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Abstract
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1 Introduction

The optimal harvesting control of age-structured and size-structured single species have
been widely studied in the literature [1-11]. The control problems of multi-species have
been investigated in the literature [12-20]. The objective function represents the total
harvesting, respectively, in [12-15]. The diffusion factor has not been considered in [14—
20]. It is well known that the profit due to harvesting is a quite important problem for
optimal harvesting. In this paper, our purpose is to consider the optimal control of the
profit functional for diffusion population. Specifically, we deal with the following optimal
harvesting problem:

n
sup Z/ [u,»(a, t,x)pi(a,t,x) — u?(a, t,x)] dadtdx 1.1)
i=1 7Q

for all u = (u1(a, t,x), uz(a, t, %), ..., u,(a, t,x)) € U, where the corresponding state variable
p* =W, ph, ..., pY) satisfies the state system

opi , i
T+ ot —kiAp; = fi — ila, t,x)p; — uia, t, X)pi

= Y kg Mik(@ b, xX) Pt x)pi,  (a,t,%) € Q,
¥i(a,t,x)=0, (atx)€e,
pi0,t,) = [ Bila,t.0)pi(a t,0)da, (%) € Qr,
pi(a,0,x) = pio(a,x), (a,x) € Qu,
Pi(t,x) = f(fpi(a, t,x)da, (tx)eQr,i=12,...,n,

(1.2)
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where p;(a,t,x) represents the density of the ith population. k; is the diffusion rate of
the ith population. We assume that the populations have the same life expectancy A,
0 < A < +00. ui(a,t,x) is the average morality of the ith population, and B;(a,t,x) de-
scribes the average fertility of the ith population. Ay (a,t,x) represents the interaction
coefficients (i,k = 1,2,...,n, k #i). @ C RN (N = 1,2,3) is a bounded domain with a
smooth enough boundary €2, Q= (0,4) x (0,T) x Q, Qr =2 x (0,T), Q4 =2 x (0,A4),
> =(0,4) x (0,T) x 3%, and v is the outward unit normal. The function p;y(a,x) gives
the initial density distribution of the population, and u;(a, £, x) represents the harvesting
effort function, which is the control variable in the model and satisfies

ui €Uy = {vi € I*(Q)0 < yu(a,t,%) <vi(a,t,%) < yola,t,x) ae.in Q}, U=][]ths

i=1

where y; € L*(Q),j=1,2,i=1,2,...,n. The integral
n
J(u, ug, ... uy,) = Z/ [ui(a, tLx)pt(a, t,x) — uiz(a, t, x)] dadtdx (1.3)
i=1 7 Q

represents the profit due to harvesting.
Throughout this paper, we assume that:

(A1) Bila,t,x) € L°(Q), 0 < Bi(a, t,x) < M, where M is a constant.
(Ag) i € L2([0,A] x [0, T] x Q), uila, t,%) > pola,t) >0 ae. in Q,i=1,2,...,n where

loc
1o € L2.([0,A] x [0, T), fi ola,t +a—A)da = +o0.
(Az) Ak € L®(Q), 0 < Ai(a, t,x) < B, where B is a positive constant (i, k =1,2,...,n, k #i).
(Ag) fi € L®(Q), pio(a,x) € L®(R4), piola,x) > 0, 0 < fi(a,t,x) < By, where By is a con-

stant,i=1,2,...,n.

The rest of this paper is organized as follows. In Section 2, we prove that under the
assumptions listed above, the system has a unique non-negative solution. In Section 3, the
necessary conditions of optimality for the control problems is given. In the final section,
we prove the existence and uniqueness of the optimal control.

2 The existence and uniqueness of solution for system (1.2)
For the sake of convenience, we introduce the following definitions of the solution.

Definition 2.1 Given the solution of system (1.2), the function p; € I1%(Q),i=1,2,...,n,
which belongs to C(S; L2(2)) NAC(S; L*(R)) N L*(S; HY()) N L2, (S; H*(R2)) for almost any

loc
characteristic line S of the equation

a-t=ag—ty, (at)e(0,A)x(0,T),(ag,ty) e {0}x(0,T)U(0,A) x {0},

satisfies

p; Ip;
% + 3_[; - kiApi =fi - /’Li(ar t:x)Pi - I/ti(d, t’x)pi

= Y ki Mk (@ b, x)Pr(t, x)pi, e in Q,
%(a, t,x)=0, a.e.inX, (2.1)
lim,_, o+ pe,t+&,-) = fOA Bila,t, )pi(a,t,-)da, inL*(Q),a.e. te(0,T),

lim, o+ pi(a + &,8,-) = piola,-), inL*(Q),a.e.a < (0,4),
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where P;(t, ) = fOApi(a, t,)da,i=1,2,...,n.
Then we rewrite the characteristic line S as

S= {(a,t) €(0,A) x (0, T);a—t=ay —to} = {(ao +8,t0 +8);8 € (0,05)},

here (ag + o, ty + @) € {A} x (0, T)U (0,A) x {T}.
We introduce the following notations:
C(S;L*(2)) = {h: S — L*(); h continuous},
AC(S;L2(R)) = {h: S > LX(Q) : h(ag + -, 1o + ) : (0,a) = L*(R)

is absolutely continuous on any compact subinterval}.

Theorem 2.1 For any given u = (u1, Uy, ..., u,) € U, system (1.2) has a unique non-negative
solution p* = (p4,p4,...,p") € L*(Q; R") such that
(i) 0<p? <M, Vatx)eQ, i=12,...,n, where M, is a positive constant;

(i) p* is continuous in u.

Proof For any given & = (ly, h, ..., h,) € L2(Q;R"), h > 0, we define
A
H;(t,x) = / hia,t,x)da, i=1,2,...,n.
0

The given system

Wiy i jyApi = f; — pila, £, x)p; — up;
= D ki Mk (@ b, ) Hi (8, 0)pi, (a,t,x) € Q,
%(d,t,x) =0, (atx)eX,
pil0,t,%) = [ Bila,t, ¥)pi(a, t,x)da, (&%) € R,
7i(a,0,%) =pio(a,x), (a,%) € Qq,
Pi(t,x) = fOApi(a, t,x)da, (tx)eQr,i=12,...,n,

(2.2)

by Theorem 4.1.3 in [21], we know that the above system has a unique non-negative solu-

tion,

P =lph ... pl) e *(QR"), PlALx) =0, Y(tx)eQri=12,...,n
From the comparison principle of linear system [21], it follows that

pf’(a, t,x) <piat,x), aeinQ,i=12,...,n,
where p,(a,t,x) € L°(Q), and this is the solution of the following system:

v ki Ap; =fi — pila, t,x)pi,  (a,t,x) € Q,
%(a,t,x) =0, (a,t,x)eX,

pi(0,6,%) = [} pila,t, Opi(a t,x)da,  (t,%) € Qr,
pi(a,0,x) =pio(a,x), (a,x) € Qu.
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For any #* = (WX, H,..., i) e L2 (Q;R"), 0 < hff < p,, let the corresponding state be p* =
Kk, . P (k=1,2), w= (wi,wy,...,w,) = p' — p?. It follows from (1.2) that

Dl B i Awi = =i + u)Wim Yy s b, £, %) HE (8 2)w;

= D ke Mikla, t,X) [H (%) - HY (6,0)lp7,  (a,6,%) € Q,
aBWL (a,t,x)=0, (a,t,x)eX,
wi(0,t,x) = fo Bi(a, t,x)wi(a, t,x) da,
wi(a,0,x) =0, (a,x) € Q4,

Hi(t,x) = jo (a,t,x)da, (6,x) € Qr,i=1,2,...,mj=1,2.

(2.3)

Multiplying the ith equation in system (2.3) by w; (i = 1,2,..., n), integrating on (0, A4) x
(0,t) x Q, and according to the Holder inequality, we have

2
[wit,-) ||L2(QA)

t
=< (AM2+B||13i||Lw<Q>)/ ||Wi("r’.)Hi2(QA)dt

+ZA BBl f“hl hHL2  dr

t n
=C / (Z||h}<("f’ D=1 2, + Wit -)||§2(QA)> de, (2.4)
0 \ k=1
where C = max;<;<,{AM? + B||p; || 1(0), A*B||p; |1 (q)}- By using the Gronwall inequality,
we have
|wi-t, .)||L2 @ = CZ/ IRz, ) =12z, - )HLZ(Q (2.5)

where C = CeCT. Set

I:={h=(m,hy,...,h,) € *(QGR"):0 < hy(a, t,x) <P(a,t,%),¥(a,t,%) € Q}.
Define the mapping G:1 — |

(Gh)(a,t,x) = p"(a,t,x), V(a,t,x) € Q.

Denote the norm on L2(Q; RN) by

; }
Il 2 = <Z ||hi||§2(@> :
i=1

Define the following norm for C > 0:

T
IIhiII*=/O o] et R (Znh ||2), i=1,2,...,n.

Page 4 of 11
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Obviously the norm || - || 2(g) is equivalent to the norm || - ||,. Using (2.5), we get

|6k -ci?|, = |p" =Pl

1
n 2
2
= (Z ||wi||*>
i=1

nooaT , 3
i (Xl:/o ||Wi("t")||L2<szA>e4nadt>
i

ST

" T n ¢
N Z/ CZ/ ||h11<("f")—hi(-,r,-)HiQ(Q)dr.e—:mcfdt
=170 g2 70 A
1
3

T n , -
= (/ Z”hll((,s, ) - h]%(-,s, ) “LZ(QA) . / nce—4}’lct dt dS)
0 k=1 g

IA

e 'S p 2 2 —4nCs %
2 /(; Z”hk("s’ )= h (s, ')”LZ(QA) "€ ds
k=1

1
=1 = ha ||
2|| 1= hall

It is obvious that GI C I and G is a contraction on (/, || - ||+), so there is a unique fixed
point, which is the solution of system (1.2).

Since p; € L*(Q), let M; = max{esssup |p;(a,t,x)|,1 < i < n}, we have 0 < p¥ <M, a.e.
(a,t,x) € Q. In the following, we study the continuity of the solution of (1.2) for the control
variable u. Let uf = (u’l‘, ué,...,uﬁ) eU, k=12, yia,tx) :p}‘l (a,t,x) —pg‘z(a, t,x). From
(1.2), it follows that

o+ D= kiAy; = (i + ub)y;
= X ketks hipl f(;4 yila, t,x) da — (u} - uf)p?z
= D kerpi M@, x)PZl(t, Xy, (a,t,x) €Q,
Yi(a,t,x)=0, (at,x) €, (2.6)
5i0,6,%) = [ Bia,t, ¥)ya t,x)da,  (t,%) € Q,
yi(a,0,x) =0, (a,x) € Qu,
PY(tx) = [ @to)da, (tx)eQri=12,...,mj=12.

In a similar manner as that in (2.4), we deduce that
2 ! 2
9.7 20,y < (AM + 1Bl + BlB (@) /0 it %) 2(q A7
t
+ 1B~ /0 =42 [ A

n t
+2 3" ABIp i~ / / )2 dxdadr.
k=1,k+i 0 JQy


http://www.boundaryvalueproblems.com/content/2014/1/145

Fu et al. Boundary Value Problems 2014, 2014:145
http://www.boundaryvalueproblems.com/content/2014/1/145

Let C=AM? + ||]7,'||L°°(Q) + B”Ei”LC’O(Q) + 2ABZZ:1,I<#”E/<”LOO(Q)’ we have
2 = ! 1 2 2
|y, 2, ')”LZ(QA> = C(/O (EHCEBE ("T")”H(sm de

+ /0 77 2 df>~ 27)

Adding up (2.7) from i = 1 to n and using the Gronwall inequality, we get
n n t
Z||yl(1t))||i2(QA) EI(Z/ ||u11(; 7:1') _Mlz(vt))”f)(QA) df, (28)
i=1 i1 0

where K = CeC7. Multiplying (2.8) by e and integrating on (0, T'), we have
lp" =2\ = VKT =] . (29)

Inequality (2.9) implies that p* is continuous with respect to u. This completes the proof.
O

3 The necessary conditions
Before stating our main results, we prove the following lemma, which is useful in proving

our results.

Lemma 3.1 Let (u*, p*) be an optimal pair for Problem (1.1), for any 0 < ¢ <1 and for any
V=V, v,) € LHQRY), v > 0, u* + e(v — u*) = u, €U, where u, = (u1e, thog, . .., Upe),
then the following limit holds:

A
— sz in LZ(Q;R”),as e— 0%,

€

where p* = (¥, p¥ ..., p), u* = Wi, ... ut), and z = (21,2, ..., 2,) is the solution of

9z
da

S kiAzi = —(ula, %) + u)z - (vi - w)pl”

— Y ikt x) Zi(, )

- Yhakahall 62z (@tx) €Q,
%i(a,t,x)=0, (at,x)€X, 3.1)
z(0,£,%) = fOA Bi(a, t,x)z(a, t,x)da, (t,x) € Qr,

+

zi(a,0,x) =0, (a,x) € Qyu,
Pf’*(t,x) = f;‘p;‘* (a,t,x)da, (t,x)e Qr,
Zit,x) = [ zla,t,0)da,  (6,%) € Qr,i=12,...,n.

Proof The existence and uniqueness of the solution of (3.1) follow in the same manner as
by Theorem 2.1, the solution z = (z1,2y,...,2,) € L2(Q;R"), and 0 < z; < L, where L is a
constant. We introduce the following notations:

1 *
ze(a, t,x) = =[p* (a,t,%) - p" (a,1,%)], (a,5,%)€Q,
&

xe(a,t,x) = ez (a, t,x), (a,t,x) € Q.

Page 6 of 11
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It is straightforward that z, is the solution of

EZ’—;*E + ag—‘; —kiAzie = —(i + uf)zie — (vi — U )p*

= s ik 6,3 Zae (8, X)L

= Y kg M@, )P (t, %)z, (a,t,x)€Q,
aazf (a,t,x) =0, (a,t,x)eX,
2e(0,6,%) = [} Bi(a,t, 0)zic (a, t, %) da,  (£,%) € Qr,

zi(a,0,x) =0, (a,%) € Qu,

(3.2)

where P¥* (t,x) = fOAp;‘* (a,t,x)da, Zi(t,x) = f(;‘ zie(a, t,x) da, (¢,%) € Qr.
By (2.9), we have

Ixell = 2% —p" |,
< VKT |e(v-u*)],
= VKTe|v-u*|,. (3.3)

So we can claim that x, — 0 in L2(Q;R"), as ¢ — 0*. By (3.1) and (3.2), we see that
Ze —2=(21p — 21,226 — 22, -+ Zns — 2n) € L*(Q; R") is the solution of the following equation:

0(zie=zi)  0(zie~%)
T+ T — kA (zie — 2i)

= iz — 2) — w(zie —21) — (vi — ul) (P = p)
= h i e — 20 da)pl
— s hias b, X) Zi (%) ()~ p)
+ Yt [ @ = p) dazie (34)
= h i ralfy o (@t x) da) (e —z), (@, t%) € Q,
W(a,t,x) =0, (a,t,x)eX,
(zie —2)(0,t,%) = [ Bila,t,%)(zis — z;) da,  (t,%) € Qr,

zi(a,0,x) =0, (a,x)€Qq,i=12,...,n,

where Pf‘* (t,x) = :p?* (a,t,x)da, Z;(t,x) = f(;q zi(a, t,x) da, (t,x) € Q7.
Multiplying the first equation in (3.4) by z;. — z;, integrating on (0,A) x (0,£) x €, using
the Gronwall inequality, in the same manner as in (2.5), and taking x, — 0 in L2(Q; R"),

we deduce
Ze =z, in LZ(Q,R”),as g — 0%,

Consequently, the proof is completed. By the same argument as in (2.9), the following
lemma holds. O

In order to give the necessary conditions, we introduce the adjoint equations of (3.1).

Page 7 of 11


http://www.boundaryvalueproblems.com/content/2014/1/145

Fu et al. Boundary Value Problems 2014, 2014:145 Page 8 of 11
http://www.boundaryvalueproblems.com/content/2014/1/145

Lemma3.2 If q”1 , q“2 are the solutions of the following system corresponding to the control
1

ul, u?, respectively:
aq, + 2, kiAg; = (1 + u*)q, + U - q;(0,t,x)B(a, t,x)
+ Y et p Mk (@, 6, X) g P (8, %)
A *
+ ZZ:l,k;!j Iy Mglat,x)py qiat,x)da, (a,t,%) € Q,
a,t,x) =0, (atx)eX,

i (3.5)

qj(d» T,?C) = q](A; t;x) = 0) (drx) € QA:
* A * .
Py (t,x) =/, p (@ tx)da, (tx)eQr,j=12,..,n

Then

l¢* =], < VKT |u' - u?

). =7z,

e

1 1 1 1 2 2 2 2
1 1,1 1 2 2 .2
where q* = (g} .95 ,...,9% ), 9* = (g} . gy ,....q% ), w = (U, uy,...,u,), u” = (uj,us,

u2), K >0, M, are constant and independent of ¢* , q°, ut, u?.

We are now able to state the main result in this section.

Theorem 3.1 Suppose that (A;)-(As) hold, if (u*, p*) is an optimal pair for Problem (1.1),
and q = (q1, 92, - --,qy) is the solution of (3.5), which is corresponding to the control u* =

(uf,ub,...,u), then we have the following necessary conditions:

nopA T
Z/ / / (vi—u))[@ +q)p¥ -2u;]drededa <o0.
= Jo Jo Ja

Proof The existence and uniqueness of the solution g = (41,¢>,...,4,) to (3.5) can be
proved by Theorem 2.1. For any v; € L*(Q) and any 0 < & < 1, u} + e(v; — u}) € U;. Since

u* = (uf,u},...,u}) is an optimal control for (1.1), we get

Z/ upl dadtdx>2/ [wiepi® — ui, ] dadtdx,

which implies

Z/ / /|: *19; —19; +(Vi—uj‘)(p;‘s_Zuf—g(vi—uf))]dxdtdaso. (3.6)

By Lemma 3.1 and inequality (3.3), passing to the limit as ¢ — 0 in (3.6), we conclude

nopA T
Z/ / / [z + (vi— u;‘)(p;‘* —2u})]dxdeda < 0. (3.7)
' Jo Jo Ja
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Multiplying (3.5) by z;, then integrating over Q, we deduce that

n A T
Z/ f /(Ziuf)(a,t,x)dxdtda
= Jo Jo Ja
n A T .
- Z/ / /ql’("i—uj‘)p? (a,t,x)dxdt da. (3.8)
= Jo Jo Ja

Combining (3.7) with (3.8), we have

i/oA /()ng(vi -uf)[A+ )’ - 2u; | dxdtda < 0. (3.9)
i-1

This completes the proof. d

4 The existence and uniqueness of optimal control
In this section, we prove the existence and uniqueness of optimal control. From [21], we
give the following lemma.

Lemma 4.1 Let X be a reflexive Banach space and let ¢ : X — (—00, +00] be a lower semi-
continuous convex function. If Xy is a closed, convex, and bounded subset of X, then ¢
attains its infimum on Xo. In other words, then there is xy € Xo such that

@(x0) = inf{g(x),x € X, }.
The main conclusion is presented as follows:
Theorem 4.1 If T is small enough, then Problem (1.1) has a unique optimal control in U.
Proof Forany u = (u1,uy,...,uy), v=5,Va,..., V), u; €U, vi €U;, i =1,2,...,n, we define
H(e) :](eu +(1- e)v),

we shall prove that H'(¢) is strictly monotone. Indeed, denote by (pf,p5,...,p;) and
(pi*‘s,pg*a,...,pff‘s) the state corresponding to controls &(uy,uy,...,u,) + (1 — &)(v1, v,
..o, vy) and (& + 8)(ua, ua, ..., uy) + (L = (€ + 8))(v1, Vo, ..., V), respectively.

By (1.3), we have

H'(¢) Z;Er;l) %[]((8 +8)u;+(1—¢e— S)Vi) —](sui +(1- 6)1/,»)]
i=1

lim Z % /Q[(pf*‘s =05 (vi+ (e +8)(ui — vy)) + pi8(u; — vi)] dadtdx
i=1

§—0 4

§—0

—lim Z % / [82(ui )%+ 2(1/,' +e(u; — v,»))é(ui - v,')] dadtdx
i=1 Q

Zf [25 (vi + (ui = vi)) + P (u; — vi) | dade dx
i-1 v Q

— Z / 2(1/,» +&(u; —vi)(u; — vi)) da dt dx, (4.1)
i=1 Y Q

Page 9 of 11
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where z° = (z7,25,...,2}) is the solution of Problem (3.1) corresponding to the control v; +
&(u; — v;). By the same argument as given in (3.8), we have

/ Z (v + e(u; —v;)) dadt dx = / piq (u; —v;)dadt dx. (4.2)
Q Q

Combining (4.1) and (4.2), we obtain
H'(e) = Z f (u; — vi)[pf (1 + qf) - 2(1/,' + e(u; — v,'))] dededx, (4.3)
i=1 YQ

where (g7, 45) is the solution of Problem (3.5) corresponding to the control v; + (1 — v1)
(v + &(ug —v2)).

Given g, p € (0,1), and ¢ # p, and the norm | - ||;2(q) being equivalent to the norm || - ||,
combining Theorem 2.1 and Lemma 3.1, we have

[H'(e) - H'(p)](e - p)

=(8—p)2/(;(u,-—vi)[pf(1+qf) -p!(1+q])]dadedx
-1
-2(e - p)’ s (u; - v;)* dadt dx
e—p FZI/QM v)tda
=(€—p)Z/Q[(ui—w)(pf—pf) + (i - v) (piq; —pPq’)] dadtdx
-1
-2(s-p)? y (u; —v;)* dadtdx
e—p FZI/QM v)tda

n n
<(e=p)’ VKT Y llui = vill}s o) + (€ = p)*MaV/KT Yl = vill g

i=1 i=1

n n
(e = PP MIVRT Y llti = vill gy = 206 =) Y i = vill 2y
i=1 i=1

where T is small enough. If || u; — vil|;2(q) 7 0, then we have
[H'(e) = H'(0)](e = p) < ~(& = p)* s = vill 7o ) < O-

Hence, H'(¢) is strictly monotone. Consequently, J(u) is strictly concave in U.
Define the function & : L%(Q; RN) — (—00, +00):

J(ur, o, ... u,) ifu=(u,u,...,u,) €U,
D(u) =
—00 ifu=(u,us,...,u,) ¢U.

It is clear that ® is concave in L?>(Q;RN). It follows that the nonlinear function & :
L2(Q;RN) — (—00, +00) is upper weakly semi-continuous. Since U is a closed, convex,
and bounded subset in L2(Q; RY) and J (i) is strictly convex in U, by Lemma 4.1, J (1) at-
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tains the unique maximum in i, which implies Problem (1.1) has a unique optimal control
inU. -
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