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Abstract: This paper discusses the first-order optimality conditions for optimal control problems with two differ-
ent types of control systems, considered on a fixed time interval: systems of ordinary differential equations and
systems of Volterra-type integral equations.
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AnHoTanusi. B HacTosimiedt pabote 00CYXIAI0TCs YCIOBUSI ONTHMAIBHOCTH TIEPBOTO TOPSIKA JUTS 3a7a4 ONTH-
MaJIGHOTO YTIPABICHUS C IBYMSI PA3IIMYHBIMU THIIAMH YIIPABIIIEMBIX CHCTEM, pacCMaTPUBAEMbIX Ha (PUKCHPOBaH-
HOM OTpE3Ke BPEMEHH: CUCTEeMaMHt OOBIKHOBEHHBIX TU( P epeHINaIbHbIX YPAaBHEHUH 1 CHCTEMaMU HHTETPaTbHBIX
ypaBHeHMii Tuna Bonbreppa.
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1. INTRODUCTION problems with systems of ordinary differential

equations (ODEs), and with systems of Volterra-

The aim of this paper is to observe some results
on the first-order optimality conditions for a
weak local minimum, for control problems with
two different types of control systems,
considered on a fixed time interval, subject to
mixed state-control constraints. We will consider

type nonlinear integral equations. We will show
that the appropriate definition of the Pontryagin
function allows to give very similar formulations
of the optimality conditions for these two types
of systems. The proofs of the observed results
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could be based on one and the same abstract
Lagrange multipliers rule.

Let us note that necessary conditions for the
weak local minimum in optimal control problems
constitute an important stage in derivation of any
further necessary optimality condition, including
maximum principle or higher order conditions,
and thus, they deserve a separate thorough study
for each specific class of problems, like it is done
in the classical calculus of variations. This is why
we focus on these conditions. Following the
tradition, we call them stationarity conditions
(or local minimum principle ).

The paper is organized as follows. In Section 2
we formulate first-order necessary optimality
conditions for problems with ordinary
differential equations. Section 3 gives such
conditions for problems with Volterra-type
integral equations. Finally in Section 4 we
present an abstract Lagrange multipliers rule,
used for the proofs.

2. OPTIMAL CONTROL PROBLEM
WITH ORDINARY DIFFERENTIAL
EQUATIONS ON A FIXED TIME IN-
TERVAL

2.1. Statement of the problem (Problem A)
We consider the following control system of
ordinary differential equations on a fixed time

interval [7,,7,]:

dx(?)
dt

= (6, x(0), u(?)), (1)

where x(-) is an absolutely continuous »n—
dimensional and u(-) a measurable essentially
bounded r»—dimensional vector-function on
[75,1;]. We call x the state variable and u the

control variable (or simply the control ). We
assume that the function / is continuous
together with its partial derivatives with respect
to x and u on an open set Q  IR™"".
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The problem is to minimize the Bolza-type cost
functional
t .
J = @y (x(t,), x(1,)) + J; '@, (¢, x(1),u(t))dt — min
0
(2)

on the set of solutions of system (1) satisfying the
Bolza-type constraints

n;(x(ty),x(#,)) +
+| " (1, x(0O,u()dt = 0, j = 1,...,d(p), )
P (x(2,),x(1,)) +
t ._ 4)
+ [0, x()u()dr = 0,1 =1,....d(#),
and the mixed state-control constraints
F(#,x(0),u(t)) <0 5)
forae telt,t], i=1,..d(F),
G, (t,x(2),u(?) =0 ©6)
forae. telt,t], j=1,...,d(G),

where the functions ¢;,¢,,n7, are defined and

continuously differentiable on an open set
Pc IR, and the functions o, ¥, ,F,G, are
defined and continuous together with their partial
derivatives with respect to x and u# on an open
set O cIR"™™ . The notation d(p),d(n),d(F),
etc. stand for the numbers of these functions.
Moreover, we impose the following important
Assumption RMC (on the regularity of mixed
constraints). The mixed constraints (5)-(6) are
regular in the following sense: at any point
(t,x,u) e Q satisfying relations F,[£]0 Vi and
G, =0 V, the system of vectors

F! (t,x,u),
iel(t,x,u), G, (t,x,u), j=1,..,d(G),

is  positively--linearly  independent, where
I(t,x,u)={i: F.(t,x,u) =0} is the set of active
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indices of mixed inequality constraints at the
given point.
Recall that a system consisting of two tuples of

vectors p,,...,p, and ¢,,...q, in the space IR’

is said to be positively-linearly independent if
there does not exist a nontrivial tuple of

multipliers ..., f,....5, with all a; 20
such that

Zaipi + Zﬂjq‘f =0.
i 7

The problem (1)-(6) will be called Problem A.
Obviously, each pair (x(¢),u(f)) under
consideration must “lie” in the domain Q of the
function f(¢,x,u), i.e.

(t,x(t),u(®)) e Q for ae.

t €[t,,t,].

We will need even a stronger condition.

Definition. A pair of functions w(z) = (x(¢),u(?))
defined on an interval ¢ €[7,,¢,] (with absolutely
continuous x(#) and measurable essentially
bounded u(7)) will be called a process in

Problem A if it satisfies (1) and its graph
G(w) = {(t,x(O),u(0)) | 7 €[ty,1,])
lies in the set O with some “margin”, i.e.,

dist((t, x(£),u(1)),00)> const > 0
foraa. telt,t], (7

or equivalently, there exists a compact set Q < Q
such that (7, x(¢),u(¢)) e Q) for a.a. r€[7,,t,]. A
process in problem A is called admissible if it
satisfies all the constraints of the problem.
Definition. We will say that an admissible
process

w'(2) = (x"(0),u’ (1)), (8)

telt,,t]
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provides the weak minimum if there exists an
>0 such that for any admissible process

w(t) = (x(1),u(t)), te[t,,t,], satisfying the
conditions

() -x"()|<e V1, ©)
and u(t)-u’()|<e (V),

the following inequality holds: J(w) > J(w").
(Notation (V) conveniently means "for almost
all".)

2.2. The local minimum principle

in Problem A
Let a process (8) provide the weak minimum in
Problem A. To formulate optimality conditions,
let us introduce a tuple of Lagrange multipliers
corresponding to all the constraints and the cost
of Problem A:

(a, B,y (1), h(1), m;(2)),
i=1,..,d(F), j=1,..d(G), (10)

where @ =(a, a,..., ) € IR with

a, >0 Vi (for short, we will simply write a > 0),
and ﬂ = (lBla“-aﬂd(n)) € IRd(ﬂ)
v {t,,t,] > IR"
function,

are  vectors,

is a Lipschitz continuous

h: [tyt]— IR, i=1,...d(F),
m: [t.t,]—> 1R, j=1,....d(G),

J

and

are measurable bounded functions.
Further, introduce the Pontryagin function (or
pre-Hamiltonian)

H(t,x,u)=w f(t,x,u) +

d(p) d(n)

+ Zloeicl)i(z‘,x,u)Jr Z,Bj‘l’j(l‘,x,u) (11)
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(here, v/ is the product of the row and column

n—vectors), and the augmented Pontryagin
function (or augmented pre-Hamiltonian)

ﬁ(t,x,u) = H(t,x,u)+
+ Y hE(txu)+ Y m, G (txu). (12)
i J

Also, introduce the endpoint Lagrange function

d(p) d(n)

o) = (e + 2 fm),x). (13)

Both these functions refer to the tuple (10).
The functions H,H,! will be used in formulation

of optimality conditions.

For the process (8) and tuple (10) with the
specified properties, let us formulate the
conditions of /local minimum principle (or the
Stationarity conditions):

a) the nonnegativity conditions

az0, h@®)=0, i=1,....dF), (14)
b) the nontrivality condition
lal+| A1+ X hodi>0, (15
7 0
¢) the complementary slackness conditions
o, (4, (x* (1), X’ (t)+
+ [, (1,2 (0 (0)dt) = 0,
‘o
i=1,...d(p), (16)

d) the pointwise complementary slackness
conditions

hi(t)E(t,xO(t),uO(t))ZO ae. onlt,t],

i=1,....d(F), (17)

e) the adjoint equation
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_dy (@)

P H(t,x°(0),u (),

f) the transversality conditions

w(t,) = _lxoo(x (to)(;x (#)), (18)
W) =1, () (),

g) the stationarity condition of the extended
Pontryagin function with respect to the control

H,(6,x°"(0),u°())=0  ae. on [t,1].

The main result of this section is the following

Theorem 1. If a process w°(t) = (x"(t)u’(?)),
telty,t]
Problem A and satisfies assumption RMC, then
there exists a tuple of multipliers (a, B,y , h., m;)

provides the weak minimum in

satisfying the specified above properties and
such that conditions a) - g) of the local minimum
principle hold true.

The proofs can be found in the book [3]. This
book also contains further results of that kind,
namely: the first-order conditions for a strong
local minimum in the form of Pontryagin
minimum principle. Moreover, along with
regular mixed state-control constraints, the
problem can also allow pure state constraints,
and the time interval can be both fixed and
variable.

3. OPTIMAL CONTROL PROBLEM
WITH VOLTERRA-TYPE INTEGRAL
EQUATIONS ON A FIXED TIME
INTERVAL

3.1. Statement of the problem (Problem B)
We consider the following control system of
Volterra-type integral equations on a fixed time
interval [7,,¢,]:

X(0) = x(t)+ [ ft.s.x(s)u(s)ds,  (19)
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where x(-) is a continuous »—dimensional and
u(-) a measurable essentially bounded 7r—
dimensional vector-function on [7,,7,]. Again,

we call x the state variable and u the control
variable. We assume for simplicity that the
function / is defined and twice continuously

differentiable on an open set R < IR*"""".

The problem is to minimize the Bolza-type cost
functional (2) on the set of solutions of system
(19) satisfying the Bolza-type constraints (3), (4)
and the mixed state-control constraints (5), (6),
where the functions ¢,,¢,,;7, are defined and

continuously differentiable on an open set
Pc1R*, and the functions ®,¥, F,.G, are

defined and continuously differentiable on an
open set Q  IR""™"",

Again, we impose the assumption RMC (on the
regularity of mixed constraints), given in Section
2.1. The problem (2)-(6), (19) will be called
Problem B.

Note that the function / explicitly depends on

two time variables, ¢ and s, the roles of which

are essentially different. Conventionally, the
variable s will be called inner, while ¢ will be
called outer, time variable, and one should
carefully distinguish between them in further
considerations. Among the four arguments of the
function / and its derivatives, the first argument

will always be the outer and the second one the
inner time variable, no matter by which letters
they will be denoted.

Note also that the integral equation (19) is
equivalent to the following integro-differential
equation:

dx(r) _ f(t,t,x(t),u(t)) +
dt 20)

+ J.ttf,(t,s,x(s),u(s))ds,

where the last integral shows, in a sense, how
“far" we are from an ordinary differential

equation. (Here f, means the partial derivative of
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the function f(z,s,x,u) with respect to the first,
outer time variable z.) If / does not depend on
the outer time ¢, i.e., f = f(s,x(s),u(s)), then

this integral disappears, and Problem B becomes
a standard optimal control problem with the ODE

dx(t)
dt

= J (@, x(2),u(?)).

each pair  (x(¢),u(f)) under

consideration must *'lie" in the domain R of the
function 1(z,s,x,u), i.e.

Obviously,

(t,s,x(5),u(s))e R forae. (t,5)€ D[t),1],

where D[t,,t,1={(,5): t,Es[Ee, 3.
we will need even a stronger condition.
Definition. A pair of functions w(t) = (x(¢),u(?))

defined on an interval 7 €[¢,,¢,] (with continuous

Again,

x(¢) and measurable essentially bounded u(7))

will be called a process in Problem B if it
satisfies (19) and its “extended graph”

G(w) ={(, s, x(s),u(s)) : (¢,5) € D[ty,1,]}
lies in the set R with some “margin"’, i.e.,

dist((¢,s,x(s),u(s)),0R)const > 0
fora.a. (t,s) € D[t,,t,],

21

or equivalently, there exists a compact set
Qc R such that (z,s,x(s),u(s))eQ for a.a.

(t,5) € D[t,,t,]. A process in problem B is called

admissible if it satisfies all the constraints of the
problem.

The notion of a weak local minimum in Problem
B is the same as that in Problem A.

3.2. The local minimum principle in Problem B
Let a process

w'(0) = (x"(O),u’ (1)), 1elty,1,]
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provide the weak minimum in Problem B.

To formulate optimality conditions, let us
introduce a tuple (10) of Lagrange multipliers
corresponding to all the constraints and the cost
of Problem B:

(a, B,y (1), h(1), m;(2)),
i=1,...,d(F), j=1,...,d(G),

where, as in Section 2.2,
a = (..., 0,) € IR"”" with a; >0 Vi and
B= (ﬂl""’ﬂd(r])) e R
v {t,.4,] > IR"
function, (¥ is a row n— vector),

are vectors,

is a Lipschitz continuous

bt 61— 1R, i=1,....d(F),
m, {tg,t,] > 1R, j =1,...,d(G),

and

are measurable bounded functions. In what
follows, all pointwise relations involving
continuous functions hold for any ¢, and those
involving measurable functions hold for almost
all 7.

Further, introduce the
function

modified Pontryagin

Ht,s,x,u)=w(t)f(t,s,x,u)+
+ J;tll//(r)ﬁ(r,s,x,u)dr

d(p) d(n)

+ ;aiq)i(s,x,u) + Zﬂj‘l’j(s,x,u)
i= J=

(22)

and the augmented (or
Pontryagin function

extended) modified

ﬁ(l,s,x,u) = H(t,s,x,u)
+ Zhi O F,(s,x,u)+ Lm/ (DG, (s,x,u).
i J

(23)

Again, introduce the endpoint Lagrange function
(13). Both these functions refer to the tuple (10).
In Problem B, for the process (8) and tuple (10)
with the specified properties, let us formulate the
conditions of /local minimum principle (or the
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Stationarity conditions): a') the nonnegativity
conditions (14), b") the nontrivality condition
(15), ¢') the complementary slackness conditions
(16), d') the pointwise complementary slackness
conditions (17), e') the adjoint equation

—y (1) = H.o(1,0,x°(1),u° (1)),

f') the transversality conditions (18), g') the
stationarity condition of the extended Pontryagin
function with respect to the control

Ho(t,t,x"(0),u’(0)=0  aeon [t,1].

The main result of this section is the following

Theorem 2. If a process w°(t) = (x"(t)u’(t)),
tety,1]
Problem B and satisfies assumption RMC, then
there exists a tuple of multipliers (o, B,y ,h;,m;)

provides the weak minimum in

satisfying the specified above properties and
such that conditions a')--g') of the local minimum
principle hold true.

The proof of this theorem (for a more general
problem, with pure state constraints) is given in
[4].

In the next section we formulate an abstract
Lagrange multiplies rule which can be used for
the proofs of Theorems q1 and 2.

4. AN ABSTRACT LAGRANGE
MULTIPLIERS THEOREM

Let X,Y, and Z,, i=1,...,v be Banach spaces,
Dc X an open set, and K, cZ,, i=1,...,v

closed convex cones with nonempty interiors.
Let F,:D—>1R, g:D—Y, and f,:D—>Z,,

i=1,...,v, be given mappings. Consider the
following optimization problem:
F,(x) > min, fi(x) e K,

i=1,...,v,

g(x)=0. (24)
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Let K!:={z €Z :(z,z,)10foreveryz, e K,} be
the polar cone to K,, i=1,...,v. Here (z;,z,) is
the duality pairing between Z, and its dual space
Z'. We study the local minimality of an

admissible point x’ € D.

It is worth noting that the inequality constraints
f;(x)<DJ] where f,:D—IR are given
functionals, may also be presented in the form
f.(x)e K, if we put K, =IR :=(—0,0]. Then
K! =1R, :=[0,00).

We impose the following

Assumptions.

1. The objective function F; and the mappings

f, are Fréchet differentiable at x,; the
operator g is has a Frechet derivative in a
neighborhood of x, and this derivative is
continuous at x, (smoothness of the data
functions),

2. the image of the derivative g'(x,) is closed

in ¥ (weak regularity of equality constraint).
The following theorem gives necessary
conditions for a point x, €D to be a local
minimizer for problem (24).
Theorem 3. Let x, provide a local minimum in

problem (24). Then
multipliers

there exist Lagrange

* 0 . * *
0,20,z, eK;,i=1,..,v,and y €Y,

satisfying the nontriviality condition

sl e
the complementary slackness conditions
(z;,fi(x,)=0, i=1,...,v, (26)

and such that the Lagrange function

Volume 14, Issue 2, 2018

L) = By () + Y4z ) + g ()

is stationary at x,: L'(x,) =0. 1ie.,

o Fy (50) + D2 S (e )+ "8 (5, ) =,
@)

This theorem is an efficient tool for a wide range
of optimization problems with an infinite number
of constraints. Its proof, based on the so-called
Dubovitskii--Milyutin approach [1], can be
found in [3,4,5].

In a particular case when Y = IR", Assumption 2
is valid automatically, and y" =(f,,...,3,) is an

n—dim vector.
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