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1.Introduction
Fixed point theory as an important branch of nonlinear analysis theory has been

applied in the study of nonlinear phenomena. During the four decades, many famous

existence theorems of fixed points were established; see, for example, [1-5]. However,

from the standpoint of real world applications it is not only to know the existence of

fixed points of nonlinear mappings, but also to be able to construct an iterative process

to approximate their fixed points. The computation of fixed points is important in the

study of many real world problems, including inverse problems; for instance, it is not

hard to show that the split feasibility problem and the convex feasibility problem in

signal processing and image reconstruction can both be formulated as a problem of

finding fixed points of certain operators, respectively (see [6,7] for more details and the

references therein).

Recently, the study of the convergence of various iterative processes for solving var-

ious nonlinear mathematical models forms the major part of numerical mathematics.

Among these iterative processes, Krasnoselski-Mann iterative process and Halpern

iterative process are popular and hot. Let C be a nonempty, closed, and convex subset

of a underlying space X, and T : C ® C a mapping. Halpern iterative process generates

a sequence {xn} in the following manner:

x0 ∈ C, xn+1 = αnu + (1 − αn)Txn, ∀n ≥ 0, (1:1)
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where x0 is an initial and u is a fixed element in C. Krasnoselski-Mann iterative pro-

cess generates a sequence {xn} in the following manner:

x0 ∈ C, xn+1 = αnTxn + (1 − αn)xn, ∀n ≥ 0, (1:2)

It is known that Algorithm (1.2) only has weak convergence even for nonexpansive

mappings in infinite-dimensional Hilbert spaces (see [8] for more details and the refer-

ence therein). In many disciplines, including economics [9], image recovery [10], quan-

tum physics [11], and control theory [12], problems arises in infinite dimension spaces.

In such problems, strong convergence (norm convergence) is often much more desir-

able than weak convergence, for it translates the physically tangible property that the

energy ∥xn - x∥ of the error between the iterate xn and the solution x eventually

becomes arbitrarily small. The important of strong convergence is also underlined in

[13], where a convex function f is minimized via the proximal-point algorithm: it is

shown that the rate of convergence of the value sequence {f(xn)} is better when {xn}

converges strongly that it converges weakly. Such properties have a direct impact when

the process is executed directly in the underlying infinite dimensional space. To

improve the weak convergence of Krasnoselski-Mann iterative process, so called hybrid

projections have been considered (see [14-25] for more details and the references

therein).

Algorithm (1.1) was initially introduced in [26]; for more details see the references

therein. In [26], Halpern showed that the following conditions

(C1) limn®∞, an = 0;

(C2)
∑∞

n=0 αn = ∞,

are necessary in the sense that if Algorithm (1.1) is strongly convergent for all none-

mpty, closed, and convex subsets of a Hilbert space H and all nonexpansive mappings

on C, then the sequence {xn} must satisfy conditions (C1), and (C2). Due to the restric-

tion of (C2), Algorithm (1.1) is widely believed to have slow convergence though the

rate of convergence has not be determined. Thus to improve the rate of convergence

of algorithm (1.1), one can not rely only on the process itself; instead, some additional

step of iteration should be taken; see [27-30] and the references therein. One of the

purposes of this article is to show algorithm (1.1) is strong convergence under (C1)

only with the help of projections.

The purposes of this article is to study Algorithms (1.1) and (1.2) with the help of

additional metric projections for the new mapping. The organization of this article is

as follows. In Section 2, we provide some necessary preliminaries. In Section 3, Algo-

rithms (1.1) and (1.2) are studied with the help of projections. Two main strong con-

vergence theorems are established in a reflexive, strictly convex, and smooth Banach

space such that both E and E* have Kadec-Klee property. In Section 4, applications of

the main results are provided.

2.Preliminaries
Let H be a real Hilbert space, C a nonempty subset of H, and T : C ® C a mapping.

The symbol F(T) stands for the fixed point set of T. Recall the following. T is said to

be nonexpansive if
∥∥Tx − Ty

∥∥ ≤ ∥∥x − y
∥∥ , ∀x, y ∈ C.
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T is said to be quasi-nonexpansive if F(T) �= ∅, and
∥∥p − Ty

∥∥ ≤ ∥∥p − y
∥∥ , ∀p ∈ F(T), y ∈ C.

T is said to be asymptotically nonexpansive if there exists a sequence {μn} ⊂ [0, ∞)

with μn ® 0 as n®∞ such that
∥∥Tnx − Tny

∥∥ ≤ (1 + μn)
∥∥x − y

∥∥ , ∀x, y ∈ C, n ≥ 1.

It is easy to see that a nonexpansive mapping is an asymptotically nonexpansive

mapping with the sequence {1}. The class of asymptotically nonexpansive mappings

was introduced by Goebel and Kirk [2]. Since 1972, a host of authors have studied the

convergence of iterative algorithms for such a class of mappings.

T is said to be asymptotically quasi-nonexpansive if F(T) �= ∅, and there exists a

sequence {μn} ⊂ [0, ∞) with μn ® 0 as n®∞ such that
∥∥p − Tny

∥∥ ≤ (1 + μn)
∥∥p − y

∥∥ , ∀p ∈ F(T), y ∈ C, n ≥ 1.

It is easy to see that a quasi-nonexpansive mapping is an asymptotically quasi-nonex-

pansive mapping with the sequence {1}.

T is said to be generalized asymptotically nonexpansive if there exist two nonnegative

sequences {μn} ⊂ [0, ∞) with μn ® 0, and {ξn} ⊂ [0, ∞) with ξn ® 0 as n®∞ such that
∥∥Tnx − Tny

∥∥ ≤ (1 + μn)
∥∥x − y

∥∥ + ξn, ∀x, y ∈ C, n ≥ 1.

T is said to be generalized asymptotically quasi-nonexpansive if F(T) �= ∅, and there

exist two nonnegative sequences {μn} ⊂ [0, ∞) with μn ® 0, and {ξn} ⊂ [0,∞) with ξn
® 0 as n®∞ such that

∥∥Tnx − y
∥∥ ≤ (1 + μn)

∥∥x − y
∥∥ + ξn, ∀x ∈ C, y ∈ F(T), n ≥ 1.

The class of generalized asymptotically (quasi)-nonexpansive has been considered by

Shahzad and Zegeye [31] (see also Agarwal et al. [32]). It is easy to see that the class

of generalized asymptotically (quasi)-nonexpansive include the class of asymptotically

(quasi)-nonexpansive as a special case.

In what follows, we always assume that E is a Banach space with the dual space E*.

Let C be a nonempty, closed, and convex subset of E. We use the symbol J to stand

for the normalized duality mapping from E to 2E
∗ defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖2 =

∥∥f ∗∥∥2} , ∀x ∈ E,

where 〈⋅, ⋅〉 denotes the generalized duality pairing of elements between E, and E*. It

is well known that if E* is strictly convex, then J is single valued; if E* is reflexive, and

smooth, then J is single valued, and demicontinuous (see [33] for more details and the

references therein).

It is also well known that if D is a nonempty, closed, and convex subset of a Hilbert

space H, and PC : H ® D is the metric projection from H onto D, then PD is nonex-

pansive. This fact actually characterizes Hilbert spaces and consequently, it is not avail-

able in more general Banach spaces. In this connection, Alber [34] introduced a

generalized projection operator in Banach spaces which is an analogue of the metric

projection in Hilbert spaces.
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Let UE = {x Î E : ∥x∥ = 1} be the unit sphere of E. E is said to be strictly convex if∥∥ x+y
2

∥∥ < 1 for all x, y Î UE with x ≠ y. It is said to be uniformly convex if for any � Î

(0, 2] there exists δ > 0 such that for any x, y Î UE,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥x + y
2

∥∥∥ ≤ 1 − δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. E

is said to be smooth provided lim
t→0

‖x+ty‖−‖x‖
t exists for all x, y Î UE. It is also said to be

uniformly smooth if the limit is attained uniformly for all x, y Î UE.

E is said to enjoy Kadec-Klee property if for any sequence {xn} ⊂ E, and x Î E with

xn ⇀ x, and ║xn║ ® ║x║, then ║xn - x║ ® 0 as n®∞. For more details on Kadec-Klee

property, the readers can refer to [35] and the references therein. It is well known that

if E is a uniformly convex Banach spaces, then E enjoys Kadec-Klee property.

Let E be a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖2 − 2
〈
x, Jy

〉
+

∥∥y∥∥2, ∀x, y ∈ E. (2:1)

Notice that, in a Hilbert space H, (2.1) is reduced to j(x, y) = ║x-y║2 for all x,y Î H.

The generalized projection ΠC : E ® C is a mapping that assigns to an arbitrary point

x Î E, the minimum point of the functional j(x, y); that is, �Cx = x̄, where x̄ is the

solution to the following minimization problem:

φ(x̄, x) = min
y∈C

φ(y, x).

The existence, and uniqueness of the operator ΠC follow from the properties of the

functional j(x, y), and the strict monotonicity of the mapping J (see, for example,

[33,36]). In Hilbert spaces, ΠC = PC. It is obvious from the definition of the function j
that

(∥∥y∥∥ − ‖x‖)2 ≤ φ(y, x) ≤ (∥∥y∥∥ + ‖x‖)2, ∀x, y ∈ E, (2:2)

and

φ(x, y) = φ(x, z) + φ(z, y) + 2
〈
x − z, Jz − Jy

〉
, ∀x, y, z ∈ E. (2:3)

Remark 2.1. If E is a reflexive, strictly convex, and smooth Banach space, then, for

all x,y Î E, j(x,y) = 0 if and only if x = y. It is sufficient to show that if j(x, y) = 0,

then x = y. From (2.2), we have ║x║ = ║y║. This implies that 〈x, Jy〉 = ║x║2 = ║Jy║2.

From the definition of J, we see that Jx = Jy. It follows that x = y; see [33,36] for more

details.

Next, we recall the following.

(1) A point p in C is said to be an asymptotic fixed point of T [37] if C contains a

sequence {xn} which converges weakly to p such that limn®∞ ║xn - Txn║ = 0. The set

of asymptotic fixed points of T will be denoted by F̃(T).

(2) T is said to be relatively nonexpansive if

F̃(T) = F(T) �= ∅, and φ(p,Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T).
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(3) T is said to be relatively asymptotically nonexpansive if

F̃(T) = F(T) �= ∅, and φ(p,Tnx) ≤ (1 + μn)φ(p, x), ∀x ∈ C, p ∈ F(T), n ≥ 1,

where {μn} ⊂ [0, ∞) is a sequence such that μn ® 0 as n®∞.

Remark 2.2. The class of relatively asymptotically nonexpansive mappings was first

considered in Su and Qin [38] (see also, Agarwal et al. [39], and Qin et al. [40]).

(4) T is said to be quasi-j-nonexpansive if

F(T) �= ∅, and φ(p,Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T).

(5) T is said to be asymptotically quasi-j-nonexpansive if there exists a sequence {μn}

⊂ [0, ∞) with μn ® 0 as n®∞ such that

F(T) �= ∅, and φ(p,Tnx) ≤ (1 + μn)φ(p, x), ∀x ∈ C, p ∈ F(T), n ≥ 1.

Remark 2.3. The class of quasi-j-nonexpansive mappings and the class of asympto-

tically quasi-j-nonexpansive mappings were first considered in Zhou et al. [24] (see

also Qin and Agarwal [18], Qin et al. [20], Qin et al. [21], Qin et al. [41]).

Remark 2.4. The class of quasi-j-nonexpansive mappings and the class of asympto-

tically quasi-j-nonexpansive mappings are more general than the class of relatively

nonex-pansive mappings and the class of relatively asymptotically nonexpansive map-

pings. Quasi-j-nonexpansive mappings and asymptotically quasi-j-nonexpansive do

not require F(T) = F̃(T).

Remark 2.5. The class of quasi-j-nonexpansive mappings and the class of asympto-

tically quasi-j-nonexpansive mappings are generalizations of the class of quasi-nonex-

pansive mappings and the class of asymptotically quasi-nonexpansive mappings in

Banach spaces.

In this article, we introduce and consider the following new nonlinear mapping: gen-

eralized asymptotically quasi-j-nonexpansive mappings.

(6) T is said to be an generalized asymptotically quasi-j-nonexpansive mapping if

F(T) �= ∅, and there exist two nonnegative sequences {μn} ⊂ [0, ∞) with μn ® 0, and

{ξn} ⊂ [0, ∞) with ξn ® 0 as n®∞ such that

φ(p,Tnx) ≤ (1 + μn)φ(p, x) + ξn, ∀x ∈ C, p ∈ F(T), n ≥ 1.

Remark 2.6. The class of generalized asymptotically quasi-j-nonexpansive mappings

is a generalization of the class of generalized asymptotically quasi-nonexpansive map-

pings in the framework of Banach spaces.

(7) T is said to be asymptotically regular on C if, for any bounded subset K of C,

lim
n→∞ sup

x∈K

{∥∥Tn+1x − Tnx
∥∥}

= 0.

In order to prove our main results, we also need the following lemmas:

Lemma 2.1. [34]Let C be a nonempty, closed, and convex subset of a smooth Banach

space E, and x Î E. Then x0 = ΠCx if and only if
〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C.
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Lemma 2.2. [34]Let E be a reflexive, strictly, convex, and smooth Banach space, C a

nonempty, closed, and convex subset of E, and x Î E. Then

φ
(
y,�Cx

)
+ φ (�Cx, x) ≤ φ(y, x), ∀y ∈ C.

3.Main results
Theorem 3.1. Let E be a reflexive, strictly convex, and smooth Banach space such that

both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex sub-

set of E. Let Δ be an index set, and Ti : C ® C a closed, asymptotically regular, and

generalized asymptotically quasi-j-nonexpansive mapping with the sequences {μn,i}, and

{ξn,i}, for every i Î Δ. Assume that ⋂iÎΔ F(Ti) is nonempty, and bounded. Let {xn} be a

sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,
yn,i = J−1

(
αn,iJ

(
Tn
i xn

)
+ (1 − αn,i)Jxn

)
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ(u, yn,i) ≤ φ(u, xn) + μn,iMn + ξn,i

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = �Cn+1x0, ∀n ≥ 1,

( < ?show½CSFchar ¼ )

where Mn = sup{j(z, xn) : z Î ⋂iÎΔ F(Ti)}, and {an,i} are sequences in (0,1] such that

lim infn®∞ an,i > 0. Then {xn} converges strongly to �∩i∈�F(Ti)x0, where �∩i∈�F(Ti)stands

for the generalized projection from E onto ⋂iÎΔ F(Ti).

Proof. The proof is split into seven steps.

Step 1. Show, for every iÎΔ, that F(Ti) is closed, and convex. This proves that
�∩i∈�F(Ti)x0 is well defined, for every x0 Î E. On the closedness of ⋂iÎΔ F(Ti), we can

easily conclude from the closedness of Ti the desired conclusion. We only prove that

⋂iÎΔ F(Ti) is convex. Let p1,i,p2,i Î F(Ti), and pi = tip 1,i + (1 - ti)p2,i, where ti Î (0,1),

for every i Î Δ. We see that pi = Tipi. Indeed, we see from the definition of Ti that

φ
(
p1,i,Tn

i pi
) ≤ (1 + μn,i)φ(p1,i, pi) + ξn,i, (3:1)

and

φ
(
p2,i,Tn

i pi
) ≤ (1 + μn,i)φ(p2,i, pi) + ξn,i. (3:2)

In view of (2.3), we obtain that

φ
(
p1,i,Tn

i pi
)
= φ

(
p1,i,pi

)
+ φ

(
pi,Tn

i pi
)
+ 2

〈
p1,i − pi, Jpi − JTn

i pi
〉
, (3:3)

and

φ
(
p2,i,T

n
i pi

)
= φ

(
p2,i, pi

)
+ φ

(
pi,Tn

i pi
)
+ 2

〈
p2,i − pi, Jpi − JTn

i pi
〉
. (3:4)

It follows from (3.1), (3.2), (3.3), and (3.4) that

φ
(
pi,Tn

i pi
) ≤ 2

〈
pi − p1,i, Jpi − J

(
Tn
i pi

)〉
+ μn,iφ(p1,i, pi) + ξn,i, (3:5)

and

φ
(
pi,Tn

i pi
) ≤ 2

〈
pi − p2,i, Jpi − J

(
Tn
i pi

)〉
+ μn,iφ(p2,i, pi) + ξn,i. (3:6)
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Multiplying ti and (1 - ti) on the both sides of (3.5) and (3.6), respectively yields that

φ
(
pi,Tn

i pi
) ≤ tiμn,iφ(p1,i, pi) + (1 − ti)μn,iφ(p2,i, pi) + ξn,i.

It follows that

lim
n→∞ φ

(
pi,Tn

i pi
)
= 0.

In light of (2.2), we arrive at

lim
n→∞

∥∥Tn
i pi

∥∥ =
∥∥pi∥∥ . (3:7)

It follows that

lim
n→∞

∥∥J (Tn
i pi

)∥∥ =
∥∥Jpi∥∥ . (3:8)

Since E* is reflexive, we may, without loss of generality, assume that

J
(
Tn
i pi

)
⇀ e∗,i ∈ E∗. In view of the reflexivity of E, we have J(E) = E*. This shows that

there exists an element ei Î E such that Jei = e*,i. It follows that

φ
(
piTn

i pi
)
=

∥∥pi∥∥2 − 2
〈
pi, J

(
Tn
i pi

)〉
+

∥∥Tn
i pi

∥∥2
=

∥∥pi∥∥2 − 2
〈
pi, J

(
Tn
i pi

)〉
+

∥∥J (Tn
i pi

)∥∥2.
Taking lim infn®∞ on the both sides of the equality above, we obtain that

0 ≥ ∥∥pi∥∥2 − 2
〈
pi, e∗,i

〉
+

∥∥e∗,i∥∥2

=
∥∥pi∥∥2 − 2

〈
pi, Jei

〉
+

∥∥Jei∥∥2

=
∥∥pi∥∥2 − 2

〈
pi, Jei

〉
+

∥∥ei∥∥2
= φ(pi, ei).

This implies that pi = ei, that is, Jpi = e*,i. It follows that J
(
Tn
i pi

)
⇀ Jpi ∈ E∗. In view

of Kadec-Klee property of E*, we obtain from (3.8) that

lim
n→∞

∥∥J (Tn
i pi

) − Jpi
∥∥ = 0.

Since J-1 : E* ® E is demicontinuous, we see that Tn
i pi ⇀ pi. By virtue of Kadec-Klee

property of E, we see from (3.7) that Tn
i pi → pi as n®∞. Hence

TiT
n
i pi = Tn+1

i pi → pi,

as n®∞. In view of the closedness of Ti, we can obtain that pi Î F(Ti), for every i Î
Δ. This shows, for every i Î Δ, that F(Ti) is convex. This proves that ⋂iÎΔ F(Ti) is con-

vex. This completes the proof of Step 1.

Step 2. Show that Cn is closed, and convex for all n ≥ 1. It suffices to show, for any

fixed but arbitrary i Î Δ, that Cn,i is closed, and convex, for every n ≥ 1. This can be

proved by induction on n. It is obvious that C1,i = C is closed, and convex. Assume

that Ch,i is closed, and convex for some h ≥ 1. We next prove that Ch+1,i is closed, and

convex for the same h. This completes the proof that Cn is closed, and convex. The

closedness of Ch+1,i is clear. We only prove the convexness. Indeed, ∀a, b Î Ch+1,i, we

see that a,b Î Ch,i, and
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φ
(
a, yh,i

) ≤ φ(a, xh) + μh,iMh + ξh,i, (3:9)

and

φ
(
b, yh,i

) ≤ φ(b, xh) + μh,iMh + ξh,i. (3:10)

Notice that (3.9), and (3.10) are equivalent to the following inequalities, respectively.

2
〈
a, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + μh,iMh + ξh,i,

and

2
〈
b, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + μh,iMh + ξh,i.

These imply that

2
〈
ta + (1 − t)b, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + μh,iMh + ξh,i, ∀t ∈ (0, 1). (3:11)

Since Ch,i is convex, we see that ta + (1 - t)b Î Ch,i. Notice that (3.11) is equivalent

to

φ
(
ta + (1 − t)b, yh,i

) ≤ φ(ta + (1 − t)b, xh) + μh,iMh + ξh,i.

This proves that Ch+1,i is convex. This completes the proof of Step 2.

Step 3. Show that ⋂iÎΔ F(Ti) ⊂ Cn, for every n ≥ 1. It suffices to claim that ⋂iÎΔ F(Ti)

⊂ Cn,i, for every n ≥ 1, and for every i ≥ Δ. Note that ⋂iÎΔ F(Ti) ⊂ C1,i = C. Suppose

that ⋂iÎΔ F(Ti) ⊂ Ch,i for some h, and for every i Î Δ. Then, for all w Î ⋂iÎΔ F(Ti) ⊂
Ch,i, we have

φ(w, yh,i)

= φ
(
w, J−1

(
αh,iJ

(
Th
i xh

)
+ (1 − αh,i)Jxh

))

= ‖w‖2 − 2
〈
w,αh,iJ

(
Th
i xh

)
+ (1 − αh,i)Jxh

〉

+
∥∥∥αh,iJ

(
Th
i xh

)
+ (1 − αh,i)Jxh

∥∥∥2

≤ ‖w‖2 − 2αh,i

〈
w, J

(
Th
i xh

)〉
− 2(1 − αh,i) 〈w, Jxh〉 + αh,i

∥∥∥Th
i xh

∥∥∥2
+(1 − αh,i)‖xh‖2

= αh,iφ
(
w,Th

i xh
)
+ (1 − αh,i)φ(w, xh)

≤ αh,iμh,iφ(w, xh) + αh,iξh,i + φ(w, xh)

≤ φ(w, xh) + μh,iMh + ξh,i,

where Mh = sup
z∈∩i∈�F(Ti)

{
φ(z, xh)

}
.This shows that w Î Ch+1,i.This implies that ⋂iÎΔ F

(Ti) ⊂ Cn, for every n ≥ 1. This completes the proof of Step 3.

Step 4. Show that {xn} is bounded. In view of xn = �Cnx0, we see that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since ⋂iÎΔ F(Ti) ⊂ Cn, we arrive at

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ ∩i∈�F(Ti). (3:12)

Qin et al. Fixed Point Theory and Applications 2012, 2012:58
http://www.fixedpointtheoryandapplications.com/content/2012/1/58

Page 8 of 20



It follows from Lemma 2.2 that

φ(xn, x0) = φ
(
�Cnx0, x0

)
≤ φ

(
�∩i∈�F(Ti)x0, x0

) − φ
(
�∩i∈�F(Ti)x0, xn

)
≤ φ

(
�∩i∈�F(Ti)x0, x0

)
.

This implies that the sequence {j(xn, x0)} is bounded. It follows from (2.2) that the

sequence {xn} is also bounded. This completes the proof of Step 4.

Step 5. Show that xn → x̄, where x̄ is some point in C as n®∞. Since {xn} is

bounded, and the space is reflexive, we may assume that xn ⇀ x̄. Since Cn is closed,

and convex, we see that x̄ ∈ Cn. On the other hand, we see from the weakly lower

semicontinuity of the norm that

φ (x̄, x0) = ‖x̄‖2 − 2 〈x̄, Jx0〉 + ‖x0‖2
≤ lim inf

n→∞
(‖xn‖2 − 2 〈xn, Jx0〉 + ‖x0‖2

)
= lim inf

n→∞ φ(xn, x0)

≤ lim sup
n→∞

φ(xn, x0)

≤ φ(x̄, x0),

which implies that φ (xn, x0) → (x̄, x0) as n®∞. Hence, ‖xn‖ → ‖x̄‖ as n®∞. In view

of Kadec-Klee property of E, we see that xn → x̄ as n®∞. This completes the proof of

Step 5.

Step 6. Show that x̄ ∈ ∩i∈�F(Ti). In view of construction of
xn+1 = �∩i∈�F(Ti)x0 ∈ Cn+1 ⊂ Cn, we arrive at

φ (xn+1, xn) = φ
(
xn+1,�Cnx0

)
≤ φ (xn+1, x0) − φ

(
�Cnx0, x0

)
= φ (xn+1, x0) − φ (xn, x0) .

Since xn = �Cnx0, and xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, we arrive at j(xn, x0) ≤ j(xn+1,x0),
∀n ≥ 1. This shows that {j(xn, x0)} is nondecreasing. It follows from the boundedness

that limn®∞ j(x, x0) exists. It follows that

lim
n→∞ φ (xn+1, xn) = 0. (3:13)

Since xn+1 = �Cn+1x0 ∈ Cn+1, we arrive at

φ
(
xn+1, yn,i

) ≤ φ (xn+1, xn) + μn,iMn + ξn,i.

This in turn implies from (3.13) that

lim
n→∞ φ

(
xn+1, yn,i

)
= 0. (3:14)

In view of (2.2), we see that

lim
n→∞

(‖xn+1‖ − ∥∥yn,i∥∥)
= 0.

This in turn implies that

lim
n→∞

∥∥yn,i∥∥ = ‖x̄‖ .
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It follows that

lim
n→∞

∥∥Jyn,i∥∥ = ‖Jx̄‖ . (3:15)

This implies that {Jyn,i} is bounded. Note that both E and E* are reflexive. We may

assume that Jyn,i ⇀ y*,i Î E*, for every i Î Δ. In view of the reflexivity of E, we see that

J(E) = E*. This shows that there exists an element yi Î E such that Jyi = y*,i. It follows

that

φ
(
xn+1, yn,i

)
= ‖xn+1‖2 − 2

〈
xn+1, Jyn,i

〉
+

∥∥yn,i∥∥2

= ‖xn+1‖2 − 2
〈
xn+1, Jyn,i

〉
+

∥∥Jyn,i∥∥2.
Taking lim infn®∞ on the both sides of the equality above yields that

0 ≥ ‖x̄‖2 − 2
〈
x̄, y∗,i

〉
+

∥∥y∗,i∥∥2
= ‖x̄‖2 − 2

〈
x̄, Jyi

〉
+

∥∥Jyi∥∥2
= ‖x̄‖2 − 2

〈
x̄, Jyi

〉
+

∥∥yi∥∥2

= φ(x̄, yi).

That is, x̄ = yi, which in turn implies that y∗,i = Jx̄, for every i Î Δ. It follows that

Jyn,i ⇀ Jx̄ ∈ E∗, for every i Î Δ. Since E* enjoys Kadec-Klee property, we obtain from

(3.15) that

lim
n→∞ Jyn,i = Jx̄.

Notice that
∥∥Jxn − Jyn,i

∥∥ ≤ ‖Jxn − Jx̄‖ +
∥∥Jx̄ − Jyn,i

∥∥ .
It follows that

lim
n→∞

∥∥Jxn − Jyn,i
∥∥ = 0. (3:16)

Notice from (ϒ) that

Jxn − Jyn,i = αn,i
(
J
(
Tn
i xn

) − Jxn
)
.

In view of the assumption that lim infn®∞ an,i > 0, we arrive at

lim
n→∞

∥∥J (Tn
i xn

) − Jxn
∥∥ = 0. (3:17)

Notice that
∥∥J (Tn

i xn
) − Jx̄

∥∥ ≤ ∥∥J (Tn
i xn

) − Jxn
∥∥ + ‖Jxn − Jx̄‖ .

This implies from (3.17) that

lim
n→∞

∥∥J (Tn
i xn

) − Jx̄
∥∥ = 0. (3:18)

The demi-continuity of J-1 : E* ® E implies that Tn
i xn ⇀ x̄, for every i Î Δ. Note that

∣∣∥∥Tn
i xn

∥∥ − ‖x̄‖∣∣ = ∣∣∥∥J (Tn
i xn

)∥∥ − ‖Jx̄‖∣∣ ≤ ∥∥J (Tn
i xn

) − Jx̄
∥∥ .
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In view of (3.18), we see that
∥∥Tn

i xn
∥∥ → ‖x̄‖, for every i Î Δ as n®∞. Since E enjoy

Kadec-Klee property, we obtain that

lim
n→∞

∥∥Tn
i xn − x̄

∥∥ = 0. (3:19)

Notice that
∥∥Tn+1

i xn − x̄
∥∥ ≤ ∥∥Tn+1

i xn − Tn
i xn

∥∥ +
∥∥Tn

i xn − x̄
∥∥ .

It follows from the asymptotic regularity of Ti, and (3.19) that

lim
n→∞

∥∥Tn+1
i xn − x̄

∥∥ = 0,

that is, TiTn
i xn − x̄ → 0 as n®∞. It follows from the closedness of Ti that Tix̄ = x̄, for

every i Î Δ. This completes the proof of Step 6.

Step 7. Show that x̄ = �∩i∈�F(Ti)x0. Letting n®∞ in (3.12), we arrive at

〈x̄ − w, Jx0 − Jx̄〉 ≥ 0, ∀w ∈ ∩i∈�F (Ti) .

It follows from Lemma 2.1 that x̄ = �∩i∈�F(Ti)x0. This completes the proof of Step 7.

The proof of Theorem 3.1 is completed.

Remark 3.2. Comparing Theorem 3.1 with Theorem 2.1 in Qin et al. [21], we have

the following:

(a) extend the mapping from the class of asymptotically quasi-j-nonexpansive
mappings to the class of generalized asymptotically quasi-j-nonexpansive
mappings;

(b) extend the mapping from a single mapping to a family of mappings;

(c) extend the space from a uniformly smooth, and strictly convex Banach space

which also enjoys the Kadec-Klee property to a reflexive, strictly convex, and

smooth Banach space such that both E and E* have Kadec-Klee property.

Remark 3.3. Strictly convex, reflexive, and smooth Musielak-Orlicz spaces satisfy the

restrictions imposed on the framework of the spaces [35], while, in general, these

spaces need not to be uniformly convex or uniformly smooth.

For a single mapping, we can easily conclude the following.

Corollary 3.4. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let T : C ® C be a closed, asymptotically regular, and generalized asymp-

totically quasi-j-nonexpansive mapping with the sequences {μn}, and {ξn}. Assume that

F(T) is nonempty, and bounded. Let {xn} be a sequence generated in the following man-

ner:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1 = C,
x1 = �C1x0,
yn = J−1 (αnJ (Tnxn) + (1 − αn) Jxn) , n ≥ 1,
Cn+1 =

{
u ∈ Cn : φ(u, yn) ≤ φ(u, xn) + μnMn + ξn

}
,

xn+1 = �Cn+1x0, ∀n ≥ 1.
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where Mn = sup{j(z, xn) : z Î F(T)}, and {an} is a sequence in (0,1] such that lim

infn®∞ an > 0. Then {xn} converges strongly to ΠF(T)x0, where ΠF(T) stands for the gener-

alized projection from E onto F(T).

If an = 1, then Theorem 3.1 is reduced to the following.

Corollary 3.5. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and Ti : C ® C a closed, asymptotically regular, and

generalized asymptotically quasi-j-nonexpansive mapping with the sequences {μn,i}, and

{ξn,i}, for every i Î Δ. Assume that ⋂iÎΔ F(Ti) is nonempty, and bounded. Let {xn} be a

sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,
Cn+1,i =

{
u ∈ Cn,i : φ

(
u,Tn

i xn
) ≤ φ (u, xn) + μn,iMn + ξn,i

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = �Cn+1x0, ∀n ≥ 1,

where Mn = sup{j(z, xn) : z Î ⋂iÎΔ F(Ti)}, and {an,i} are sequences in (0,1] such that

lim infn®∞ an,i > 0. Then {xn} converges strongly to �∩i∈�F(Ti)x0, where �∩i∈�F(Ti)stands

for the generalized projection from E onto ⋂iÎΔ F(Ti).

In the framework of Hilbert spaces, Theorem 3.1 is reduced to the following.

Corollary 3.6. Let C be a nonempty, closed, and convex subset of a Hilbert space E.

Let Δ be an index set, and Ti : C ® C a closed, asymptotically regular, and generalized

asymptotically quasi-nonexpansive mapping with the sequences {μn,i}, and {ξn,i}, for

every i Î Δ. Assume that ⋂iÎΔ F(Ti) is nonempty, and bounded. Let {xn} be a sequence

generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = PC1x0,
yn,i = αn,iTn

i xn + (1 − αn,i)xn, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i :

∥∥u − yn,i
∥∥2 ≤ ‖u − xn‖2 + μn,iMn + ξn,i

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = PCn+1x0, ∀n ≥ 1,

where Mn = sup{║z - xn║2 : z Î ⋂iÎΔ F(Ti)}, and {an,i} are sequences in (0,1] such that

lim infn®∞ an,i > 0. Then {xn} converges strongly to P∩i∈�F(Ti)x0, where P∩i∈�F(Ti)stands for

the metric projection from E onto ⋂iÎΔ F(Ti).

For a single mapping, we can easily conclude the following.

Corollary 3.7. Let C be a nonempty, closed, and convex subset of a Hilbert space E.

Let T : C ® C be a closed, asymptotically regular, and generalized asymptotically

quasi-nonexpansive mapping with the sequences {μn}, and {ξn}. Assume that F(T) is

nonempty, and bounded. Let {xn} be a sequence generated in the following manner:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1 = C,
x1 = PC1x0,
yn,i = αnTnxn + (1 − αn)xn, n ≥ 1,

Cn+1 =
{
u ∈ Cn :

∥∥u − yn
∥∥2 ≤ ‖u − xn‖2 + μnMn + ξn

}
,

xn+1 = PCn+1x0, ∀n ≥ 1,

where Mn = sup{║z - xn║2 : z Î ⋂iÎΔ F(Ti)}, and {an} is a sequence in (0,1] such that

lim infn®∞ an > 0. Then {xn} converges strongly to PF(T)x0, where PF(T) stands for the

metric projection from E onto F(T).

Next, we turn our attention to Algorithm (1.1).

Theorem 3.8. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and Ti : C ® C a closed, asymptotically regular, and

generalized asymptotically quasi-j-nonexpansive mapping with the sequences {μn,i}, and

{ξn,i}, for every i Î Δ. Assume that ⋂iÎΔ F(Ti) is nonempty, and bounded. Let {xn} be a

sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,
yn,i = J−1

(
αn,iJx1 +

(
1 − αn,i

)
J
(
Tn
i xn

))
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

) ≤ φ (u, xn) + αn,iM + ξn,i
}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = �Cn+1x1, ∀n ≥ 1,

where M = supz∈∩i∈�F(Ti) {φ (z, x1)}, and {an,i} are sequences in (0,1) such that limn®∞

an,i = 0. Assume that μn,i ≤ αn,i
1−αn,i

. Then {xn} converges strongly to �∩i∈�F(Ti)x1, where

�∩i∈�F(Ti)stands for the generalized projection from E onto ⋂iÎΔ F(Ti).

Proof. In view of the proof of Theorem 3.1, we show the difference only. From the

proof of Step 1 of Theorem 3.1, we see that ⋂iÎΔ F(Ti) is closed, and convex.

Next, we show that Cn is closed, and convex for all n ≥ 1. It suffices to show, for any

fixed but arbitrary i Î Δ, that Cn,i is closed, and convex, for every n ≥ 1. This can be

proved by induction on n. It is obvious that C1,i = C is closed, and convex. Assume

that Ch,i is closed, and convex for some h ≥ 1. We next prove that Ch+1,i is closed, and

convex for the same h. This completes the proof that Cn is closed, and convex. The

closedness of Ch+1,i is clear. We only prove the convexness. Indeed, ∀a, b Î Ch+1,i, we

see that a,b Î Ch,i, and

φ
(
a, yh,i

) ≤ φ (a, xh) + αh,iM + ξh,i, (3:20)

and

φ
(
b, yh,i

) ≤ φ (b, xh) + αh,iM + ξh,i. (3:21)

Notice that (3.20), and (3.21) are equivalent to the following inequalities, respectively.

2
〈
a, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + αh,iM + ξh,i,
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and

2
〈
b, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + αh,iM + ξh,i.

These imply that

2
〈
ta + (1 − t)b, Jxh − Jyh,i

〉 ≤ ‖xh‖2 − ∥∥yh,i∥∥2 + αh,iM + ξh,i, ∀t ∈ (0, 1). (3:22)

Since Ch,i is convex, we see that ta + (1 - t)b Î Ch,i. Notice that (3.22) is equivalent

to

φ
(
ta + (1 − t)b, yh,i

) ≤ φ
(
ta + (1 − t)b, xh

)
+ αh,iM + ξh,i.

This proves that Ch+1,i is convex. This completes the proof that Cn is closed, and

convex for all n ≥ 1.

Next, we show that ⋂iÎΔ F(Ti) ⊂ Cn, for every n ≥ 1. It suffices to claim that ⋂iÎΔ F

(Ti) ⊂ Cn,i, for every n ≥ 1, and for every i ≥ Δ. Note that ⋂iÎΔ F(Ti) ⊂ C1,i = C. Sup-

pose that ⋂iÎΔ F(Ti) ⊂ Ch,i for some h, and for every i Î Δ. Then, for ∀w Î ⋂iÎΔ F(Ti)

⊂ Ch,i, we obtain from the restriction μn,i ≤ αn,i
1−αn,i

that

φ(w, yh,i)

= φ
(
w, J−1

(
αh,iJx1 + (1 − αh,i)J

(
Th
i xh

)))

= ‖w‖2 − 2
〈
w,αh,iJx1 + (1 − αh,i)J

(
Th
i xh

)〉
+

∥∥∥αh,iJx1 + (1 − αh,i)J
(
Th
i

)∥∥∥2

≤ ‖w‖2 − 2αh,i 〈w, Jx1〉 − 2
(
1 − αh,i

) 〈
w, J

(
Th
i xh

)〉
+ αh,i‖x1‖2 + (1 − αh,i)

∥∥∥Th
i xh

∥∥∥2

= αh,iφ(w, x1) + (1 − αh,i)φ
(
w,Th

i xh
)

≤ φ (w, xh) + αh,iφ(w, x1) − (
αh,i − (1 − αh,i)μh,i

)
φ(w, xh) + ξh,i

≤ φ(w, xh) + αh,iM + ξh,i

where M = supz∈∩i∈�F(Ti)

{
φ(z, x1)

}
. This shows that w Î Ch+1,i. This implies that

⋂iÎΔ F(Ti) ⊂ Cn, for every n ≥ 1. This completes the proof that ⋂iÎΔ F(Ti) ⊂ Cn, for

every n ≥ 1.

In the light of the proof of Step 4 of Theorem 3.1, we find that {xn} is bounded. It

follows the proof of Step 5 of Theorem 3.1 that xn → x̄ ∈ Cas n ® ∞. Next, we show

that x̄ ∈ ∩i∈�F(Ti). In view of the proof of Step 6 of Theorem 3.1, we find that

lim
n→∞ φ (xn+1, xn) = 0. (3:23)

Since xn+1 = �Cn+1x0 ∈ Cn+1, we arrive at

φ
(
xn+1, yn,i

) ≤ φ (xn+1, xn) + αn,iM + ξn,i.

This in turn implies that

lim
n→∞ φ

(
xn+1, yn,i

)
= 0. (3:24)

In view of the proof of Step 6 of Theorem 3.1, we find that

lim
n→∞

∥∥Jxn − Jyn,i
∥∥ = 0. (3:25)
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Notice from (ϒϒ) that

∥∥J (Tn
i xn

) − Jxn
∥∥ ≤ 1

1 − αn,i

∥∥Jyn,i − Jxn
∥∥ +

αn,i

1 − αn,i
‖Jxn − Jx1‖ .

In view of the assumption that limn®∞ an,i = 0, ∀i Î Δ, we find from (3.25) that

lim
n→∞

∥∥J (Tn
i xn

) − Jxn
∥∥ = 0. (3:26)

Next, following Steps 6 and 7, we can easily conclude the desired conclusion. This

completes the proof of Theorem 3.8.

Remark 3.9. In view of the mappings, and the framework of the spaces, we see that

Theorem 3.8 can be viewed as a generalization of the corresponding results announced

in Cho et al. [27], Qin et al. [28], and Qin and Su [29].

For a single mapping, we obtain from Theorem 3.8 the following.

Corollary 3.10. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let T : C ® C a closed, asymptotically regular, and generalized asymptoti-

cally quasi-j-nonexpansive mapping with the sequences {μn}, and {ξn}. Assume that F

(T) is nonempty, and bounded. Let {xn} be a sequence generated in the following man-

ner:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1 = C,
x1 = �C1x0,
yn = J−1

(
αnJx1 + (1 − αn)J (Tnxn)

)
, n ≥ 1,

Cn+1 =
{
u ∈ Cn : φ

(
u, yn

) ≤ (u, xn) + αnM + ξn
}
,

xn+1 = �Cn+1x1, ∀n ≥ 1,

where M = supzÎF(T){j(z,x1)}, and {an} is a sequence in (0,1) such that limn®∞ an = 0.

Assume that μn ≤ αn
1−αn

. Then {xn} converges strongly to ΠF(T)x1, where ΠF(T) stands for

the generalized projection from E onto F(T).

In the framework of Hilbert spaces, Theorem 3.8 is reduced to the following.

Corollary 3.11. Let C be a nonempty, closed, and convex subset of a Hilbert space E.

Let Δ be an index set, and Ti : C ® C a closed, asymptotically regular, and generalized

asymptotically quasi-nonexpansive mapping with the sequences {μn,i}, and {ξn,i}, for

every i Î Δ. Assume that ⋂iÎΔ F(Ti) is nonempty, and bounded. Let {xn} be a sequence

generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = PC1x0,
yn,i = αn,ix1 + (1 − αn,i)Tn

i xn, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i :

∥∥u − yn,i
∥∥2 ≤ ‖u − xn‖2 + αn,iM + ξn,i

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = PCn+1x1, ∀n ≥ 1,

where M = supz∈∩i∈�F(Ti)

{‖z − x1‖2
}
, and {an,i} are sequences in (0,1) such that

limn®∞ an,i = 0. Assume that μn,i ≤ αn,i
1−αn,i

.Then {xn} converges strongly to P∩i∈�F(Ti)x1,

where P∩i∈�F(Ti)stands for the metric projection from E onto ⋂iÎΔ F(Ti).
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Remark 3.12. Comparing with Theorem 3.1 in Martinez-Yanes and Xu [30], we have

the following:

(a) improve the mapping from nonexpansive mappings to asymptotically quasi-

nonexpansive mappings;

(b) improve the mapping from a single mapping to a family of mappings;

(b) the hybrid projection in Corollary 3.1 is different with the one in [30].

For a single mapping, we obtain from Corollary 3.11 the following.

Corollary 3.13. Let C be a nonempty, closed, and convex subset of a Hilbert space E.

Let T : C ® C a closed, asymptotically regular, and generalized asymptotically quasi-

nonexpansive mapping with the sequences {μn}, and {ξn}. Assume that F(T) is nonempty,

and bounded. Let {xn} be a sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1 = C,
x1 = PC1x0,
yn = αnx1 + (1 − αn)Tnxn, n ≥ 1,

Cn+1 =
{
u ∈ Cn :

∥∥u − yn
∥∥2 ≤ ‖u − xn‖2 + αnM + ξn

}
,

xn+1 = PCn+1x1, ∀n ≥ 1,

where M = supzÎF(T){║z- x1║2}, and {an} is a sequence in (0,1) such that limn®∞ an =

0. Assume that μn ≤ αn
1−αn

. Then {xn} converges strongly to PF(T)x1, where PF(T) stands

for the metric projection from E onto F(T).

4.Applications
First, we consider the problem of approximating a common minimizer of a family of

proper, lower semicontinuous, and convex functionals.

Let E be a Banach space with the dual E*. For a proper lower semicontinuous convex

function f : E ® (-∞,∞], the subdifferential mapping ∂f ⊂ E × E* of f is defined by

∂f (x) =
{
x∗ ∈ E∗ : f (x) +

〈
y − x, x∗〉 ≤ f (y),∀y ∈ E

}
, ∀x ∈ E.

Rockafellar [42] proved that ∂f is a maximal monotone operator. It is easy to verify

that 0 Î ∂f(v) if and only if f(v) = minxÎE f(x).

Theorem 4.1. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and fi : C ® C a proper, lower semicontinuous, and

convex functionals, for every i Î Δ. Assume that ⋂iÎΔ (∂fi)
-1(0) is nonempty. Let {xn} be

a sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,

zn,i = argminz∈E
{
fi(z) +

‖z‖2
2ri

+ 〈z,Jxn〉
2ri

}
,

yn,i = J−1
(
αn,iJzn,i + (1 − αn,i)Jxn

)
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ(u, yn,i) ≤ φ(u, xn)

}
,

Cn+1 = ∩i∈�Cn+1,i

xn+1 = �Cn+1x0, ∀n ≥ 1,
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where ri > 0, ∀i Î Δ, and {an,i} are sequences in (0,1] such that lim infn®∞ an,i > 0.

Then {xn} converges strongly to �∩i∈�(∂ fi)
−1(0)x0, where �∩i∈�(∂ fi)

−1(0)stands for the gener-

alized projection from E onto ⋂iÎΔ (∂fi)
-1(0).

Proof. For each ri > 0, and x Î E, we see that there exists a unique xri ∈ D(∂fi) such

that Jx ∈ Jxri + ri∂fi
(
xri

)
, where xri =

(
J + ri∂fi

)−1
Jx. Notice that

zn,i = argmin
z∈E

{
fi(z) +

‖z‖2
2ri

+
〈z, Jxn〉

ri

}
,

is equivalent to

0 ∈ ∂

(
fi +

‖·‖2
2ri

+
Jxn
ri

)
zn,i = ∂fi(zn,i) +

Jzn,i
ri

+
Jxn
ri

.

This shows that zn,i = (J + ri∂fi)
-1Jxn. In view of the Example 2.3 in Qin et al. [41], we

find that (J + ri∂fi)
-1J is closed quasi-j-nonexpansive with F((J+ ri∂fi)

-1 J) = (∂fi)
-1(0).

Following the proof of Theorem 3.1, we can immediately conclude the desired

conclusion.

Theorem 4.2. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and fi : C ® C a proper, lower semicontinuous, and

convex functionals, for every i Î Δ. Assume that ⋂iÎΔ(∂fi)-1(0) is nonempty. Let {xn} be a

sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,

zn,i = argminz∈E
{
fi(z) +

‖z‖2
2ri

+ 〈z,Jxn〉
2ri

}
,

yn,i = J−1
(
αn,iJx1 + (1 − αn,i)Jxn,i

)
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ(u, yn,i) ≤ αn,iφ(u, xn) + (1 − αn,i)φ(u, xn)

}
,

Cn+1 = ∩i∈�Cn+1,i

xn+1 = �Cn+1x0, ∀n ≥ 1,

where ri > 0, and {an,i} are sequences in (0,1) such that limn®∞ an,i = 0. Then {xn}

converges strongly to �∩i∈�(∂ fi)
−1(0)x1, where �∩i∈�(∂ fi)

−1(0)stands for the generalized pro-

jection from E onton ⋂iÎΔ (∂fi)
-1(0).

Proof. We easily find from Theorems 3.8 and 4.1 the conclusion.

Second, we consider the problem of approximating a solution of a family of varia-

tional inequalities.

Let C be a nonempty, closed, and convex subset of a Banach space E. Let E* be the

dual space of E. let A : C ® E* be a single valued monotone operator which is hemi-

continuous; that is, continuous along each line segment in C with respect to the weak*

topology of E*.

Consider the following variational inequality problem of finding a point x Î C such

that
〈
y − x,Ax

〉 ≥ 0, ∀y ∈ C.
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In this chapter, we use VI(C, A) to denote the solution set of the variational inequal-

ity involving A. The symbol NC(x) stand for the normal cone for C at a point x Î C;

that is,

NC(x) =
{
x∗ ∈ E∗ :

〈
y − x, x∗〉 ≤ 0, ∀y ∈ C

}
.

Theorem 4.3. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and Ai : C ® E* a single valued, monotone and

hemicontinuous operator. Assume that ⋂iÎΔ VI(C, Ai) is not empty. Let {xn} be a

sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i

x1 = �C1x0,

zn,i = VI
(
C,Ai + 1

ri
(J − Jxn)

)
,

yn,i = J−1
(
αn,iJzn,i + (1 − αn,i)Jxn

)
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ(u, yn,i) ≤ φ(u, xn)

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = �Cn+1x0, ∀n ≥ 1,

where {an,i} are sequences in (0,1] such that lim infn®∞ an,i > 0. Then {xn} converges

strongly to �∩i∈�VI(C,Ai)x0, where �∩i∈�VI(C,Ai)stands for the generalized projection from E

onto ⋂iÎΔ VI(C,Ai).

Proof. Define a mapping Ti ⊂ E × E* by

Tix =
{
Aix +NCr, x ∈ C,
∅, x /∈ C.

By Rockafellar [42], we know that Ti is maximal monotone, and T−1
i (0) = VI(C,Ai).

For each ri > 0, and x Î E, we see that there exists a unique xri ∈ D(Ti) such that

Jx ∈ Jxri + riTi
(
xri

)
, where xri = (J + riTi)−1Jx. Notice that

zn,i = VI
(
C,Ai +

1
ri
(J − Jxn)

)
,

which is equivalent to
〈
y − zn,i,Aizn,i +

1
ri

(
Jzn,i − Jxn

)〉 ≥ 0, ∀y ∈ C,

that is,

−Aizn,i +
1
ri

(
Jxn − Jzn,i

) ∈ NC(zn,i).

This implies that zn,i = (J + riTi)−1Jxn. In view of the Example 2.3 in Qin et al. [41],

we find that
(
J + ri∂fi

)−1
J is closed quasi-j-nonexpansive with

F
((
J + ri∂fi

)−1
J
)
= T−1

i (0).

Following the proof of Theorem 3.1, we can immediately conclude the desired

conclusion.
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Theorem 4.4. Let E be a reflexive, strictly convex, and smooth Banach space such

that both E and E* have Kadec-Klee property. Let C be a nonempty, closed, and convex

subset of E. Let Δ be an index set, and Ai : C ® E* a single valued, monotone and

hemicontinuous operator. Assume that ⋂iÎΔ VI(C, Ai) is not empty. Let {xn} be a

sequence generated in the following manner:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E, chosen arbitrarily,
C1,i = C,
C1 = ∩i∈�C1,i,
x1 = �C1x0,

zn,i = VI
(
C,Ai + 1

ri
(J − Jxn)

)
,

yn,i = J−1
(
αn,iJx1 + (1 − αn,i)Jzn,i

)
, n ≥ 1,

Cn+1,i =
{
u ∈ Cn,i : φ(u, yn,i) ≤ αn,iφ(u, x1) + (1 − αn,i)φ(u, xn)

}
,

Cn+1 = ∩i∈�Cn+1,i,
xn+1 = �Cn+1x1, ∀n ≥ 1,

where ri > 0, and {an,i} are sequences in (0,1) such that limn®∞ an,i = 0. Then {xn}

converges strongly to �∩i∈�VI(C,Ai)x0, where �∩i∈�VI(C,Ai)stands for the generalized projec-

tion from E onto ⋂iÎΔ VI(C, Ai).

Proof. We easily find from Theorems 3.8 and 4.3 the conclusion.
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