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Abstract: This paper discusses the first-order optimality conditions for optimal control problems with two differ-
ent types of control systems, considered on a fixed time interval: systems of ordinary differential equations and 
systems of Volterra-type integral equations.

Keywords: integral equation, control system, mixed constraints, local minimum principle, weak minimum, 
stationarity conditions

ЛОКАЛЬНЫЙ ПРИНЦИП МИНИМУМА ДЛЯ ЗАДАЧ 
ОПТИМИЗАЦИИ С РАЗЛИЧНЫМИ ТИПАМИ 

УПРАВЛЯЕМЫХ СИСТЕМ ПРИ НАЛИЧИИ СМЕШАННЫХ 
ОГРАНИЧЕНИЙ НА ФАЗУ И СОСТОЯНИЕ

А.В. Дмитрук 1, 2, Н.П. Осмоловский 3, 4, 5 
1 Центральный экономико-математический институт РАН, Москва, РОССИЯ

2 Московский государственный университет им. М.В. Ломоносова, г. Москва, РОССИЯ
3 Университет технологий и естественных наук, г. Радом, ПОЛЬША

4 Институт системных исследований, Польская академия наук, г. Варшава, ПОЛЬША
5 Национальный исследовательский Московский государственный строительный университет,

г. Москва, РОССИЯ

Аннотация. В настоящей работе обсуждаются условия оптимальности первого порядка для задач опти-
мального управления с двумя различными типами управляемых систем, рассматриваемых на фиксирован-
ном отрезке времени: системами обыкновенных дифференциальных уравнений и системами интегральных 
уравнений типа Вольтерра.
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1. INTRODUCTION

The aim of this paper is to observe some results 
on the first-order optimality conditions for a 
weak local minimum, for control problems with 
two different types of control systems, 
considered on a fixed time interval, subject to 
mixed state-control constraints. We will consider 

problems with systems of ordinary differential 
equations (ODEs), and with systems of Volterra-
type nonlinear integral equations. We will show 
that the appropriate definition of the Pontryagin 
function allows to give very similar formulations 
of the optimality conditions for these two types 
of systems. The proofs of the observed results 
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could be based on one and the same abstract 
Lagrange multipliers rule.
Let us note that necessary conditions for the 
weak local minimum in optimal control problems 
constitute an important stage in derivation of any 
further necessary optimality condition, including 
maximum principle or higher order conditions, 
and thus, they deserve a separate thorough study 
for each specific class of problems, like it is done 
in the classical calculus of variations. This is why 
we focus on these conditions. Following the 
tradition, we call them stationarity conditions 
(or local minimum principle ).
The paper is organized as follows. In Section 2 
we formulate first-order necessary optimality 
conditions for problems with ordinary 
differential equations. Section 3 gives such 
conditions for problems with Volterra-type 
integral equations. Finally in Section 4 we 
present an abstract Lagrange multipliers rule, 
used for the proofs.

2. OPTIMAL CONTROL PROBLEM 
WITH ORDINARY DIFFERENTIAL 
EQUATIONS ON A FIXED TIME IN-
TERVAL

2.1. Statement of the problem (Problem A)
We consider the following control system of 
ordinary differential equations on a fixed time 
interval ],[ 10 tt :   

)),(),(,(=
)( tutxtf

dt
tdx                    (1)

where )( x is an absolutely continuous �n
dimensional  and )( u a measurable essentially 
bounded �r dimensional vector-function on 

].,[ 10 tt We call x the state variable and u the 

control variable (or simply the control ). We 
assume that the function f is continuous 
together with its partial derivatives with respect 

to x and u on an open set .I 1 rnRQ ���

The problem is to minimize the Bolza-type cost 
functional  
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and the mixed state-control constraints
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where the functions ji %$$ ,,0 are defined and 

continuously differentiable on an open set 
,I 2nRP � and the functions jiji GF ,,, &" are 

defined and continuous together with their partial 
derivatives with respect to x and u on an open 

set .I 1 rnRQ ��� The notation ),(),(),( Fddd %$
etc. stand for the numbers of these functions.
Moreover, we impose the following important  
Assumption RMC (on the regularity of mixed 
constraints). The mixed constraints (5)-(6) are 
regular in the following sense:  at any point 

Quxt (),,( satisfying relations 0)iF i* and 

0=jG ,j* the system of vectors 
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is positively--linearly independent, where 

}0=),,(:{=),,( uxtFiuxtI i is the set of active 
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indices of mixed inequality constraints at the 
given point.
Recall that a system consisting of two tuples of 

vectors mpp ,,1 � and kqq �,1 in the space rRI
is said to be positively-linearly independent if 
there does not exist a nontrivial tuple of 

multipliers km ++,, �� ,,,, 11 with all 0-iα
such that 

0.=jj
j

ii
i

qp +, �� �

The problem (1)-(6) will be called Problem A.
Obviously, each pair ))(),(( tutx under 
consideration must “lie” in the domain Q of the 
function ),,,( uxtf i.e.

].,[..))(),(,( 10 ttteaforQtutxt ((

We will need even a stronger condition. 
Definition. A pair of functions ))(),((=)( tutxtw
defined on an interval ],[ 10 ttt ( (with absolutely 

continuous )(tx and measurable essentially 
bounded )(tu ) will be called a process in
Problem A  if it satisfies (1)  and its graph 

}],[|))(),(,{(=)( 10 ttttutxtwG (

lies in the set Q with some “margin”, i.e.,
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10 tttaafor
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or equivalently, there exists a compact set Q��

such that �())(),(,( tutxt for a.a. ].,[ 10 ttt ( A

process in problem A is called admissible if it 
satisfies all the constraints of the problem.  
Definition. We will say that an admissible 
process  

],[)),(),((=)( 10
000 ttttutxtw (          (8)

provides the weak minimum if there exists an 
0>� such that for any admissible process 

)),(),((=)( tutxtw ],,[ 10 ttt ( satisfying the 

conditions  
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the following inequality holds: ).()( 0wJwJ -
(Notation )(* conveniently means ''for almost 
all''.)  

2.2. The local minimum principle 
in Problem A

Let a process (8) provide the weak minimum in 
Problem A.  To formulate optimality conditions, 
let us introduce a tuple of Lagrange multipliers 
corresponding to all the constraints and the cost 
of Problem A:  
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GdjFdi
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��

/+,
           (10)

where 1)(
)(10 I),,,(= �( $

$,,,, d
d R� with

iαi *- 0 (for short, we will simply write 0),-α
and )(

)(1 I),,(= %
%+++ d

d R(� are vectors, 
nRtt I],[: 10 !/ is a Lipschitz continuous 

function,

andFdiRtthi ),(,1,=,I],[: 10 ��!
),(,1,=,I],[: 10 GdjRttmj �!

are measurable bounded functions.  
Further, introduce the Pontryagin function (or 
pre-Hamiltonian)
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(here, f/ is the product of the row and column 
�n vectors), and the augmented Pontryagin 

function (or augmented pre-Hamiltonian)
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Also, introduce the endpoint Lagrange function
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Both these functions refer to the tuple (10).
The functions lHH ,,  will be used in formulation 
of optimality conditions.  
For the process (8) and tuple (10) with the 
specified properties, let us formulate the 
conditions of local minimum principle (or the 
stationarity conditions):
a) the nonnegativity conditions  

),(,1,=0,)(0, Fdithi �--,        (14)

b) the nontrivality condition  
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c) the complementary slackness conditions  
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d) the pointwise complementary slackness 
conditions  
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00 ttoneatutxtFth ii  

),(,1,= Fdi �   (17)

e) the adjoint equation 
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f) the transversality conditions  
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g) the stationarity condition of the extended 
Pontryagin function with respect to the control 

].,[..0=))(),(,( 10
00 ttoneatutxtH u

The main result of this section is the following
Theoremq1. If a process )),(),((=)( 000 tutxtw

],[ 10 ttt ( provides the weak minimum in 
Problem A and satisfies assumption RMC, then 
there exists a tuple of multipliers ),,,,( ji mh/+,
satisfying the specified above properties and 
such that conditions a) - g) of the local minimum 
principle hold true. 
The proofs can be found in the book [3]. This 
book also contains further results of that kind, 
namely: the first-order conditions for a strong
local minimum in the form of Pontryagin 
minimum principle. Moreover, along with 
regular mixed state-control constraints, the 
problem can also allow pure state constraints, 
and the time interval can be both fixed and 
variable.  

3. OPTIMAL CONTROL PROBLEM 
WITH VOLTERRA-TYPE INTEGRAL 
EQUATIONS ON A FIXED TIME 
INTERVAL

3.1. Statement of the problem (Problem B)
We consider the following control system of 
Volterra-type integral equations on a fixed time 
interval ],[ 10 tt :

,))(),(,,()(=)(
0

0 dssusxstfttxtx
t#�        (19) 
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where )( x is a continuous �n dimensional  and 
)( u a measurable essentially bounded �r

dimensional vector-function on ].,[ 10 tt Again, 

we call x the state variable and u the control
variable. We assume for simplicity that the 
function f is defined and twice continuously 
differentiable on an open set .I 2 rnRR ���
The problem is to minimize the Bolza-type cost 
functional (2) on the set of solutions of system 
(19) satisfying the Bolza-type constraints (3), (4)
and the mixed state-control constraints (5), (6),
where the functions ji %$$ ,,0 are defined and 

continuously differentiable on an open set 
,I 2nRP � and the functions jiji GF ,,,&" are 

defined and continuously differentiable on an 
open set .I 1 rnRQ ���
Again, we impose the assumption RMC (on the 
regularity of mixed constraints), given in Section
2.1. The problem (2)-(6), (19) will be called 
Problem B.
Note that the function f explicitly depends on 
two time variables, t and ,s the roles of which 
are essentially different. Conventionally, the 
variable s will be called inner, while t will be 
called outer, time variable, and one should 
carefully distinguish between them in further 
considerations. Among the four arguments of the 
function f and its derivatives, the first argument 
will always be the outer and the second one the 
inner time variable, no matter by which letters 
they will be denoted.  
Note also that the integral equation (19) is
equivalent to the following integro-differential 
equation:  

,))(),(,,(

))(),(,,(=
)(

0

dssusxstft

tutxttf
dt

tdx

tt#�

�
          (20)

 
where the last integral shows, in a sense, how 
``far'' we are from an ordinary differential 
equation. (Here tf means the partial derivative of 

the function ),,,( uxstf with respect to the first, 
outer time variable .t ) If f does not depend on 
the outer time ,t i.e., )),(),(,(= susxsff then 
this integral disappears, and Problem B  becomes 
a standard optimal control problem with the ODE 

)).(),(,(=
)( tutxtf

dt
tdx

Obviously, each pair ))(),(( tutx under 

consideration must ``lie'' in the domain R of the 
function ),,,,( uxstf i.e.

],,[),(..))(),(,,( 10 ttDsteforaRsusxst ((

where }.:),({=],[ 1010 ttststttD ))) Again, 
we will need even a stronger condition. 
Definition. A pair of functions ))(),((=)( tutxtw
defined on an interval ],[ 10 ttt ( (with continuous 

)(tx and measurable essentially bounded )(tu )
will be called a process in Problem B  if it 
satisfies (19) and its “extended graph”

}],[),(:))(),(,,{(=)( 10 ttDstsusxstwG (  

lies in the set R with some “margin'”, i.e.,

0>))),(),(,,(( constRsusxstdist .  
],,[),(.. 10 ttDstafora ( (21)

 
or equivalently, there exists a compact set 

R�� such that �())(),(,,( susxst for a.a. 

].,[),( 10 ttDst ( A process in problem B is called 

admissible if it satisfies all the constraints of the 
problem.  
The notion of a weak local minimum in Problem 
B is the same as that in Problem A.

3.2. The local minimum principle in Problem B
Let a process 

],[)),(),((=)( 10
000 ttttutxtw (
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provide the weak minimum in Problem B. 
To formulate optimality conditions, let us 
introduce a tuple (10) of Lagrange multipliers 
corresponding to all the constraints and the cost 
of Problem B: 

),(,1,=),(,1,=
)),(),(),(,,(

GdjFdi
tmtht ji

��

/+,

where, as in Section 2.2,
1)(

)(10 I),,,(= �( $
$,,,, d

d R� with iαi *- 0 and 
)(

)(1 I),,(= %
%+++ d

d R(� are vectors, 
nRtt I],[: 10 !/ is a Lipschitz continuous 

function, (/ is a row �n vector),

andFdiRtthi ),(,1,=,I],[: 10 ��!

),(,1,=,I],[: 10 GdjRttmj �!

are measurable bounded functions. In what 
follows, all pointwise relations involving 
continuous functions hold for any ,t and those 
involving measurable functions hold for almost 
all .t
Further, introduce the modified Pontryagin 
function

�),,,()(=),,,( uxstftuxstH /  

000/ duxsft

t

t
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and the augmented (or extended) modified 
Pontryagin function

),,,(=),,,( uxstHuxstH                (23)
).,,()(),,()( uxsGtmuxsFth jj

j
ii

i
�� ��

Again, introduce the endpoint Lagrange function
(13). Both these functions refer to the tuple (10).
In Problem B, for the process (8) and tuple (10)
with the specified properties, let us formulate the 
conditions of local minimum principle (or the 

stationarity conditions): a') the nonnegativity 
conditions (14), b') the nontrivality condition 
(15), c') the complementary slackness conditions 
(16), d') the pointwise complementary slackness 
conditions (17), e') the adjoint equation 

)),(),(,,(=)( 00 tutxttHt x/��

f') the transversality conditions (18), g') the 
stationarity condition of the extended Pontryagin 
function with respect to the control 

].,[..0=))(),(,,( 10
00 ttoneatutxttH u

The main result of this section is the following 
Theorem 2. If a process )),(),((=)( 000 tutxtw

],[ 10 ttt ( provides the weak minimum in 
Problem B and satisfies assumption RMC, then 
there exists a tuple of multipliers ),,,,( ji mh/+,
satisfying the specified above properties and 
such that conditions a')--g') of the local minimum 
principle hold true.  
The proof of this theorem (for a more general 
problem, with pure state constraints) is given in 
[4].
In the next section we formulate an abstract 
Lagrange multiplies rule which can be used for 
the proofs of Theorems q1 and 2.

4. AN ABSTRACT LAGRANGE
MULTIPLIERS THEOREM

Let ,,YX and ,iZ 1,1,= �i be Banach spaces, 

XD � an open set, and ,ii ZK � 1,1,= �i
closed convex cones with nonempty interiors.

Let ,I:0 RDF ! ,: YDg ! and ii ZDf !: ,

,,1,= 1�i be given mappings. Consider the 
following optimization problem:

,)(,min)(0 ii KxfxF (!  
0.=)(,,1,= xgi 1� (24)
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Let }0,:{:= ***0
iiiiiii KforeveryzzzZzK (23( � be 

the polar cone to ,iK .,1,= 1�i Here 23 ii zz ,* is 

the duality pairing between iZ and its dual space 

.*
iZ We study the local minimality of an 

admissible point .0 Dx (
It is worth noting that the inequality constraints 

0,)( )xf i where RDfi I: ! are given 

functionals, may also be presented in the form 

ii Kxf ()( if we put ,0].(:=I= �4�RKi Then 

).[0,:=I=0 4�RKi

We impose the following
Assumptions.
1. The objective function 0F and the mappings 

if are Fréchet differentiable at ;0x the 

operator g is has a Frechet derivative in a 

neighborhood of 0x and this derivative is 

continuous at 0x (smoothness of the data 

functions),  
2. the image of the derivative )( 0xg� is closed 

in Y (weak regularity of equality constraint). 
The following theorem gives necessary 
conditions for a point Dx (0 to be a local 

minimizer for problem (24).
Theorem 3. Let 0x provide a local minimum in 
problem (24). Then there exist Lagrange 
multipliers

,,1,=,0, 0*
0 νiKzα ii �(- and ,** Yy (

satisfying the nontriviality condition

0,>**

1=
0 yzi

i
�� �

1

,               (25)

the complementary slackness conditions 

,,1,=0,=)(, 0
* 1�ixfz ii 23       (26)

and such that the Lagrange function 

23�23� � )(,)(,)(=)( **

1=
00 xgyxfzxFxL ii

i

1

,

is stationary at 0x : 0.=)(' 0xL i.e.,

0.=)(,)(,)( 0
*

0
*

1=
000 2�3�23� �� � xgyxfzxF ii

i

1

,    

(27)

This theorem is an efficient tool for a wide range 
of optimization problems with an infinite number 
of constraints. Its proof, based on the so-called 
Dubovitskii--Milyutin approach [1], can be 
found in [3,4,5].
In a particular case when ,I= nRY Assumption 2 

is valid automatically, and ),,(= 1
*

ny ++ � is an 

�n dim vector. 
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