V*)*(#) <0, teT,
and hence

V() > Vi(to), t<totyeT.
Then we have

to
/ vilui ()| As < V*(to) - V*(0), t<to,toeT,i=12,...,n
t
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Consequently,

to

/ |uf(s)|As <00, fHeT,

-00

and u(¢) = xf(£) - yi(t) > O fort = —00,i=1,2,...,n
Fori=1,2,...,n,let

(b e 2 [2ablet +1](2T)?

P=1+
! 1-74

i clle j b” "M[Z;Lb”e"zM +1](z* +8*)?

+

Jj=1j#i (d,']'+€/) (1_8A)
" b”(Zub”e i +1)(t* +8%)?

£y e

=L (dy + €Y )21 -72)

. Z (cle” 52 abret +1)(23+)2
J=1j#i (dt}"'el ) (1 8A)

For arbitrary ¢ > 0, there exists a positive integer Kj such that
e
EAOEEHGIRS 5 Vi< Kui=12m
i
Hence, for i,j =1,2,...,n with i #j, one has
€
‘/;;(t) = 17) Vit < _1<l)

i

(bt 2 [2ubte +1](21) &

*
Vip(t) < T B Vi< -Kj,
" cgex;'wb?e"?d [2,&b;‘e"fw +1)(t* +6%)° ¢
‘/;;,(t) = Z m n? Vi < _Kly
j=1ji (dij + €7 )2(1-8%) Pi
noo Zbeu(z u +)2
b ey (T +8%)" ¢
ACEI P —, Vt<-Ki,
j=Lji (dyj + € PR - Pi

L (e Pkt +1)(28%) ¢
Vis(t) < Z T —, Vt<-Kj,
=1 (dij + €7 )4 (1-6%) P

which imply that

V*(t) <e, Vt<-Ki.

So,

lim V*(¢) =0.

t——00

Page 26 of 29
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Note that V*(¢) is a nonincreasing nonnegative function on T and that V*(¢) = 0. That s,
x5 () =yi@), teT,i=12,...,n

Therefore, each of the hull equations (5.1) has a unique strictly positive solution. In view
of the previous discussion, any of the hull equations (5.1) has a unique strictly positive so-
lution. By Lemma 2.9, system (1.3) has a unique strictly positive almost periodic solution.
The proof is completed. d

6 An example
Consider the following multispecies Lotka-Volterra mutualism system with time delays
on almost periodic time scale T:

x2(t) = a;(t) - b(t)e =D
£5(t=5(®)

2
+ Z Cll(t)m, i=1,2,teT. (61)
i ij
j=1j#i

Example 6.1 When we take T = R, then pu(¢) = 0. Let

a1(2) = 0.7 — 0.02 sin(v/22), a(£) = 0.61 — 0.02 sin(v/32),
by(t) = 0.58 — 0.01cos(+/2t), by(2) = 0.55 — 0.01sin(+/22),
71(¢) = 0.003 — 0.001 cos ¢, 75(¢) = 0.002 + 0.001sin¢,

81(£) =0.004 - 0.002cost,  8,(¢) = 0.002,

( (t)) 0.06 +0.05sin(2t)  0.005 + 0.005 cos(+/5¢)
C,. = )
U227\ 0.15 + 0.02cos(+v/31)  0.08 + 0.02sin(+/2¢)

12 1
di' x2 = ’
( 1)2 2 ( 1 11)

a’=072, a =068  a¥=063,  a,=059, b'=059, b =057,

then

bt =056, b,=054, =011, =001, % =017, & =01,
t*=0.004, t"=0.001, §*=0.006, § =0.002

A / A ’
=m /() =0.001, 8% =m 8:(t); = 0.002.
i léfaf)éigng{rl( )} lél’gilelng{ ’( )}

By calculating, we have

ay +ct ay _pgus s
xM = ln{ ——L exp{(af + ci‘z)t"}} ~ 0.250, X = ln{—ie_ble te } ~0.139,
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then

1~ 0.604 >0, 2 &~ 0.527 > 0.

Page 28 of 29

Thus, (H;)-(Ha) are satisfied. According to Theorem 3.1, Theorem 4.1 and Theorem 5.1,

system (6.1) has a unique almost periodic solution, which is globally attractive.

Example 6.2 When we take T = Z, then u(¢) = 1. Let

ai(t) = 0.3-0.02sin(v28),  a»(t) = 0.25 — 0.02 sin(+/32),

2+(-1)
bi(t) =0.27, by(t) =0.22, t)= ——
1(8) 2 (2) T (t) 1,000
3+ (1)
61(t) = ——, 82(¢) =0.002,
1(2) 1000 2(2)

¢
, 7,(¢) = 0.001,

0.03 + 0.02 sin(2¢) 0.01 + 0.01 cos(+/5¢)
(617(t))2x2 = . ,
0.006 + 0.004 cos(+/3¢) 0.08 + 0.02 sin(+/2¢)

12 1
dl“ x2 = )
( 1)2 2 <1 1.1)

a*=032, a =028  a¥=027, ab-=

then

bY=by =022, =005 =002

5=0.003, T~ =0.001, 3" =0.004,

023, b=b=027,
¢y = 0.01, ¢y, =0.1,

8~ =0.002,

7% = max sup{At,»(t)} =0.002, 8% = max sup{A(Sj(t)} =0.002.

1=i=2 ez, 15j=2 te7,

By calculating, we have

x) =1n % exp{-7"log(1 - (af + C?z))}} ~
1

!
4

m_
%" =In b
1

exp{t*log(1- b?exfd) } } ~ 0.035,

xg/l “In ay + Cy exp{—‘f+ log(l _ (a;i + 031))}} ~

X
i u
b2

m_ ) 22 exp{t*log(1 - bgexéw)}} ~ 0.044,
then

y1 ~0.041> 0, 2 2~ 0.059 > 0.

0.232,

Thus, (H;)-(Ha) are satisfied. According to Theorem 3.1, Theorem 4.1 and Theorem 5.1,
system (6.1) has a unique almost periodic solution, which is globally attractive.
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