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Abstract

The purpose of this research is to study a finite family of the set of solutions of
variational inequality problems and to prove a convergence theorem for the set of
such problems and the sets of fixed points of nonexpansive and strictly
pseudo-contractive mappings in a uniformly convex and 2-uniformly smooth Banach
space. We also prove a fixed point theorem for finite families of nonexpansive and
strictly pseudo-contractive mappings in the last section.
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1 Introduction

Let E and E* be a Banach space and the dual space of E, respectively, and let C be a
nonempty closed convex subset of E. Throughout this paper, we use ‘—’and ‘—’ to denote
strong and weak convergence, respectively. The duality mapping J : E — 2F" is defined by
J(x) = {x* € E*: (w,x") = ||x]|%, |lx]| = ||lx*||} for all x € E.

Definition 1.1 Let E be a Banach space. Then a function §y : [0,2] — [0,1] is said to be

the modulus of convexity of E if

. X+
0 =mf{1— HTyH CTESHITESH ISR TE e}.

If 5g(e) > 0 for all € € (0,2], then E is uniformly convex.

The function pg : R — R* is said to be the modulus of smoothness of E if

lloe+yll + e =yl

5 L:flxll =1, ||y||=t}, t>0.

PE(t) = SUP{

If lims¢ PET(f) = 0, then E is uniformly smooth. It is well known that every uniformly
smooth Banach space is smooth and if E is smooth, then J is single-valued which is de-
noted by j. A Banach space E is said to be g-uniformly smooth if there exists a fixed con-
stant ¢ > 0 such that pg(t) < ct?. If E is g-uniformly smooth, then g < 2 and E is uniformly
smooth.
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A mapping T : C — C is called nonexpansive if
7% = Tyl < llx = yll

forallx,y € C.

T is called n-strictly pseudo-contractive if there exists a constant 1 € (0,1) such that
, 2
(Tx = Ty, jx = 9)) < lle = yI* =0 | (1 = T)x = (I = Ty (LD

for every x,y € C and for some j(x — y) € J(x — y). It is clear that (1.1) is equivalent to the
following:

(I - T~ (I - T)y, jx - ) = | - T)x - (L - Ty (12)

for every x,y € C and for some j(x — y) € J(x — y). Let C and D be nonempty subsets of
a Banach space E such that C is nonempty closed convex and D C C, then a mapping
P:C — D is sunny (see [1]) provided P(x + t(x — P(x))) = P(x) for all x € C and t > 0,
whenever x + t(x — P(x)) € C. A mapping P: C — D is called a retraction if Px = x for all
x € D. Furthermore, P is a sunny nonexpansive retraction from C onto D if P is a retraction
from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retract of C (see [2]) if there exists a
sunny nonexpansive retraction from C onto D.

An operator A of C into E is said to be accretive if there exists j(x —y) € J(x — ) such that
(Ax — Ay, j(x —y)) >0, VxyeC.

A mapping A : C — E is said to be a-inverse strongly accretive if there exist j(x — y) €
J(x —y) and & > 0 such that

(Ax - Ay, j(x —y)) > a|Ax - Ay||*>, Vx,yeC.

A mapping A : C — E is called y-strongly accretive if there exist j(x — y) € J(x — y) and a
constant y > 0 such that

(Ax — Ay, j(x ~y)) = yllx — yII?
forallx,y € C.
In 2006, Aoyama et al. [3] studied the variational inequality problem in Banach spaces.
Such a problem is to find a point x* € C such that for some j(x — x*) € J(x — x*),
(Ax*,j(x* —x)) =0, VxeC. 13)
The set of solutions of (1.3) in Banach spaces is denoted by S(C, A), that is,

S(C,A):{ueC:(Au,](v—u))zO,VveC}. (1.4)

They introduced the strong convergence theorem involving the variational inequality
problem in Banach spaces as follows.
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Theorem 1.1 Let E be a uniformly convex and 2-uniformly smooth Banach space, and let
C be a nonempty closed convex subset of E. Let Q¢ be a sunny nonexpansive retraction from
E onto C, let « > 0, and let A be an a-inverse strongly accretive operator of C into E with
S(C,A) # 0. Suppose x1 = x € C and {x,} is given by

Xn+l = OpXy + (1 - an)QC(xn - )\nAxn)

foreveryn=1,2,...,where{\,} is a sequence of positive real numbers and {a,,} is a sequence
in [0,1]. If {A,,} and {a,,} are chosen so that A, € [a, I%]for some a > 0 and a, € [b,c] for
some b, c with 0 < b < ¢ <1, then {x,} converges weakly to some element z of S(C, A), where

K is the 2-uniformly smoothness constant of E.

Many authors have studied the variational inequality problem; see, for example, [4-8].
The variational inequality problem is an important tool for studying fixed point theory,
equilibrium problems, optimization problems and partial differential equations with ap-
plications principally drawn from mechanics; see, e.g, [9, 10].

Recently, Kangtunyakarn [11] introduced a new mapping in uniformly convex and
2-smooth Banach spaces to prove a strong convergence theorem for finding a common
element of the set of fixed points of finite families of nonexpansive and strictly pseudo-
contractive mappings and two sets of solutions of variational inequality problems as fol-

lows.

Theorem 1.2 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let Q¢ be a sunny nonexpansive retraction from E
onto C, and let A, B be a and B-inverse strongly accretive mappings of C into E, respec-
tively. Let {S;}Y, be a finite family of k;-strict pseudo-contractions of C into itself, and let
(T}, be a finite family of nonexpansive mappings of C into itself with F = ﬂﬁlF(Si) N
ﬂf\il F(T;)) N S(C,A) N S(C,B) # @ and « = min{k; : i = 1,2,...,N} with K* < «, where K
is the 2-uniformly smooth constant of E. Let o = (o/l,ajz,o/s) el x I x1I, wherel =[0,1],
o+ +ay=1,d] €(0,1], & € [0,1] and o, € (0,1) for all j =1,2,...,N. Let S* be the
SA-mapping generated by S1,Ss,...,Sn, T1, Ta, ..., Ty and ay, 0, ..., an. Let {x,} be the se-
quence generated by x, u € C and

Xn+l = Ol + ﬂnxn + yVlQC(I - aA)xn + SVIQC(I - bB)xn + nnSAxnr Vn >1, (15)

where {oty}, {Bn}s {Vn} {8} {nn} € [0,1] and o, + By + Y + 8, + 1y, = 1 and satisfy the following
conditions:
() limyooay =0, Y ooy oty = 00;
(i) {yu} {8u} {nu} € e, d] C (0,1) for some c,d > 0;
(i) D2y 1Bt = Buls Yoo 1Vns1 = Vals Dot 18061 = 8ls Do 1M1 = Ml Doy a1 — 0t <
oQ;

(iv) 0 <liminf,, B, <limsup,_, . B, <1

V) a€(0,%)andbe (0, %)
Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction
of C onto F.
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Foreveryi=1,2,...,N,letA;: C — H be a mapping. From (1.3), we introduce the com-
bination of variational inequality problems in Banach spaces as follows: to find a point
x* € C such that for some j(x — x*) € J(x — x*),

N
<Z aidix",j(x* - x)> >0 (L.6)
-1

for all x € C and 4; is a positive real number for all i = 1,2,..., N with Zﬁl a; = 1. The set
of solutions of (1.6) in Banach spaces is denoted by S(C, Zf\il a;A;), that is,

N N
S(C, ZaiAi) = {u eC: <ZaiAiu,](v— u)> >0,Vve c]. (1.7)
i=1 i=1

By using (1.6) we prove the convergence theorem for a finite family of the set of solutions
of variational inequality problems and two sets of fixed points of nonlinear mappings in a
Banach space.

2 Preliminaries

The following lemmas are important tools to prove our main results in the next section.

Lemma 2.1 (See [12]) Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

lloe + yI1* < ll%lI* + 2{y, ] (%)) + 2[|Ky||*
orany x,y € E.
y X,y

Lemma 2.2 (See [13]) Let X be a uniformly convex Banach space and B, = {x € X : ||x|| <
r}, v > 0. Then there exists a continuous, strictly increasing and convex function g : [0,00] —
[0, 0], g(0) = 0 such that

lax + By + yzl* < ellxl? + Byl + vlIzl* - aBg(llx - yl)
forallx,y,z€ B, and all «, B,y € [0,1] witha + 8 +y =1.

Remark 2.3 Foreveryi=1,2,...,N,ifx; € B,(0), from Lemma 2.2, we have || Zf\il aix||® <
SN aillxil|?, where a; € [0,1] and YN a; = 1.

Lemma 2.4 (See [3]) Let C be a nonempty closed convex subset of a smooth Banach
space E. Let Q¢ be a sunny nonexpansive retraction from E onto C, and let A be an ac-
cretive operator of C into E. Then, for all . > 0,

S(C,A) = F(Qc - AA)).

Lemma 2.5 (See [12]) Let r > 0. If E is uniformly convex, then there exists a continuous,
strictly increasing and convex function g : [0,00) — [0,00), g(0) = 0 such that for all x,y €
B,(0) = {x € E: |x|| < r} and for any a € [0,1], we have |lax + (1 — a)y||® < a|lx||® + (1 -
a)[lylI* — a1 - a)g(llx - yl).
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Lemma 2.6 (See [14]) Let C be a closed and convex subset of a real uniformly smooth
Banach space E, and let T : C — C be a nonexpansive mapping with a nonempty fixed
point F(T). If {x,} C C is a bounded sequence such that lim,,_, « ||x, — Tx,|| = O, then there
exists a unique sunny nonexpansive retraction Qgry: C — F(T) such that

limsup(sx — Qr(ryu,J (% — Qp(ryn)) < 0

n— 00

for any given u € C.

Lemma 2.7 (See [15]) Let {s,} be a sequence of nonnegative real numbers satisfying s,.1 <
(1—ap)sy + 8, Vi > 0, where {,} is a sequence in (0,1) and {8,} is a sequence such that
1) X2 an =00,
(2) limsup,, o 2 <0 0r 3 52, |8,] < oc.

Then lim,_, o s, = 0.

Lemma 2.8 [11] Let C be a closed convex subset of a strictly convex Banach space E. Let T1,
T and T3 be three nonexpansive mappings from C into itself with F(T1) N\F(T2) NF(T3) # 0.
Define a mapping S by

Sx=aTix+BTowx+yTsx, VxeC,

where «, B, y is a constant in (0,1) and o + 8 + y = 1. Then S is a nonexpansive mapping
and F(S) = F(Tl) N F(Tz) N F(Tg)

Lemma 2.9 Let C be a nonempty closed convex subset of a real smooth Banach space E.
For every i =1,2,...,N, let A; : C — E be an «a;-strongly accretive mapping with o =
min;_ o i} and ﬂf\il S(C,A;) #@. Then S(C, Zf\il a;A;) = ﬂf\il S(C, A;), where a; € [0,1]
and YN a;=1.

Proof 1t is easy to see that ﬂﬁl S(C,A;) € S(C, Zf\il aiA;). Let xy € S(C, Zﬁl a;A;) and
x* e ﬂf\il S(C,A;). Then there exist j(y — x*) € J(y — x*) and j(y — x0) € J(y — xo) such that

N
<Z a,'A,-xo,j(y —x0)> >0, Vy eC (2.1)
i=1
and
N
<ZaiA,-x*,j(y—x*)> >0, VyeC. (2.2)
i=1

From (2.1), (2.2) and x¢,x* € C, we have

N
<Z aiAixo,j(x* - x0)> >0 (2.3)

i=1

and

N
<Z uiAix*,j(xo - x*)> > 0. (2.4)
i=1
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From (2.3) and (2.4), we have

N N
0< <ZzziA,~xo - ZaiAix*,j(x* —x0)>
i=1 i=1

N N
_<Z aAix" — ZaiAixo,j(x* —xo)>
i=1 i=1
N
= Za,(Ax —Axo,]x —xo Zaal x* —x0||
i=1
N
==Y aale —m| - -zl .
i=1

It implies that x* = xy, that is, xo € ﬂf\il S(C,A;). Therefore S(C, Zﬁl a;A;) C ﬂf\il S(C,A)).
(I

3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let Qc be a sunny nonexpansive retraction from E
onto C. For every i =1,2,...,N, let A; : C — E be «;-strongly accretive and L;-Lipschitz
continuous with @ = min;_1 5,y ¢; and L = max;-12, nLi.Let T : C — C be a nonexpansive
mapping and S : C — C be an n-strictly pseudo-contractive mapping with K* < n, where K
is the 2-uniformly smooth constant of E. Assume that F = F(T) N F(S) N ﬂf\il S(C,A;) #0.
Let {x,} be a sequence generated by u, x; € C and

Zy = iy + (1= ¢,)Sxy,
Yn = bnxn + (1 - bn)sz (31)
Xn+l = Ol + ﬂnxn + ynQC(I - A Zi\il diAi)yn: Vn>1,

where a; € [0,1] foralli=1,2,...,N and {o,}, {Bn}, {vn} € [0,1] with oy, + B, + vn =1 for all
n € N satisfy the following conditions:
(i) limy—ooay =0and Y o0 ay = 00;

(i) 0<a < By VwCnby <b<1forsomea,b>0,VneNand Zf\ilai =1;

(iil) 0 <AK? < Z%;

(iv) ZZL letns1 — el ZZZ1 |Bn+1 = Bul, Z:il b1 = bl, Z:il [€ns1 = €ul < 00.
Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction
of C onto F.

Proof First, we show that Zl L @A is an L—-mverse strongly monotone mapping.
Let x,y € C, there exists j(x — y) € J(x — y) and

N N N
<Z aidix =y aiAy,jx - y)> Z ailAx — Ay, j(x - y))
i=1 i=1 i=1

z

Z aoi|lx - y))?
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>Zal 2||Alx Ayl

i=1

o

> = ZainAix—Alynz
i=1
% Zan ZaAly (3.2)

Next, we show that Qc(I — A ZZI a;A;) is a nonexpansive mapping. From (3.2), we have

2

N N
QC (1 - A ZaiAi)x - QC (1 - Z ﬂiAi>y
i=1 i=1

N N 2
<|x-y-2A <Z aiAix — ZaiAiy)
i=1 i=1
N N
<llx—yl* - 2k<z aidix =Y aiAy,jx —y)>

i=1 i=1

N 2

Z ai(Aix —Ay)

i=1

+2K2)?

9 o
Slx=yl"-22=

N N 2
Z aiAix - Z aiAiy
i=1 i=1

+2K2)\2 iai(Aix—Aiy) 2
i=1
= [l - yII?
—zx(— — K% ) v
<lx-yI?

forall x,y € C. Let x* € F, we have

[t =] =

N
ot (10— ") + Bru(%0 — %) + v (Qc (1 - ZaiAl)yn —x*)

i=1

< el =" + Bullon =27 + i |yu 27|
= oty ||t = x*|| + Bu|wn — || + v || on 3 — p) + (1= b)) (T2 — x*) |
< apllu—x*| + Buxn — x|
+ Vu(bulln = pll + (1= by) | 20 — x*||)
= ap st =& || + Bu % — %] + v (Bulln — p
+ (1= by)||cn(n —2%) + (1 = c,) (Sxu — %) |). (3.3)

Page 7 of 16
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Since S is a strictly pseudo-contractive mapping, we have

e (n = %) + (1= ) (S =) |* = |20 =& + (1= €,) (S = x) |

< = |* + 21 = )(Sx — %, (0 — %))
+ 2K (1 = ¢,)?|Sx — 21

= [ =" = 200 = €)(( = S)sj (0 — )
+ 2K (1= ¢,)*]| (T = S)xa |

< |l —a*|* =201 = e | (7 = S|
+2K%(1 - ¢,)2]| (I - ), ||

< oo —*|* = 20 = c)?n || (T = S |®
+2K%(1 - ¢,)?]| (I = S)xa |

< [&n—#*))* =200 = c)*(n - K2) | (I = S)au|*

< fn = (3.4)
From (3.3) and (3.4), we have

||xn+1 - ” =y, ”u_x* ” + Bu ”xn —x ” + Vn(bn”xn -pl
+ (1= by) | cn(on —2*) + (1= ) (S — x)||)

<o fu—x'] + A=ap) -]

< max{ -], o - 7]}
From induction we can conclude that {x,} is bounded and so are {y,}, {z,}
Next, we show that lim,,—,  [|%41 — %, || = 0.

For every n € N, we have

141 = 2|l =

N
ottt + By + vuQc (1 - ZﬂiAi)yn

i=1

N
= p1U = BurXn1 — Ya1Qc (1 —-A Z ﬂiAi>}’n—1

i=1
<oy = apalllull + Bullxy = xu-all + 1Bn — Bu-1lllxu-1ll

N N
QC (1 - A ZdiAi>yn - QC (1 - A Z ﬂz’Ai>yn1

i=1 i=1

N
Qc (1 —A Z tliAi))’nl

i=1

* Vn

+ | Vn = Va1l

< lan — apalllull + Bull%n = Xnall + 1Bn = Bu-rl%n- |

N
Qc (1 - A Z ﬂiAi)yn—l

i=1

+ Vn”yn —J’n—1|| + |yn - yn—l| . (3.5)
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From the definition of y,,, we have

19 = Yntll = | Butn + (L= b)) T2 = bp-1%n1 — (1 = bp-1) Tz |
< bullxy = xn-all + by = byl xn-all + 1 = D) [ T2 = Tzl
+1by = by || Tz |l
< bullxn — %1l + 160 = byl | + (1= D)l zn = zpa |l

+ by = by || Tz . (3.6)
From the definition of z,,, we have

20 = Zu-1ll = || enden + (1= €)S2n — Cpo1%n1 — (1 = Cpo1) S |
= | entn = %u-1) + (cn = o) Hno1 + (1 =€) (S — Sp1)
+ (no1 — €u) St |
< JlenCen = 2u1) + (1= ) (Sn = Sxu1) | + e — a1 |

+16n = Cna |15l 3.7)

Since S is an n-strictly pseudo-contractive mapping, we have

@ = 201) + (1= €2) (S35 — Sz 1) |
= [ = 21 = (1= ) (U = S) = U = S),1) [
< o6 = X 1> = 20 = ea)(( = S = (I = )Xo, (% — %01))
+ 2K (1= ¢,)2]| (I = ) — (I = S)tp ||
< 1% = %1 |12
=201~ e[ (I = )ty = (I = S)tpa |
+ 2K (1= ) | (I = )y — (I = ) ||
< 1% = % |1
—2(1=c)?(n = K2) | = S — (I = S)xa |
(3.8)

< o = 2 1.
From (3.6), (3.7) and (3.8), we have

170 = ynall < Bulln = Xnall + 1By = bual |-l + (L= D) |20 — Zua |
+ by = by || Tz ||
< bullxn = xnca |l + 16 = byt 1%t |+ 1= b) (|| €6 — %-1)
+ (1= €)(Sxn — Sxu) || + len — o l1%na |
+len = Cuat 1581 ll) + 165 = bt || Tz |

< bullxy — x|l + 16y — byl 1% |l
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+(1- bn)(”xn =%yl + len = cpall|%pa ]
+ |Cn - Cn—1|||an—1||) + |bn - bn—1| ” TZn—lH
< N%n = %1l + 16 = b [ %n-1 | + [en = cpoal 1 |l

+[¢n = cua [1Sxpr | + 1Dy — byl Tz . (3.9)
From (3.9) and (3.5), we have

%01 = Xnll < letn — tnalllzell + Bull%n = Xnosll + 18w = Bua |11

N
Qc (1 =3 diAi>}’n_1

i=1

+ VullYn = Yn1ll + [V = Yual

< (L= an)llxn = Xnall + 1By = Bual l®n-1ll + lon — na [l

N
Qc <1 -1y ﬂiAi)yn_l

i=1

+¥Yn = Yl

+ 16y = by llxua |l + len — camal 1201 |l
+ |Cn - Cn—1| ”an—1 ” + |bn - bn—1| ” Tzn—l ”
=< (1 _(xn)”xn _xn—IH + |ﬁn - /3}’1—1|M + |an - an—1|M

+ |V = V1M +2|b,, — by 1| M +2|c,, — cy1|M,

where M = maxen{llll, [ull, Qc( = A3, @iA)yall, 5%, 1, | Tz ll}. Applying Lem-

ma 2.7, conditions (i) and (iv), we have
lim ||x,41 — %, = 0. (3.10)
n— 00

Next, we show that

= lim ||x, — Tx,|| = lim |jx, — Sx,|| = 0.
n—0o0 n—0o0

N
nli)l’l(’)lo” QC (1 —A ZaiAl~>x,, —Xn

i=1

From the definition of x,,, we have
2

w2 =

N
(0= %) + Bu(%0 — %) + ¥ (Qc <1 - A ZﬂiAz)J’n —x*)

i=1

2

<anfu—a "+ Buan | +

N
Qc (1 -2y aiAi)yn -

i=1

N
- ﬁnyng1< Qc (1—xZaiAi>yn — %y )
i=1
< anflu ="+ Bullwn = 2”4 vy =57

N
_,Bn)/ng1< QC(I_AZﬂiAi>yn —Xn )

i=1
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= ()tnnu—x*||2 +/3,,||x,, —x* ||2 + yn”by,(xn —x*) + (l—bn)(Tzn —x*)”2

N
—ﬁnyng1< QC(I_)\Z“z'Az)yn — Xn )

i=1
<oy u—2"[* + s "
+ Vn(bn ”xn —-x* ”2 +(1- bn)”Zn —-x" ”2 -b,(1- bn)gZ(”xn - TZn”))

N
- ﬁn)’ng1< Qc (1— A Zﬂz’Az’>J’n —Xn )

i=1
< au=a"*+ s~

+ ¥u(bulln ="+ A=) (e =27

=21 = ¢)* (n = K?)1S% = %al|*) = bu(1 = bi)ga (110 — T2 )

N
Qc (1— XZ%‘I‘L‘)J’;« —Xn )

i=1
V|20 = | = 2001 = b) (A = €)% (n = K2) [1S%, — %1%

- ann(l - bn)gZ(”xn - Tzn”)
N
Qc (1 -y ﬂiAi>yn — % )
i=1
—2yu(1=b,)(1 - Cn)2 (77 _I<2) IS, _xn”2
— Yubn(1 - bn)g2(||xn - Tzn”)

N
- ﬁn)’ng1< Qc (1 -4 Zﬂz’Az)yn —%n

i=1
2Yu(1 = b)) (A = c0)* (1 = K*)[1S%0 = %0 l1* + Yubu(1 = b,) g2 (1% — Tzull)

N
Qc (1— )»ZdiAz)yn —Xn )

i=1
e L I e R e

- :3;1 Vngl <

A e R e

- ﬁn Vn&1 (

w2 w12
< ol =" |7+ oen - 7]

It implies that

+ Bu¥Yn&l <

e e R (e R R | LA

)

= lim g (llx, — Tzall) = 0. (3.11)

From (3.10), conditions (i) and (ii), we have

i=1

N
Qc (1 - A ZﬂiAi)yn — Xy

lim ||Sx, —x,| = lim gl(
n—00 n—oo

Page 11 of 16
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From the properties of g; and g;, we have

lim

n—00

= lim ||x, — Tz,|| = 0. (3.12)
n—00

N
Qc <I -1 ZaiAi)yn —

i=1

From (3.11) and the definition of z,, we have
lim ||z, —,] = 0. (3.13)
n— o0
From (3.12) and the definition of y,,, we have
lim ||y, — x| = 0. (3.14)
From (3.13) and (3.14), we have
lim ||y, —z,| = 0. (3.15)
n—0oQ

From (3.12) and (3.14), we have

lim =0. (3.16)

N
Qc <I - X Zm&)yn ~ Y

i=1

Then

=

N
Qc (1 -4 ZaiAi)xn = Xn

i=1

N N
Q¢ (1 —A ZaiAi)x,, -Qc (1 - ZdiAi)yn

i=1 i=1

N
Qc <I -2 Zm&)yn — %y

i=1

+

=< ||9C,, _yn” +
i=1

N
Qc (1 -2 ZdiAi)yn — -

From (3.12) and (3.14), we have

lim
n—00

=0. (3.17)

N
Qc (1 - A Z fliAi)xn — Xy

i=1

Since

1 Toxn = %ull < 1T — T2ull + [ T2 — %l

< on = zull + 11720 — xull,
from (3.12) and (3.13), we have

lim ||Tx, —x,| = 0. (3.18)
n— 00
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Define the mapping G: C — C by Gx = aQc(l — 1 Zf\il aiA)x + BTx + y Wx, where Wx =
ex+(1-¢)Sx forallx € C and o, B, y,c € [0,1] with « + 8 + = 1. We show that W is a
nonexpansive mapping. Let x,y € C, we have

W= Wyl? = [etx—3) + (1 - )(Sx - Sy)|*
= |x-y-(1-0)(I-Sx-(I-9))

< llx=ylI* =20 - ) = S)x = (I - Sy, j(x —y))
+ 2K (1 - )| (I - S)x— (I - Sy’

I

< lx=yI* —20 - | - S)yx— (- Sy

+ 2K (1 - )| (I - S)x - (I - S)y|”
< =1 =20~ 0)*(n - K2) || (I - )z — (I - Sy *
< k-l

Then W is a nonexpansive mapping. It is easy to see that the mapping G is nonexpansive.
From the definition of W, we have

E(S) = E(W). (3.19)

From (3.19) Lemmas 2.8, 2.9 and the definition of G, we have F(G) = F(T) N F(S) N
MY, S(C,A;) = F. Since

G —2nll < + Bl Tow = xul + ¥ | Wit — x|

N
Q¢ (1 -\ Za,A,)x,, — X,

i=1

=a + Bl T = xall + ¥ (1= OIS — Xl

N
Q¢ (1 -\ ZaiA,)xn — X,

i=1

and (3.11), (3.17) and (3.18), we have
lim ||Gx, —x,]|| = 0. (3.20)
n— o0

From Lemma 2.6, we have

lim sup(u — 20, j(%, — zo)) <0, (3.21)

n—0o0

where zg = Qru.
Finally, we show that the sequence {x,} converges strongly to zo = Qru. From the defi-

nition of x,,, we have

2

2
”xn+1 - ZO” =

N
(e = 20) + Bu(¥n — 20) + Vn (Qc <1 - Z“z‘Al)yn - ZO)

i=1
2

=

N
B = 20) + Vi (Qc (I =3 ﬂiAi>yn - ZO)

i=1

Page 13 0of 16
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+ 20{,,(u —20,j(Xps1 — Zo)>

< (1 —ay)llx,—zol* + 201,,(14 —20,j (%41 — zo)>.

From Lemma 2.7 and condition (i), we can conclude that the sequence {x,} converges
strongly to zyp = Qru. This completes the proof. 0

The following corollary is a direct sequel of Theorem 3.1. Therefore, we omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let Q¢ be a sunny nonexpansive retraction from E
onto C. Let A : C — E be a-strongly accretive and L-Lipschitz continuous. Let T : C — C
be a nonexpansive mapping and S : C — C be an n-strictly pseudo-contractive map-
ping with K* < n, where K is the 2-uniformly smooth constant of E. Assume that F =
F(T)NF(S)NS(C,A) #D. Let {x,} be the sequence generated by u,x, € C and

Zy = Xy + (1 — ¢,)Sx,,
Yn = bnxn + (1 - bn) sz
Xns1 = pth + By + YnQc(l = AA)y,, Vn>1,

where {a,},{Bu}, {yn} € [0,1] with o, + By + yu = 1 for all n € N satisfy the following condi-
tions:
(i) limy ooy =0andy o) o, = 00;

(i) O<a < Bu Y Cnby <b<1,forsomea,b>0,VneN;

(iii) 0 <AK* < 73

(iv) 221 |etye1 — Quls ZZZ1 |Bns1 = Buls Z;ﬁl [Dys1 = bul, Z;ﬁl [Cns1 = €nl < 00.
Then {x,} converges strongly to zo = Qru, where Qr is the sunny nonexpansive retraction
of C onto F.

4 Applications
Using the concepts of the S*-mapping and Theorem 3.1, we prove the strong convergence
theorem for the set of fixed points of two finite families of nonlinear mappings. We need

the following definition and lemma to prove our result.

Definition 4.1 [11] Let C be a nonempty convex subset of a real Banach space. Let {Si}f\i 1
and {T;}¥, be two finite families of the mappings of C into itself. For each j = 1,2,...,N,
let o = (o}, o), o) € I x I x I, where I € [0,1] and o4 + o), + o = 1. Define the mapping

S§4: C — C as follows:

Uy=T =1,
Uy = Ty (o SiUo + oy Uy + a31),
Us = To (Sl + e U + a31),

Ug = Tg(OlIBS:),Uz + OlSUZ + ag ),
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N-1 N-1 N-1
Un-1 = T (o 7 Syoaln=s + b Uy + g '),

SA = UN = TN(Ol{VSNUN_l + OléVUN_l + Olévl)

This mapping is called the SA—mapping generated by S1,S,,...,Sy, T1,Ta,..., Tn and

O1,0,...,0N.

Lemma 4.1 [11] Let C be a nonempty closed convex subset of a 2-uniformly smooth
and uniformly convex Banach space. Let {S;}Y, be a finite family of k;-strict pseudo-
contractions of C into itself, and let {T;}\, be a finite family of nonexpansive mappings
of C into itself with ﬂfilF(Si) ol ﬂfil F(T)) #% and k =min{k; :i=1,2,...,N} with K* <«,
where K is the 2-uniformly smooth constant of E. Let o = (a{,aé,o/) €l x I x I, where
1=[0,1], d,+d +d, =1, o] €(0,1], &, € [0,1] and &, € (0,1) for all j =1,2,...,N. Let
SA be the SA-mapping generated by S1,Ss,...,Sxn, T1, Ts,..., T and o1,y,...,ay. Then
E(s*) = NN, ES) N OY, E(T;) and S* is a nonexpansive mapping.

Theorem 4.2 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let Qc be a sunny nonexpansive retraction from E
onto C. For every i =1,2,...,N, let A; : C — E be a;-strongly accretive and L;-Lipschitz
continuous with o = min;_1 5 N o; and L= max;_1, ~Li. Let S: C — C be an n-strictly
pseudo-contractive mapping with K* < n, where K is the 2-uniformly smooth constant of E.
Let {S;}¥, be a finite family of k;-strict pseudo-contractions of C into itself, and let {T;}Y,
be a finite family of nonexpansive mappings of C into itself with k = min{k;:i=1,2,...,N}
with K* < k. Let o = (o/i,ozé,aé) €l x1x1,wherel=][0,1], a{ + 0/2 + ozé =1, oe{ € (0,1],
o € [0,1] and o € (0,1) for all j =1,2,...,N. Let S* be the SA-mapping generated by
81,82, --,8ny T, Toy..., Tn and ay, ..., an. Assume that F = F(S) N (Y, S(C,4;) N
ﬂf\il F(S;) N ﬂf\il F(T;) # 0. Let {x,} be the sequence generated by u,x, € C and

Zy = Xy + (1 = ¢,)Sx,,
Vi = bux, + (1= b,)S%2,, (4.1)
X1 = Cth + By + Qe =AY N @A)y, Vn>1,

where a; € [0,1] foralli=1,2,...,N and {o,}, {Bn}, {yn} € [0,1] with oy, + B, + yn = 1 for all
n € N and satisfy the following conditions:
(i) limy—ooay =0andy 2 ay = 00;

(i) 0<a < By, Y€ by <b <1 for somea,b>0,YneN and Zf\ilai =1

(iif) 0 <AK? < 5;

(iv) 23; |Qtys1 — s Ziozl |Brs1 = Bul, ZZZI [Dys1 = bul, ZZZI [Cni1 — Cul < 00.
Then {x,} converges strongly to zo = Qru, where Q r is the sunny nonexpansive retraction
of C onto F.

Proof From Lemma 4.1 and Theorem 3.1, we can reach the desired conclusion. O
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