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Abstract

In this paper, we investigate the growth of transcendental meromorphic solutions of
some types of systems of complex functional equations and obtain the lower bounds
for Nevanlinna lower order for meromorphic solutions of such equations. Our results
are improvement of the previous theorems given by Gao, Zheng and Chen. Some
examples are also given to illustrate our results.
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1 Introduction and main results

Throughout this paper, the term ‘meromorphic’ will always mean meromorphic in the
complex plane C. Considering a meromorphic function f, we shall assume that readers
are familiar with the fundamental results and the standard notations of the Nevanlinna
value distribution theory of meromorphic functions such as m(r,f), N(r,f), T(r,f), the
first and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna
theory (see Hayman [1], Yang [2] and Yi and Yang [3]). We also use p(f), u(f), A(f) and
Al }) to denote the order, the lower order, the exponent of convergence of zeros and the
exponent of convergence of poles of f(z), respectively, and S(r,f) to denote any quantity

satisfying S(r,f) = o(T'(r,f)) for all r outside a possible exceptional set of finite logarithmic

d
ne T
Recently, there have been a number of papers focusing on the growth of solutions of dif-

measure lim,_, o f[l’r) < 00.
ference equations, value distribution and uniqueness of differences analogues of Nevan-
linna’s theory (including [4—9]). Based on these results given in [10-12], people obtained
many interesting theorems in the fields of complex analysis.

In 2003, Silvennoinen [13] studied the growth and existence of meromorphic solutions
of functional equations of the form f(p(z)) = R(z,f (z)) and obtained the following result.

Theorem 1.1 [13] Let f be a non-constant meromorphic solution of the equation

Y ai2)f (2)
=R@f@) = 5m i)
Sbl0) =R/ @) = Fn 5 o ry

where p(z) is an entire function, a;, b; are small meromorphic functions with respect to f.
Then p(z) is a polynomial.
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In 2012, Gao [14] studied the problem when the above equation is replaced by the fol-
lowing system of function equations:

_ _ Zz Oaz(z)fZ(Z)[
fi(p(2) = Ri(z,/2(2) = SIYrREL
(

Y i@ ()
lple) = Roafi(2) = SRR,

@)

where p(z) is an entire function, R (z,/2(z)), Ra2(z, f1(2)) are irreducible rational functions,

the coefficients are small functions; and he obtained the following.

Theorem 1.2 [14, Theorem 1] Let (fi,f>) be a non-constant meromorphic solution of sys-

tem (1). Then p(z) is a polynomial.

After his works, Gao [15, 16], Xu et al. [17] further investigated the growth and existence
of meromorphic solutions of some types of systems of complex functional equations and
obtained a series of results (see [15, 16, 18, 19]). Inspired by the ideas of Refs. [14-16,
20, 21], we investigate some properties of solutions of some types of systems of complex
functional equations and obtain the following results.

The first theorem is about meromorphic solutions with few zeros and poles of a type of

system of complex functional equations.

Theorem 1.3 Letc; € C\ {0} and suppose thatf,, f, are a pair of non-rational meromorphic

solutions of the system

(2)+ +etapy (2)f2(2)P2
é )) ...+bq2 (2)f2(2)12” (2)
(2)+

0(2)+a1(2)fa(z
[T2AiG+¢) = bo(z @)
i

(2)+e1(2)fi (2)+--+ep; (2)f1 (2)P1
1_[1':1f2 (z+¢) = do(z)+d1(z)f1 5

Tty QAT

with the coefficients a;(z), b;(z), ei(z), di(z) being small functions with respect to fi, f» and
Ay, (2)Dy, (2)ep, (2)dy, (2) £ 0. If

max{k(ﬁ),k(l/ft)} <p(f), t=12, 3)

then system (2) is of the form

[T2AE+¢) = e2(2)h(2)?,
[T2A(z + ¢) = alz)fiz)*,

where ¢1(z), ¢a(z) are meromorphic functions, T(r,c1) + T(r,c2) = S(r,f1) + S(r,.f2), 51,52 € Z.

Theorem 1.4 Suppose that (fi,f>) are a pair of transcendental meromorphic solutions of
the system of q-shift difference equations

Y @ (2fi(qz +¢)) = Z?lo bi(2)f>(2)',

» @)
Y@ @@z +¢) = Xk b @f ),
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wherecj e C\{0},q € C, |q| > 1, did, > 2 and the coefficients af(z), bi(z) (¢ = 1,2) are ratio-
nal functions. If f; (¢t = 1,2) are entire or have finitely many poles, then there exist constants
K; >0 (t=1,2) and ro > 0 such that for all r > ry,

logr
10g M(r,f;) > Ki(dydy) 7061, £=1,2.

Theorem 1.5 Suppose that (fi,f>) are a pair of transcendental meromorphic solutions of
the system of q-shift difference equations

m _ Pazfs(2)
Yiha@fdz+6) = GEion

(5)
Pi(zi(2)
YiAa@h(d@z+g) =5 Zzﬁé))’

where ¢; € C\ {0}, g € C, |q| > 1, the coefficients af(z), t = 1,2, are rational functions, and
Py, Q; are relatively prime polynomials in f; over the field of rational functions satisfying
pr =deg;, Py, Iy = deg;, Q, dr=p—1;>2,t=12.If f; (t = 1,2) have infinitely many poles,
then for sufficiently large r,

_ logr
i’l(i’,ft) > I(t(dldz) (+m)loglal - ¢ =1,2,

and

2(logd; + log dz)

+
wlh) + i) 2 (m +m)loglq|

Remark 1.1 Since system (4) is a particular case of system (5), from the conclusions of
Theorem 1.5, we can get the following result.

Under the assumptions of Theorem 1.4. If f; (¢ = 1,2) have infinitely many poles, then
there exist constants K; > 0 (£ = 1,2) and rg > 0 such that for all » > r,

logr
n(r,f) > Kildydy) 7o, £=1,2,

and

logd; +logd,

w(f) + () = alog lq]

Example 1.1 The function (fi(z), f2(2)) = é ;ﬁ) satisfies the system of the form

Yeres ,

Z,n 1 cz+;'] 1@z +c¢j) = Z,n S(2)7,
2/ .
Z}n 1 CZ;C fal 2/z + C]) = Z;?:lfl(z)y;

with rational coefficients, where |g| =2 >1,d; =d, =2" and ¢; € C. Since n < 2" = d; = d,
logr

for all n € N,, we have logM(r,f;) = r — logr > r = 2(d1d2)2"1°glq\ (r - o0) and u(f;) =

o) =1= 1;ng§gig‘1;| for t = 1,2. This shows that the conclusion of Theorem 1.4 is sharp

2(logd1+lo;:,d2

of Remark 1.1 can be
(n1+n3)log|ql

and the equality in the consequent result w(f;) + u(fz) >
arrived.
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Let g, ¢; be stated as in Theorem 1.5, set

S ien i @fi(gz + ) i@z + )" -z + cuy)
Fl(z;_fl) ni, q, C]) =

. . —_,
Y ien € @filgz + ) Alg2z + ) - filghz + 6r)

i i io
Yren B2 @fgz + ) @Rz + )3 - (g2 + ) 2
Fy(z:f2, 13,9, ¢j) =

j j j2
2o 2ep, €2(@f(gz + 1) g2z + )" - flgmz + Cny) 72

Now, we will investigate the lower order of meromorphic solutions of a type of system
of complex function equations and obtain a result as follows.

Theorem 1.6 Suppose that (fi,f,) are a pair of transcendental meromorphic solutions of
the system of q-difference equations

Yloa @)
Fl(Z; 1, M, q, C]) = %;
Zj;o b}‘ (Z)f2(Z)1 (6)
Faesfoomyg,c) = ST
2\%5 /2> Z’qr ] Zjiobf(z)ﬁ(z)/,

where I, = {(i,\{xi;\lzr eers i%)},]t = {jﬂf’jﬂé’ e ’jﬂﬁf} are finite index sets satisfying

max{i,¢t +it +---+iyt ,jt+jt+--+j ¢ }=0 t=1,2
)J,;,L[{)Ll )‘2 )‘”t’]p“l ]#2 ]H”t} o i

and d; = max{s;, l;} > 2, t = 1,2, and all coefficients of (6) are of growth S(r,f1), S(r.f2). If

didy > 4nmnyo109,

7)
then for sufficiently large r,

logr
dvd (m+z)Tog gl
T(r) t)ZKt(#> o ) t=1)2)

4-}’111’120'10'2

where K, > 0 are constants. Thus, the lower order of fi, fo satisfy

2(log dydy — log 4mynyo107)
uh) + p(fa) >
(h % (1 + ny) log |q]

Example 1.2 The functions (fi(z),f2(z)) = (ezz,e‘ZZ) satisfy the system of function equa-
tions

foldz+cp)+fo(2z+c1)fr (dz+c) alfi (2)* +ag

fo2z+er) =T A@E
fiQz+e1)+fiRzrc))fildz+cn) _ b1fa(@)0+bg
fildz+cy) Y YP

with small function coefficients

_ _ 2_.2 _ 2 2_ 2 2
a =e 8zco 42:clec2 617 ap=e 8zco 62, bl — 64251+c1 8zco 02’ bO — 347'61”1,
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where g =ny =ny =01 =0y =2,d, =dy =16, didy = 256 > 4mny0103, c1,¢; € C and a4, ay,
by, by are small functions of fi, f,. We have u(f;) =o(f;) =2, £=1,2 and

2(log dydy — log 4nynyo107)

wh) + () =4>1= (m1 + my) log ]

This shows that Theorem 1.6 may hold.

2 The proof of Theorem 1.3
Denote G:(z) = ]_[;'jl Ji(z + ¢j), t = 1,2. By applying Valiron-Mohon’ko theorem [22] to (2),
we have

T (r, G1) = max{ps, g2} T(r.f2) + S(r, fi) + S(7.f2),

T(r,Gy) = max{p, 1} T (r, fi) + S(r, f1) + S(r,f2).

From (3), we can take constants &;, §; such that

max{A(f), A(1/fe)} <& <8 < p(f), t=1,2,

then we have
T(,ﬁ)_ﬁ(r )+ﬁ(r l>+g(rf)-o(r&)+5(rf) £=1,2
;ﬁ = ) Jt tﬁ Jt) — ' Jt)s = L 4.

From (8) and the definitions of G, (t =1,2), similar to the above argument, we have

(&)-~(g) ()
T\r,— ) =N|r,— )+m|r,—
G; Gt Gt
_ — 1
<mN(r+C,f;) +ntN(r,]7> +S8(r, fi) + S(r.f2)
t

- O(rff) +S(r,fi) + S(r.f2),

where C := max{|c|,|¢jl,i =1,2,...,m;j =1,2,...,m}. From (3), we know that zeros and
poles are Borel exceptions of f; (£ =1,2), and from [23, Satz 13.4], we have that f; (t =1,2)
is of regular growth. Hence, there exists ry > 0 such that T(r,f;) > r* for r > ro. So, we can
get that

4

T(r, %) =S(r,fi) + S(r.f2), T(r,}%) =S(r,fi) +S(r,fa), t=12.

Now, we rewrite system (2) as

bp, (2) _ Pzph) _
1@ 010 = gy = W2(2.h),

9)
dp, (2)

Pizfi) _
3171(2) Z(Z) m = Ml(Z,_fl),

without loss of generality, assume that P;, Q; are monic polynomials in f; with coeffi-

cients of growth S(r,£1), S(r,f2). Set F; := %, U, := Z—%, t =1,2. From (9), we have T'(r, U;) =


http://www.advancesindifferenceequations.com/content/2013/1/378

Wang et al. Advances in Difference Equations 2013, 2013:378
http://www.advancesindifferenceequations.com/content/2013/1/378

S(r,f1) + S(r,f2). And because

I/QZ IZQ/ Uy P

2 % Z_M/z_llzuz_ 222,

P’Ql—PlQ/ U1 P

1 % 1 _u/l_l{lul_ 111,
it follows that

PyQy — PyQ, = Us Py Qy,
Pin _PIQ/l = U1P1Q1.

Substituting f/ = Fif;, t = 1,2, to the above equalities and comparing the leading coeffi-
cients, we can get

Be—q)Fe=U;, t=1,2.
Solving the above equations, we get
Uy = m(ft(z))pzfqz, m,€C,t=1,2. (10)

From (9) and (10), it follows that

GiI(2) = MG (@Y,

Ga(d) = m PG (R,

Thus, we complete the proof of Theorem 1.3.

3 Proofs of Theorems 1.4 and 1.5

3.1 The proof of Theorem 1.4

Because the coefficients u;(z), b(z) (t =1,2) are rational functions, we can rewrite (4) as
follows:

X A (' + ) = X B, )
Y ANz + g) = X2 BHRA (),

where the coefficients A; (2), Bi(z) (¢ = 1,2) are polynomials. We will consider two cases as

follows.

Case 1. Since (fi,f2) are a pair of solutions of system (4) or (11) and f;, t = 1,2, are tran-
scendental entire, set p! = degA; (G=12,...,n), ¢ =degB: (i=0,1,...,d;), t =1,2, and
C :=max{|c;|,l¢l,i =1,2,...,m;j = 1,2,...,n3}. Taking m; = max{pi,...,pﬁ,} + 1, and from
lgl > 1 and M(r,fi(¢z + ¢;)) < M(IqVr + |¢jl. f;), we have that

M, Y0 BYQS(@)) = M Y1 ANRf ¢z + ) < ™ M(lq1"r + C. ),

4 , 12)
M(r, Y2, BX(2)fi (2)) = M(r, YL A @Az + ) < nr™M(lq"r + C,f),

when r is sufficiently large. Since B! (i = 0,1,...,d,; t =1,2) are polynomials and f; (¢ =1,2)
are transcendental entire functions, we have M(r, Zi‘gl Blf(2)") = o(M(r, fo(z)™)) and

Page 6 of 12
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M(r, Z Bzfl (2)) = o(M(r,fi(z)*)). Then, for sufficiently large r, it follows that

M(r, Y8 BX @) (2)) = LM(r, BY fo(2)M),
M(r, Y2 B} (2)fi(2)) = 1M(r, B 1<z>d2).

From (12) and (13), for sufficiently large r it follows that

logM(lq|"r + C,fi) = dilog M(r,f>) + & (r),
log M(lq|"r + C.,f2) = dy log M(r, /1) + &(r),

(13)

(14)

where |g;(7)| < K;logr, t = 1,2, for some constants K; > 0. From (14), for sufficiently large

r, we get
logM(lg|*"r + C + Clql".f) = dida log M(r,fi) + & (Ig|"r + C) + diga(r).

Iterating (15), we have

(15)

2k-1
logM<|q|2”kr +CY lql™, ﬁ) > (dvdo)* log M(r,fi) + Ex(r) + E}(r)  (keN),  (16)

v=0

where

2k-2
Ex(r)] = ‘(dldz)k-lglum"r +C) 4o +g1<|q|(2k-””r +CY |q|“”)

v=0

|UI1

(2j+1)
< Ky(didy k1210g|6I| "r+CY) loglg

Z (i)

(2j+1) 2j-1 vn
< Ky(dudy klzloglql "r+ € im0 loglgl

Z (o) ’

and

2k-3
B ()| = |di(drda) ' ga(r) + -+ + drga <|q|<2“>"r +CY |q|”">

v=0

k-1 " 2j-3
e log P+ €0 191
< Kydy (dyd) ==

FZO (dvdy)

i 2j-3
log g2V + C Y005 g™
(didyy

o0
< Kyd (dydy)* Z
j=0

Observe that |g| > 1, then for sufficiently large r, we have
2
log [g%™"r + C > " |g]"" < log gl ™" +logr +log(2j +1)C +log |g|”"
v=0

< 2j(2j + 1)n*(log |q|)2 logjlog Clogr.

Page 7 of 12
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P 2 2 .
And since djdy > 2, it follows that the series Y . W is convergent. Thus,

for sufficiently large r, we have
|EL(r)| < K(didp)*logr, t=1,2, (17)

where K] > 0 (t = 1,2) are some constants. Since f; is a transcendental entire function, for
sufficiently large r, we have

log M(r,f,) = 3K logr, (18)

where K’ > max{K], K;}. Hence, from (16)-(17), there exists ry > e such that for r > ry, we
have

2k-1
logM<|q|2”kr +CY lql™, ﬁ) > K'(dydy) log . 19)

v=0

Thus, for each sufficiently large R, there exists k € N such that

2k-1 2k+1
Re |:|Q|2nk”o +CY gl g+ CY |q|“"),

v=0 v=0
iLe.,
ks log R + log(|g|" — 1) —logry —log C — 4nlog|q| ' 20)
2nloglq|
From (19) and (20), we have
2k-1
log M(R,fi) > logM(|q|2”kr0 + CZ Iql"”,fl)
v=0
> I</(d1d2)k ]0g 1o
logR
> K" (dydy) el (21)
where
, lng(lq\n—l)—]ngro—lngC—4nlng |q]
](l = I(/(dldz) 2nloglq]

Similar to the above argument, we can get that there exist constants K > 0 and ry > 0
such that for all » > rg,

logr
log M(r,f5) > K(dydy) eTdl, )

Case 2. Suppose that (f1,f2) are a pair of solutions of system (4) and f; (¢ = 1,2) are
meromorphic with finitely many poles. Then there exist polynomials P;(z) such that
g:(2) = Pi(2)fi(2) (¢ = 1,2) are entire functions. Substituting f;(z) = % into (11) and again
multiplying away the denominators, we can get a system similar to (11). By using the same
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argument as in the above, we can get that for sufficiently large r,

logr
log M(r,f;) = log M(r,gy) + O(1) = (K, — &) (ddo) P57 > K" (dyby) 557,

"

where K}” (> 0) (¢t =1,2) are some constants.

From Case 1 and Case 2, this completes the proof of Theorem 1.4.

3.2 The proof of Theorem 1.5

Since the coefficients of P;(z,f:(z)), Q:(z,f;(z)) are rational functions, we can choose a suf-
ficiently large constant R (> 0) such that the coefficients of P;(z,f:(z)), Q:(z,fi(2)) (t =1,2)
have no zeros or poles in {z € C: |z| > R}. Assume that (f},f2) is a solution of system (5)
and f; (¢ = 1,2) are transcendental, since f; (¢ = 1,2) have infinitely many poles. Thus, with-
out loss of generality, we choose a pole zy of f; of multiplicity p > 1 satisfying |zo| > R.
Since dj = 51 — t; > 2, then the right-hand side of the second equation in (5) has a pole of
multiplicity dj i at zy. Therefore, there exists at least one index j; € {1,2,...,n5} such that
q'zo +¢j, isa pole of f, of multiplicity u; > di . If |¢'z9 +¢;, | < R, this process will be termi-
nated and we have to choose another pole zy of f; in the way we did above. If |z +¢;, | > R,
since dy = s, —tp > 2, then the right-hand side of the first equation in (5) has a pole of mul-
tiplicity dopt| > dida . Therefore, there exists at least one index j; € {1,2,...,n} such that
(g zo + ¢jy) + ¢ isa pole of f; of multiplicity 1 > dop] > drda .

We proceed to follow the step above, we can get a sequence

oo

(G - ]_[q”*’zzo + Z 1_[ i (dhe + )t

s=1 i=s+1 k=1

where g is a pole of fi with multiplicity ux, js € {1,2,...,m} and j;, € {1,2,...,m}. From
the above discussion, we can get ju; > (dyd>)* 1. Obviously, we have |{;| — oo as k — o0.
Then there exists a positive integer ko € N, such that for sufficiently large k (> ko),

wldidy)* < [l +didy + -+ (dida)*] < n(lgel, fi)

k-1
< n<|q| ek izo + C(lgl™ +1) D |q|“"l+"2>,f1), (23)

i=0

where C := max{|c;|,|¢jl,i = 1,2,...,m1;j = 1,2,...,m}. Thus, for each sufficiently large 7,
there exists k € N, such that r € [, k1), where ng := |q|"1*"2K|zg] + C(|g|™ + 1) x
>k gl it follows that

logr —log|zo| —log C —log(|g|™ +1) — (11 + n3)log|q| + log(|g|"™*"2 — 1)

k>
(1 + np) log |q|

(24)

From (23) and (24), we have

log r—log |z |-log C-log(Iq|"1 +1)—( +17) log |q| +log(lq)"1 *"2 -1)

n(r,fi) > p(dida)* > pu(didy) (nyng) log g1

logr

> Ksd (m+n)loglgl |
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where

—log |zg |-log C-log(Ig|"1 +1)—(11 +1) log |q| +log(lg|"1 *"2 -1)

Ks = u(dids) (ny+nz)loglql

And there exists ry > 0 and for all » > rg, we have

loir 1
Ks(dyd,) im+nm)logldl < }’l(}"ﬁ —T(ZV, 1)-
log2

Similar to the above discussion, we can get that there exists ry > 0 and for all » > ry, we
have

, logr 1
Ki(dydy) memleeldl < n(r, f5) < @T(Zn J2).

2(log dq +logdy)

From these inequalities, we can get u(fi) + u(fa) > G2 m) Togd]

easily.
Thus, the proof of Theorem 1.5 is completed.

4 Proof of Theorem 1.6
Lemma 4.1 [21, Lemma 2] Letfy,fs,...,f» be meromorphic functions. Then

r(n T fir) < T o

rel

where I = {iy;,iry,...,i,} is an index set consisting of s elements, and o = max, ¢;{is, + i, +

iy, )

Proof of Theorem 1.6 From |q| > 1, ¢; € C and [24, p.249], we have T(r, gz + G)) =

: . Vdirdo—/Anynyo109
T(IqVr +1¢l,f2) + O(1), t = 1,2. Forany given & (0 < & < «/01172+«/;LY11Y1%) applying Valiron-

Mohon’ko theorem [22] and Lemma 4.1 to (6), it follows that

di(L-e)T(r.fo) <diT(r,fo) + S(r,fo) < 201372 T(lqVr + C,.fi) + S(r, 1)
<2mo1(l +¢&)T(|g|"r + C,f1),

dy(1-e)T(r,fi) <daT(r,fi) + S(r,f1) <209 Z T(lqVr + C,f2) + S(r,f2)
<2myo5(1+&)T(|q/"™r + C,f2),

(25)

outside of a possible exceptional set of finite linear measure. Then from (25) there exists
ro > 0 such that

T(lg"*"2r + Cgl™ +1),.£) = 7920 7(r,f), 06)

T(ql"2r + C(lql™ +1),f) > 42U 7 f),

1nyo109(1+e)?

holds for all r > rg. Iterating (26), for any k € N, and r > r(, we have

T(|qm+mkr 4 C(lq™ +1) YK |glimm), f) > (U= _yer(r, f),

4Anynyoroy(l+e)?

T(1q"2kr + C(lgl™ +1) Y50 |qlin+m), fy) > (—hbl=al _yer(y, £).

4ningoroy(l+€)?
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By employing the same argument as in the proof of Theorem 1.5, for sufficiently large o,
from the above inequalities, we can get

logo
T(0,f1) = Ko T(ro, fi)(--2920=5"_ Girzip)logiar |

4nynyor oy (l+e)? oge (27)
didy (-6 \ G toTal
T(0./2) = K4 T(ro,fo) (g, 20ty ) T loaa,
where
—log |zg|-log C-log(|q|"1 +1)—(ny +n2) log |q| +log(lg)"1 "2 -1)
did,(1 - g)? (np+np)logIq]
Ke=\—"7""—""7= ,
41’111’1201(72(1 + 8)
—log |zg|-log C-log(lg|"2 +1)~(n1 +ny) log |q| +log(lq|"1 *""2 -1)
1% dvdy(1 - €)? (ny+n3)log 4]
67 \ dmnyo109(1 + ¢)2
Letting ¢ — 0, from (27) we have
ddy e
T(Qr_fl) > 1<7(W) (ny+np)logll |
ddy  lozo (28)
T(o,f) > Ké(m)mwz)loglqw ,
where K¢, K are constants satisfying
—log |zg |-log C-log(Iq|"1 +1)—~(m1 +n9) log |q| +log(lq)"1 2 -1)
K =T ) didy (ny+nz)loglql
7=1ro )| ———— )
4-]111’120’102
—log |z9|-log C-log(|q|"2 +1)—(my +119) log |q| +log(lq|"1 *"*2 1)
K T( f ) dldz (n1+ng)loglql
=1(ro, o)\ ————
b 4mnyo109
Thus, from (28) the lower order of f;, f; satisfy
2 IOg(dldz) -2 log(4n1n20102)
w(f) + n(f) =
(m + n2) log|q]
Hence, we complete the proof of Theorem 1.6. O
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