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Abstract
Differential systems with random impulses are a new kind of mathematical models. In
this paper, we put forward a model of second-order impulsive differential systems
with Erlang distribution random impulses. Sufficient conditions are obtained for
oscillation in mean and p-moment stability of this model respectively. An example is
presented to illustrate the efficiency of the results obtained.
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1 Introduction
It is recognized that the impulsive differential system is an effective model for many real
world phenomena, thus it has been widely used in the study of physics, engineering, infor-
mation and communications technology, etc. in the past years and a lot of valuable results
have been obtained (see [–] and references therein).
For impulsive differential systems, most researchers concern about two kinds of impulse

times: fixed impulse times and varying impulse times, whichmean that the impulse time is
some functions of the ‘state x’ [–]. However, the impulse phenomena sometimes happen
at random times, and any solution of systems driven by this kind of impulses is a stochastic
process, which is very different from those of differential systems with impulses at fixed
moments and varying impulse times []. Thus, the randomness introduced in impulsive
differential systems by this way has brought us new difficulties and problems in the study
of impulsive differential systems. Some other kinds of randomness brought to a system
can be seen in [–].
In fact, only few researchers have studied this kind of impulse (see [–] and references

therein). Wu and Meng first introduced random impulsive ordinary differential equa-
tions and investigated the boundedness of solutions to these models by Lyapunov’s direct
method in []. In [], Wu et al. discussed the existence and uniqueness in mean square
of solutions to certain impulsive differential systems by employing the Cauchy-Schwarz
inequality, Lipschitz condition and techniques in stochastic analysis. In [], Anguraj et
al. presented the existence and exponential stability of mild solutions of semilinear differ-
ential equations with random impulses. In [], the existence and uniqueness of stochastic
differential equations with random impulses were studied byWu and Zhou via employing

© 2013 Zhang and Sun; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/4
mailto:sunjt@sh163.net
http://creativecommons.org/licenses/by/2.0


Zhang and Sun Advances in Difference Equations 2013, 2013:4 Page 2 of 10
http://www.advancesindifferenceequations.com/content/2013/1/4

the Bihari inequality under non-Lipschitz conditions. In [], Wu and Duan studied the
oscillation, stability and boundedness of second-order differential systems with random
impulses. But in their paper, the random impulses must be independent and follow the
same exponential distribution which is a very strong condition. Inspired by their work, we
generalized their results to a much more general distribution, called the Erlang distribu-
tion, which has been widely used to describe the waiting times. We will call this kind of
impulse the ‘random impulses’ throughout this paper. And in this paper, we will discuss
properties such as oscillation, stability of second-order differential systems with Erlang
distribution random impulses.
The rest of this paper is organized as follows. In Section , we recall some preliminary

definitions. In Section , we first give some useful and important lemmas, then establish
our main oscillation and stability results. In Section , we give an example to illustrate the
effectiveness of our results. Finally, the conclusion and the acknowledgements are men-
tioned in Section .

2 Preliminaries
Let (�,F ,P) be a given complete probability space and τk ’s be non-negative random vari-
ables defined in (�,F ,P), k = , , . . . . Furthermore, assume that τi and τj are independent
with each other when i �= j for i, j = , , . . . . E denotes the mathematical expectation. For
the sake of simplicity, we denoteN = {, , . . .},R = (–∞, +∞),R+ = [,+∞),Rτ = [τ , +∞),
where τ ∈R is a constant. Consider the second-order linear differential systems with ran-
dom impulses,

y′′(t) + a(t)y′(t) + p(t)y(t) = , t ∈Rτ , t �= ξk ,∀k ∈N, ()

and

�y(ξk) = bky
(
ξ–
k
)
, �y′(ξk) = bky′(ξ–

k
)
, ∀k ∈N, ()

where a,p ∈ (Rτ ,R) are Lebesgue measurable and locally essentially bounded functions,
ξ = t ∈Rτ and ξk = ξk– + τk for all k ∈N, �y(ξk) ≡ y(ξk) – y(ξ–

k ), �y′(ξk) ≡ y′(ξk) – y′(ξ–
k ),

and y(ξ–
k ) = limt→ξ–k

y(t).
Before giving the main results, we first introduce some definitions.

Definition . A stochastic process y(t) is said to be a sample path solution to the system
() with () satisfying the initial value condition,

yt = y,

if for any sample value t < t < · · · < tk < · · · , of {ξk}k≥, then y(t) satisfies the following
equations:

⎧⎪⎨
⎪⎩
y′′(t) + a(t)y′(t) + p(t)y(t) = , t ∈Rτ , ξk �= t,∀k ∈N,
�y(tk) = bky

(
t–k

)
, ∀k ∈N,

�y′(tk) = bky′(t–k )
, ∀k ∈N.

Definition . Let p > , then the system () with () is said to be
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(i) p-moment stable if for any ε >  and t ∈ Rτ , there exists a δ = δ(ε, t) >  such that

|y|p < δ implies E
∣∣y(t)∣∣p < ε for all t ≥ t;

(ii) uniformly p-moment stable if the δ in (i) is independent of t;
(iii) asymptotically p-moment stable if it is p-moment stable, and for any ε > , δ and

t ∈Rτ , there exists a T = T(ε, δ, t) such that

|y|p < δ implies E
∣∣y(t)∣∣p < ε for all t ≥ t + T ;

(iv) uniformly asymptotically p-moment stable if it is uniformly p-moment stable, and
the T in (iii) is independent of t.

Generally, two-moment stable is called stable in mean square.

Definition . A solution y(t) to the system () with () is said to be non-oscillatory in
mean if Ey(t) is either eventually positive or eventually negative. Otherwise, it is called
oscillatory.

Definition. TheErlang distribution is a continuous probability distributionwith prob-
ability density function as follows:

f (x;k,λ) =

{
λkxk–e–λx

(k–)! , x > ,
, otherwise,

where k ∈ N is the shape parameter and λ >  is the rate parameter. In the following, we
will denote the probability density function of the Erlang distribution by Erlang(k,λ).

Remark . Some properties of the Erlang distribution.
(i) The mean value of Erlang(k,λ) is k

λ
, the variance of Erlang(k,λ) is k

λ
;

(ii) Erlang(,λ) = exponential(λ);
(iii) If X , Y are independent, and X ∼ Erlang(k,λ), Y ∼ Erlang(k,λ), then

X + Y ∼ Erlang(k + k,λ);
(iv) The cumulative distribution function (CDF) of the Erlang distribution is

F(x;k,λ) =  –
k–∑
n=

e–λx (λx)n

n!
.

Consider the following auxiliary differential system:

x′′(t) + a(t)x′(t) + p(t)x(t) = , t ∈Rτ . ()

A solution x(t) to the system () means that x(t) has the second-order derivative x′′(t) on
Rτ and satisfies the system () for all t ∈Rτ .
The following condition will be needed by all main results in Section .
(H) Let τk follow Erlang(mk ,λ), where mk ∈N, k = , , . . . , and mi ≤ mj, for any i ≤ j

and let τi be independent with τj when i �= j.
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Remark . FromRemark .(i), we know that the assumptionmi ≤ mj (i≤ j) means that
the impulses interval τk is non-decreasing in k in the sense of expectation.

3 Main results
In this section, some results on p-moment stability and oscillation in mean of the second-
order linear differential systems () with random impulses () are presented. Inspired by
[], we obtain the following lemma, which guarantees limk→+∞ ξk = +∞ with probabil-
ity .

Lemma . Assume that the condition (H) holds, then limk→+∞ ξk = +∞ with probabil-
ity .

Proof For a given non-negative random variable τ and a constant c > , we define

τ (c) :=

{
τ , if τ ≤ c,
, otherwise.

By Kolmogorov’s three series theorem and Kolmogorov’s zero-or-one laws [],
∑+∞

k= τk =
+∞ almost surely if and only if at least one of the series

∑+∞
k= P(τk > c) and

∑+∞
k= E(τ

(c)
k )

diverges for some c >  or any c > .
From the CDF of the Erlang distribution, we obtain that P(τk > c) =  – P(τk ≤ c) =  –

F(c;mk ,λ) is increasing in k, together with P(τ > c) > , we conclude that
∑+∞

k= P(τk > c)
diverges. Thus, we know that

∑+∞
k= τk = +∞ almost surely. The proof is complete. �

Lemma . (see []) y(t) is a solution of the system () with () if and only if

y(t) =
+∞∑
k=

( k∏
i=

[ + bi] ·X[ξk ,ξk+)(t)

)
x(t),

where x(t) is a solution of the system () with the same initial conditions of the system ()
with (), and X is the index function, i.e.,

X[ξk ,ξk+)(t) =

{
, if ξk ≤ t < ξk+,
, otherwise.

Here and in the sequel, we assume that a product equals unity if the number of factors is
equal to zero.

Theorem . Let the condition (H) hold. Further assume that there are a finite number of
bk such that bk < –. If there exists a T ∈ Rτ such that

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

does not change its sign for all t ≥ T , then all solutions of the system () with () are oscil-
latory in mean if and only if all solutions of the system () are oscillatory. Here and in the
following, z ≡ t – t.
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Proof Let y(t) be any sample path solution of the system () with (), then it follows from
Lemma . that

y(t) =
+∞∑
k=

( k∏
i=

( + bi) ·X[ξk ,ξk+)(t)

)
x(t).

Since there are a finite number of bk such that bk < –, there exists aK such that
∏k

i=(+bi)
are either non-negative or non-positive for all k ≥ K . Hence, by either monotone conver-
gence or Tonelli’s theorem [],

Ey(t) = E

+∞∑
k=

( k∏
i=

( + bi) ·X[ξk ,ξk+)(t)

)
x(t)

=
+∞∑
k=

E

( k∏
i=

( + bi) ·X[ξk ,ξk+)(t)

)
x(t)

=
+∞∑
k=

( k∏
i=

( + bi) ·EX[ξk ,ξk+)(t)

)
x(t).

Further,

EX[ξk ,ξk+)(t) = P(τ + τ + · · · + τk ≤ z < τ + τ + · · · + τk+)

= P(τ + τ + · · · + τk ≤ z) – P(τ + τ + · · · + τk+ ≤ z)

=
m+m+···+mk+–∑
n=m+m+···+mk

e–λz (λz)n

n!
.

So,

Ey(t) =
+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

e–λz (λz)n

n!

)
x(t)

= e–λzx(t)
+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
.

Since

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

does not change its sign for all t ≥ T ,

e–λzx(t)
+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

does not change its sign for all t ≥ T , too. Hence, Ey(t) has the same sign as x(t) for all
t ≥ T . That is, all solutions of the system () with () are oscillatory in mean if and only if
all solutions of the system () are oscillatory. The proof is complete. �
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Theorem. Let the condition (H) hold and further assume that there are a finite number
of bk such that bk < –. Then all solutions of the system () with () are oscillatory in mean
if and only if all solutions of the system () are oscillatory.

Proof According to Theorem ., we only need to prove that there exists a T ∈ Rτ such
that

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
()

does not change its sign for all t ≥ T .
In the following, we will discuss the sign of () in two cases respectively.
Case I. Assume that there are a finite number of bk such that bk < – and no bi = –.

Then there exists a finite set N̂ = {ki : ki ∈ N satisfying k < k < · · · < kn, where n is finite}
such that bk > – for all k ∈N\N̂ and bk < – for all k ∈ N̂ .
(a) If n is odd,

k∏
i=

( + bi) <  for all k ≥ kn.

So,

k∏
i=

( + bi) ·
m+···+mk+–∑
n=m+···+mk

(λz)n

n!
<  for all k ≥ kn and t > t. ()

For any fixed k,  ≤ k < kn,

kn∏
i=

| + bi| (λz)m+···+mkn+j–

(m + · · · +mkn + j – )!

≥
kn∏

i=k+

| + bi| (λz)mk++···+mkn

(m + · · · +mkn + j – )!
·

k∏
i=

| + bi| (λz)m+···+mk+j–

(m + · · · +mk + j – )!

≥
kn∏

i=k+

| + bi| (λz)mk++···+mkn

(m + · · · +mkn +mk+ – )!
·

k∏
i=

| + bi| (λz)m+···+mk+j–

(m + · · · +mk + j – )!

holds for j = , , . . . ,mk+.
In fact,

kn∏
i=k+

| + bi| (λz)mk++···+mkn

(m + · · · +mkn +mk+ – )!
= βk · zmk++···+mkn

 ≥ kn – 

holds for all t ≥ t + Tk , where Tk =max{, kn–
βk

}, and

βk =
kn∏

i=k+

| + bi| λmk++···+mkn

(m + · · · +mkn +mk+ – )!

is a positive constant.
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Thus,

kn∏
i=

| + bi| (λz)m+···+mkn+j–

(m + · · · +mkn + j – )!

≥ (kn – )
k∏
i=

| + bi| (λz)m+···+mk+j–

(m + · · · +mk + j – )!
()

holds for j = , , . . . ,mk+. From (), we obtain that

∣∣∣∣∣
kn∏
i=

( + bi) ·
m+···+mkn+–∑
n=m+···+mkn

(λz)n

n!

∣∣∣∣∣ ≥ (kn – )

∣∣∣∣∣
k∏
i=

( + bi) ·
m+···+mk+–∑
n=m+···+mk

(λz)n

n!

∣∣∣∣∣. ()

From () and (), it follows that

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
< 

for t ≥ t + T , where T =max≤k<kn Tk .
(b) If n is even, similar to the procedure of (a) in Case I, we can prove that

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
> 

holds for all t ≥ t + T .
From (a), (b), we know that

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

does not change its sign for all t ≥ t + T .
Case II. Assume there are a finite number of bk such that bk < – and at least a bi =

–. Then let m = min{i ∈ N : bi = –}, and let bk > – for all k ∈ {, , . . . ,m – }\N̂ and
bi < – for all i ∈ N̂ , where N̂ = {k,k, . . . ,kn} satisfying k < k < · · · < kn. Without loss of
generality, we assume kn <m. Then

k∏
i=

( + bi) =  for all k ≥ m.

Thus,

+∞∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

=
m–∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
.

http://www.advancesindifferenceequations.com/content/2013/1/4
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Similar to the proof of Case I, we can prove that

m–∑
k=

( k∏
i=

( + bi) ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)

does not change its sign for all t ≥ t + T .
In summary, by Case I, Case II and Theorem ., all solutions of the system () with ()

are oscillatory in mean if and only if all solutions of the system () are oscillatory. The
proof is complete. �

Remark . Theorem . is a generalization of Theorem  in [] since the condition (H)
can degenerate to the condition (C) in [].

Theorem . Let the condition (H) hold. If there exists a constant α >  such that

+∞∑
k=

( k∏
i=

| + bi|p ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
≤ αeλz

holds for all t ≥ t, then the system () with () is (uniformly, asymptotically, uniformly
asymptotically, etc.) p-moment stable if and only if the system () is stable correspondingly.

Proof Let y(t) be any solution of the system () with (). Similar to the proof of Theo-
rem ., we obtain that

E
∣∣y(t)∣∣p = e–λz ·

+∞∑
k=

( k∏
i=

| + bi|p ·
m+m+···+mk+–∑
n=m+m+···+mk

(λz)n

n!

)
· ∣∣x(t)∣∣p.

By assumption, we obtain that

E
∣∣y(t)∣∣p ≤ α

∣∣x(t)∣∣p. ()

So, if the trivial solution of the system () is stable, then for any ε > , there exists a δ > 
such that

|x| < p√
δ implies

∣∣x(t)∣∣ < p

√
ε

α
for all t ≥ t.

From x = y and (), we obtain that

|y|p < δ implies E
∣∣y(t)∣∣p < ε for all t ≥ t,

which means that the trivial solution of the system () with () is p-moment stable.
The remaining proof is similar to the proof above, so we omit it. The proof is complete.

�

Remark . If bk(τk) ≡ bk is finite for all k = , , . . . , when the condition (H) degenerates
to the condition (C) in [], Theorem . degenerates to Theorem  in [].
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4 Example
Let the condition (H) hold. Consider the second-order linear differential systems with
random impulses as follows:

y′′(t) + ty′(t) + y(t) = , t ∈R+, t �= ξk ,∀k ∈N, ()

and

�y(ξk) = bky
(
ξ–
k
)
, �y′(ξk) = bky′(ξ–

k
)
, ∀k ∈N, ()

and the auxiliary differential equation

x′′(t) + tx′(t) + x(t) = . ()

By the classic Lyapunov’s theory, the system () is stable, and if we let mk =  for k =
, , . . . , λ = , b = , b = –, bk be arbitrary for k ≥ , p = , α = , then by Theorem .,
we obtain that the system () with () is stable in mean square. It can be seen that for
this example, the most important impulsive effects are the first two impulsive functions
b and b.

5 Conclusion
In this paper, we first put forward a model of second-order impulsive differential systems
with Erlang distribution random impulses. Then we obtain sufficient conditions for oscil-
lation in mean and p-moment stability of this model respectively. Finally, an example is
presented to illustrate the efficiency of the results obtained.
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