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Abstract
Unsteady magnetohydrodynamic (MHD) flow of a second grade fluid over a
stretching sheet is a focus of this steady. Surface tension is considered to be varies
linearly with temperature. The stretching velocity is defined in (Liu and Andersson in
Int. J. Therm. Sci. 47(6):766-772, 2008). Similarity transformation reported by Abbas et
al. (Math. Comput. Model. 48:518-526, 2008) are used to develop nonlinear system of
differential equations coupled in velocity and temperature fields. The system is solved
by the homotopy-analysis method (HAM), while the effects of different parameters
such as the unsteadiness parameter S, film thickness, Hartmann numberMa, Prandtl
number Pr, Thermocapillary numberM, heat flux –θ ′(0), surface skin-friction
coefficient f ′′(0), free surface temperature θ (1) for flow field, and heat transfer are
studied in this article.

Keywords: second grade fluid; HAM; magnetic field; thin film; free surface flow;
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1 Introduction
In many manufacturing processes the flows of non-Newtonian fluids have acquired spe-
cial attention because boundary layer behavior over the flow and heat transfer phenom-
ena of an unsteady two-dimensional free surface flow of a viscous incompressible con-
ducting fluid have promising applications, such as the performance of lubricants, metal
and polymer extrusion, application of paints, drawing of plastic sheets, fiber and wire
coating, transpiration cooling, foodstuff processing and movement of biological fluids,
chemical equipments, reactor fluidization and microchip production, continuous cast-
ing, and the process of designing various heat exchangers. The rate of heat transfer of
the stretching sheet determines the best quality product for the coating process. Much
research has been carried out on the non-Newtonian boundary layer equations in Carte-
sian coordinates both theoretically and experimentally. However, the non-Newtonian flu-
ids cannot be described simply like Newtonian fluids. Therefore several researchees pro-
posed their respective models for non-Newtonian fluids. Among these, viscoelastic fluids
have a high status for the researchers due to its special characteristics. The simplest sub-
class of viscoelastic fluids is the second grade fluid, for which an analytic solution is pos-
sible.
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Sakiadis [, ] in  was first to present various aspects on boundary layer behav-
ior on continuous solid surface of the stretching problem involving Newtonian and non-
Newtonian fluids; these have been extensively studied by several authors. Crane [] in
 was first to study the hydrodynamics of a steady stretching of a flat elastic sheet in a
two-dimensional boundary layer flow by reducing the steady Navier-Stokes equations to
a nonlinear ordinary differential equations by means of a similarity transformation. Wang
[] in  first studied the hydrodynamics of an unsteady stretching surface in a thin
liquid film of a flow by converting the unsteady Navier-Stokes equations to a nonlinear or-
dinary differential equations by means of a similarity transformation. But Lai and Kulacki
[], in , assumed that viscosity and thermal conductivity vary as inverse functions
of the temperature and then solved the equations numerically by using the Runge-Kutta
shooting method. Anderson et al. [] in  extended the work of Wang [] by studying
heat transfer and an analysis has been performed by shooting method. Liao [] in 
was first to introduce the homotopy-analysis method (HAM). The problem studied by
Anderson et al. [] was considered by Wang [] in , he presented an analytical solu-
tion using HAM [] and found good agreement with that of the multiple shooting method.
Wang et al. [] in  presented HAM solutions for the non-Newtonian problem stud-
ied by Anderson et al. []. Furthermore, in  thermocapillary effects were discussed
by Dandapat et al. [] and Chen [], and viscous dissipation in the presence of a mag-
netical effect was discussed by Abel et al. [] in . A more extended form considered
by Liu et al. [] in  for the stretching sheet of the prescribed temperature variation
was considered by Anderson et al. []. Noor et al. [] in  introduced a magnetic field
as considered in [] and thermocapillary effect as used in [] to extend the model in [].
Further Noor et al. [] in  took a similarity transformation from [, ] and used
it for the purpose of reducing the range of independent variables to -. A more realistic
approach was used by Yasir et al. [] in  by studying the flow over a stretching sheet
by taking variable physical properties. For solution purposes they used the homotopy-
perturbation method (HPM). Hazarika and Konch [] in  investigated the effects of
varying thermal conductivity and viscosity, variable heat flux and constant suction on the
magnetic hydrodynamics (MHD) boundary layer flow forced by convection past a stretch-
ing/shrinking sheet.

Similarly Hayat et al. [] in  considered a steady second grade fluid. Magnetic field
is applied normal to the flow of electrically conducted fluid in a porous channel while solu-
tion is possible by using HAM. Abbas et al. [] in  investigated the flow of an unsteady
second grade fluid over a stretching surface, where HAM gives the analytical solution for
the model problem. Meanwhile Abel and Mahesha [] in  studied the MHD bound-
ary layer flow of a non-Newtonian viscoelastic fluid in the presence of non-uniform heat
source and thermal radiation. Moreover, the thermal conductivity may vary linearly with
temperature and the regular perturbation technique is used for solution. Further Hayat et
al. [] in  used convective boundary conditions for the second grade fluid and HAM
has been used for the series result. Hussnain et al. [] in  used HAM for the ana-
lytic solution of second grade fluid in the rotating system between two horizontal plates
in the presence of a transverse magnetic field. Recently Temitope and Samuel [] in 
worked out on the variable physical properties in the steady second grade fluid, solution
is establish by numerical Runge-Kutta shooting technique. Meanwhile Gital et al. [] in
 proposed a problem of unsteady second grade fluid due to an oscillating porous wall
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and modified version of the variable separation technique is used for the solution. Very
recently Das and Sharma [] in  investigated a second grade MHD fluid past a semi-
infinite stretching sheet which is electrically conducting, while there is convective surface
heat flux along them. Furthermore, the influence of MHD on the fluid flow in various
geometries was studied in [–].

Motivated by these analyses, the aim of the present investigation is to observe the case
of a non-Newtonian fluid for thin film two-dimensional flow satisfying the constitutive
equations of second grade fluid with heat transfer over an unsteady stretching sheet un-
der the influence of a transverse magnetic field with surface tension in the boundary con-
ditions. The surface tension varies linearly with temperature. The model boundary layer
non-linear partial differential equations transform to ODEs by means of proper transfor-
mations concerning the geometry of the problem under consideration. Analyses are made
for skin friction, heat transfer and for the flow speed’s various natural parameters by using
the well-known analytical method HAM. Different effects of non-dimensional values such
as unsteadiness parameter, film thickness, Hartmann number, surface skin-friction coef-
ficient, Prandtl number, Thermocapillary number, heat flux, and free surface temperature
are discussed and sketched for the effects of various pertinent parameters and meaningful
results have been pointed out.

2 Problem formulation
2.1 Governing equations
Consider a thin elastic sheet of uniform thickness h(t) of a second grade fluid which is due
to incompressible, unsteady and two-dimensional flow that emerges from a narrow slit at
the origin of the Cartesian coordinate system. The horizontal axis (x-axis) is considered
to be along the stretching sheet, while the magnetic field B = B/( –αt)/ is vertical to the
stretching sheet is applied along the direction of gravity, which is located along the y-axis.
An infinite horizontal disk is placed at z =  in a viscous incompressible non-Newtonian
fluid. For the Cauchy stress tensor in a second grade fluid one is referred to [, ], whose
data is experimentally fit with polymer melts given in [] and is given as

T = –pI + μA + αA + αA
 ,

where p represents pressure, I is the identity tensor, μ is the viscosity, αi (i = , ) the
material constants and A, A are Rivlin-Ericksen tensors, which can be further defined as

A = (grad V ) + (grad V )t ,

A =
dA

dt
+ A(grad V ) + (grad V )tA,

here d/dt represents the material time derivative and V is the velocity. By assumption, the
Clausius-Duhem inequality is satisfied and the minimum Helmholtz free energy is taken
when the fluid is locally at rest and we have

μ ≥ , α ≥ , α + α = 

when α = α = ; the second grade fluid reduces to that of a viscous fluid. Employing the
above expressions, the momentum and energy equations governing the unsteady incom-



Shah et al. Boundary Value Problems  (2017) 2017:162 Page 4 of 20

pressible flow of a second grade fluid are [, , ]

∂u
∂x

+
∂v
∂y

= , ()

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν

(

∂u
∂x +

∂u
∂y +

∂v
∂x∂y

)

+
α

ρ

[


∂u
∂t∂x +

∂u
∂t∂y +

∂v
∂t∂x∂y

+ 
∂u
∂x

∂u
∂x + u

∂u
∂x + v

∂u
∂x∂y

+ 
∂v
∂x

∂v
∂x + u

∂u
∂x∂y + u

∂v
∂x∂y

+ v
∂u
∂y

+ v
∂v

∂x∂y +
∂u
∂y

∂v
∂x + 

∂v
∂y

∂v
∂x∂y

–
∂u
∂y

∂v
∂y +

∂u
∂x

∂u
∂y –

∂u
∂x

∂v
∂x∂y

]

+
gß(T – T)

ρ
–

σ̂B

ρ
u, ()

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= ν

(
∂u
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+
∂v
∂x + 

∂v
∂y

)

+
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∂v
∂t∂x + 

∂v
∂t∂y + 
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∂x

∂u
∂x∂y

+ u
∂u

∂x∂y
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∂v
∂x + v

∂u
∂x∂y

+ v
∂v

∂x∂y
+

∂v
∂x

∂u
∂y

–
∂v
∂x

∂u
∂x –

∂v
∂y

∂u
∂x∂y

+
∂v
∂y

∂v
∂x + u

∂v
∂x∂y + 

∂v
∂y

∂v
∂y + v

∂v
∂y + 

∂u
∂y

∂u
∂y

]
, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= κ

(
∂T
∂x +

∂T
∂y

)
. ()

The following scaling is used for the governing equations with boundary conditions to
transform into their dimensionless form:

x = Lx∗, y = δ̂y∗, u = Uu∗, v =
U δ̂

L
v∗,

t =
L
U

t∗, g =
U

L
g∗, T = T∗(Ts – T) + T,

()

where δ̂ and L are the length scales in the vertical and horizontal directions, respectively,
δ̂
L �  is the aspect ratio, T the temperature of fluid at the surface of the stretching sheet
and Ts is temperature of fluid at the surface. By using the above non-dimensional variables
and removing the asterisk this becomes

∂u
∂x

+
∂v
∂y

= , ()
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∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂u
∂y +

α

ρ

[
∂u

∂t∂y + u
∂u

∂x∂y + v
∂u
∂y –

∂u
∂y

∂v
∂y +

∂u
∂x

∂u
∂y

]

+
gß(Ts – T)θ

ρ
–

Lσ̂B

Uρ
u, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= κ
∂T
∂y , ()

subject to boundary conditions []

u = Us, v = , T = Ts at y = , ()

μ
∂u
∂y

=
∂σ

∂x
, v =

dh
dt

,
∂T
∂y

=  at y = h, ()

where u and v are in the x and y direction components of the velocity of the fluid, T is
the temperature, σ̂ the electrical conductivity, t the time, ν the kinematic viscosity, ρ the
density, μ the viscosity, κ the thermal diffusivity, and σ is the surface tension, which varies
linearly with temperature,

σ = σ

[
 –

δx( – αt) 


νb
(T – T)

]
, ()

δ represents a positive fluid characteristic. The surface stretching velocity is defined in []
as

Us = bx( – αt)–, ()

where α and b are both positive constants. The initial stretching rate is denoted by b,
b/(–αt) is the effective stretching rate. It is assumed that the surface is smooth and there is
no wave at the surface of the liquid film. As taken by Liu et al. [], for having a uniform film
thickness the stretching surface velocity will be (), i.e. it does not depend on position.
The surface temperature of the stretching sheet is chosen to be dependent on both time
and location along the sheet as

Ts = T – Tref
bx

( – αt) , ()

since T is the stretching sheet temperature and Tref is the reference temperature (con-
stant) for all t < /α.

2.2 Similarity transformation
We will be making use of the surface velocity given in () and surface temperature ()
combined with the similarity transformations in equations () and () given as []

u =
bx

 – αt
f ′(η), ()

v = –
(νb) 



( – αt) 

βf (η), ()
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where u and v are the velocity components along x- and y-axis, respectively. Furthermore,
the temperature is defined as

T = T – Tref bx( – αt)–θ (η), ()

where in [] the similarity variable η is

η =
(

b
ν

) 


( – αt)
–
 β–y, ()

the unknown β is a constant representing the dimensionless film thickness, taken from
[],

β =
(

b
ν

) 


( – αt)
–
 h(t), ()

equations ()-() are transformed to the following non-linear system of coupled equa-
tions:

f ′′′ + K
[

Sf ′′′ +



Sηf ′′′′ + f ′f ′′′ – ff ′′′′ + f ′′
]

– ϒ

[



Sηf ′′ + f ′ – ff ′′ + Grθ + (S + Ma)f ′
]

= , ()

θ ′′ + Prϒ
[

f θ ′ – f ′θ – Sθ –
S

ηθ ′

]
= . ()

The physically valid boundary conditions for the modeled problem are

f () = , f ′() = , θ () = , ()

f () =



S, f ′′() = Mθ (), θ ′() = , ()

where a prime used for differentiation with respect to η, K = α
b(–αt)–

ρν
is the dimension-

less second grade parameter (viscoelastic parameter), Gr = gßTref is the Grashof number,
S = α/b is the non-dimensional parameter of unsteadiness, Ma = Lσ̂ , B

/Uρb the Hart-
mann number, ϒ = β is the non-dimensional film thickness, Pr = ν/k the Prandtl number,
and M is the thermocapillary number defined by M = δσTrefβ

μ
√

bν
.

3 Problem approach
3.1 Skin-friction coefficient and Nusselt number
The physical quantities of interest are skin-friction coefficient and local Nusselt number.
The shear stress τw on the surface of the thin liquid film sheet is

τw =
[
μ

∂u
∂y

+ α

(
∂u
∂t∂y

+ u
∂u
∂x∂y

+ v
∂u
∂y –

∂u
∂y

∂v
∂y

+
∂u
∂x

∂u
∂y

)]
y=

,

and the local skin-friction coefficient or frictional drag coefficient is

Cf =
τw

ρU .
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In dimensionless form we have

Re/
x Cf =


β

[
f ′′(η) + K

(



Sf ′′(η) +



Sηf ′′′(η) – f (η)f ′′′(η) + f ′(η)f ′′(η)
)]

η=
, ()

where Re/
x = bx/ν( – αt) is the local Reynolds number. The heat transfer from the sheet

qw is given by qw = –κ( ∂T
∂y )y= and the Nusselt number is Nux = xqw

κ(To–Ts) , with κ and μ being
thermal conductivity and the dynamic viscosity, respectively. So the general form of the
rate of heat transfer [] and the skin friction for the thin liquid film are given by

Re–/
x Nux ≡

[

β

θ ′(η)
]

η=
. ()

3.2 Solution approach
The model given in equations ()-(), are solved by the homotopy-analysis method
(HAM) [, ]. HAM is a semi-analytical technique to solve nonlinear ordinary/partial
differential equations. The homotopy-analysis method entails the concept of homotopy
from topology to develop a convergent series solution for nonlinear systems. This is im-
plemented by applying a homotopy-Maclaurin series to compromise with the nonlinear-
ities in the system. It is a series development method that is not precisely dependent on
small or large natural parameters. Thus, it is suitable for not only weakly but also strongly
nonlinear models, addressing some of the fundamental conditions of the basic perturba-
tion methods. Further, the HAM is a cooperative method for the delta expansion method,
the Lyapunov artificial small parameter method, the homotopy perturbation method and
the Adomian decomposition method. The higher generalization of the method usually
takes for granted the strong convergence of the solution over larger spatial and param-
eter domains. Furthermore, the HAM gives excellent flexibility in the expression of the
solution and how the solution is explicitly obtained. It provides great freedom to choose
the basis functions of the desired solution and the corresponding auxiliary linear operator
of the homotopy. Finally, unlike the other analytic approximation techniques, HAM pro-
vides a simple way to ensure the convergence of the solution series. Free software based on
the homotopy-analysis method for nonlinear boundary-value and eigenvalue problems is
available called Mathematica package BVPh..

The functions f (η) and θ (η) can be written in terms of {ηm|m = , , , . . .} as

f (η) =
+∞∑
m=

amηm, ()

θ (η) =
+∞∑
m=

cmηm, ()

where am and cm are the constants. The initial guesses for the corresponding f (η) and θ (η)
satisfying the given boundary conditions () and () are

f(η) = η +
S –  – Mθ(η)


η +

 – S + Mθ(η)


η, ()

θ(η) = , ()
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where the auxiliary linear operators for equations () and () are £f = ∂/∂η and £θ =
∂/∂η, respectively, with the characteristics

£f
[
C + Cη + Cη

 + Cη
] = , ()

£θ [C + Cη] = , ()

the integration constants are denoted by C, C, C and C. The non-linear operators are
constructed from equations () and () as

ℵf
[
F(η; q),�(η; q),�(q)

]
= F ′′′ + K

[
SF ′′′ +




SηF ′′′′ + F ′F ′′′ – FF ′′′′ + F ′′
]

– �

[



SηF ′′ + F ′ – FF ′′ + Gr� + (S + Ma)F ′
]

, ()

ℵθ

[
F(η; q),�(η; q),�(q)

]
= �′′ + Pr�

[
F�′ – F ′� –




Sη�′ – S�

]
, ()

where the unknown functions F(η; q) and �(η; q) depends upon η and q, and the function
� depends only on q. A prime in the superscript indicates the number of derivatives with
respect to η. Here the auxiliary parameters are �f 
=  and �θ 
= , while the non-zero aux-
iliary functions are represented by Hf and Hθ . The deformation equation for zeroth order
can be expressed as

( – q)£f
[
F(η, q) – f(η)

]
= q�f Hf ℵf

[
F(η, q),�(η, q),�(q)

]
, ()

( – q)£θ

[
�(η, q) – θ(η)

]
= q�θ Hθℵθ

[
F(η, q),�(η, q),�(q)

]
, ()

the boundary conditions are

F(; q) = , F ′(; q) = , �(; q) = , F(; q) =



S,

F ′′(; q) = M�(; q), �′(; q) = ,
()

the embedding parameter is  ≤ q ≤ . From equations () and (), it is observed that,
when q = , this implies that equations () and () are obtained as

F(η; ) = f(η), �(η; ) = θ(η). ()

As q =  and �f , �θ 
=  and Hf , Hθ 
= , equations ()-() give equations ()-(), re-
spectively, but

F(η; ) = f (η), �(η; ) = θ (η), �() = ϒ . ()

On increasing q from zero to one, the approximate solutions F(η; q) and �(η; q) converge
to exact solutions f (η) and θ (η), respectively;

�() = ϒ, ()
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the initial guess for the time-scale parameter ϒ . By using a Maclaurin series combining
with () and (), the functions F(η; q), �(η; q) and �(q) can be expanded as a series of q
as

F(η; q) = f(η) +
+∞∑
m=

fm(η)qm, ()

�(η; q) = θ(η) +
+∞∑
m=

θm(η)qm, ()

�(q) = ϒ +
+∞∑
m=

ϒmqm, ()

where

fm(η) =


m!

[
∂mF(η; q)

∂qm

]
q=

, ()

θm(η) =


m!

[
∂m�(η; q)

∂qm

]
q=

, ()

ϒm =


m!

[
∂m�(q)

∂qm

]
q=

, ()

using () we have

f (η) = f(η) +
+∞∑
m=

fm(η), ()

θ (η) = θ(η) +
+∞∑
m=

θm(η), ()

ϒ = ϒ +
+∞∑
m=

ϒm. ()

Differentiating m times equations () and () with respect to q after putting q =  and
dividing both sides by m!, we finally get the mth-order deformation equations

£f
[
fm(η) – χmfm–(η)

]
= �f Hf (η)Rf ,m(η), ()

£θ

[
θm(η) – χmθm–(η)

]
= �θ Hθ (η)Rθ ,m(η), ()

with boundary conditions

fm() = , f ′
m() = , θm() = , ()

fm() = , f ′′
m() = Mθm(), θ ′

m() = , ()

for m ≥ 

Rf ,m(η) = f ′′′
m– + K

[
Sf ′′′

m– +



Sηf ′′′′
m– + 

m–∑
n=

(
f ′
nf ′′′

m––n – fnf ′′′′
m––n + f ′′

n f ′′
m––n

)]
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–
m–∑
n=

ϒn

[



Sηf ′′
m––n +

n∑
i=

(
f ′
i f ′

n–i – fif ′′
n–i

)
+ Grθm––n

+ (S + Ma)f ′
m––n

]
, ()

Rθ ,m(η) = θ ′′
m– + Pr

m–∑
n=

ϒn

[ n∑
i=

(
fiθ

′
n–i – f ′

i θn–i
)

– Sθm––n –
S

ηθ ′

m––n

]
, ()

and

χm =

⎧⎨
⎩

, m > ,

, m = ,

the solution of () and () can be expressed as

fm(η) =
∫ η



∫ η



∫ η



∫ η


�f Hf (s)Rf ,m(s) ds ds ds ds

+ χmfm– + C + Cη + Cη
 + Cη

, ()

θm(η) =
∫ η



∫ η


�θ Hθ (s)Rθ ,m(s) ds ds + χmθm– + C + Cη. ()

Thus mth-order approximation of f (η), θ (η) and ϒ are expressed as

f (η) ≈
m∑

n=

fn(η), ()

θ (η) ≈
m∑

n=

θn(η), ()

ϒ ≈
m–∑
n=

ϒn, ()

by simultaneously solving equation fn+(η) with the help of the boundary conditions
fn+() =  and f ′′

n+() =  mentioned in () ∀n ≥  to obtain ϒn.

3.3 Optimal convergence control parameters
First made error analysis and then giving theoretical observations. For investigation pur-
poses Tables - are presented and Figures - are drawn. During the HAM solution a

Table 1 Optimal value of convergence control parameters versus different orders of
approximation

Order of
approximation

�f �θ εt
m CPU time

2 –0.816110 –0.570098 7.37847× 10–3 11.3260 seconds
3 –0.830974 –0.761688 1.30091× 10–4 18.5925 seconds
4 –0.840993 –0.617020 1.99436× 10–6 37.0145 seconds
5 –0.846134 –0.687839 3.39372× 10–8 63.8482 seconds
6 –0.850443 –0.690781 5.04199× 10–10 108.937 seconds
7 –0.858637 –0.731049 –1.1845× 10–10 196.690 seconds
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Table 2 Individual averaged squared residual errors using optimal values of auxiliary
parameters

m εf
m εθ

m CPU time

2 2.54396× 10–3 2.50182× 10–7 2.46878 seconds
4 3.93474× 10–7 5.39818× 10–9 6.66087 seconds
6 1.08366× 10–10 1.16081× 10–10 13.5679 seconds
8 6.10692× 10–13 2.49521× 10–12 22.4765 seconds
10 2.17244× 10–14 5.36337× 10–14 34.5937 seconds
12 5.23527× 10–16 1.15284× 10–15 49.7814 seconds
14 1.14949× 10–17 2.47801× 10–17 67.1306 seconds
16 2.47258× 10–19 5.32646× 10–19 86.7832 seconds
18 5.26476× 10–21 1.14492× 10–20 110.962 seconds
20 1.00927× 10–22 2.46099× 10–22 138.456 seconds

Table 3 Convergence of HAM on the basis of skin friction f ′′(0) and heat flux –θ ′(0) for
selected values of Ma = 1, M = 1, ϒ = 0.127013, Pr = 0.2, Gr = 5, S = 0.2 and K = 0.1

m f ′′(0) –θ ′(0)

1 –2.987594767874287 0.001666755677540
5 –2.988314378094173 0.002678333954988
10 –2.988310366379021 0.002700353358962
15 –2.988310346982944 0.002700534393216
18 –2.988310346828816 0.002700535809751
20 –2.988310346820995 0.002700535881606
25 –2.988310346820995 0.002700535881606
30 –2.988310346820995 0.002700535881606

Figure 1 Ma = 1, M = 1, ϒ = 0.127013, Pr = 0.2, S = 0.2 and Gr = 1.

fixed minimum error of – is assigned to the package BVPh.. The main advantage
of this method is the self-determination of the rate of the homotopy series expansions and
solution region; for this purpose the auxiliary parameters �f 
=  and �θ 
=  are included
in the solutions () and (). The average residual errors were introduced by Liao [] to
obtain the optimal values of �f and �θ , which are

εf
m =


k + 

k∑
j=

[
ℵf

( m∑
i=

F(η)
m∑

i=

�(η)

)
η=jδη

]

dη, ()

εθ
m =


k + 

k∑
j=

[
ℵθ

( m∑
i=

F(η)
m∑

i=

�(η)

)
η=jδη

]

dη, ()



Shah et al. Boundary Value Problems  (2017) 2017:162 Page 12 of 20

Figure 2 Ma = 1, M = 1, ϒ = 0.127013, Pr = 0.2, S = 0.2 and K = 0.1.

Figure 3 Residual error using 20th-order (HAM) via Mathematica package BVPh2.0 approximation,
where Ma = 1, M = 1, ϒ = 0.127013, K = 0.1, Gr = 5 and S = 0.2.

the total squared residual error was defined by Liao [] as

εt
m = εf

m + εθ
m, ()

where δη = . and k = . Zhao [] introduced the Mathematica package BVPh.
for minimizing the total average squared residual error. Considering different cases for
varying K , Gr and Pr we obtained Figure  and Figure , respectively. In Figure , putting
Ma = , M = , ϒ = ., Pr = ., Gr = , S = . and varying the second grade pa-
rameter K we observe the error for different orders of approximation. Figures (a) and (b)
illustrate the maximum average squared residual error at different orders of approxima-
tion. While it is also seen that in Figure (a), where for viscoelastic parameter K = . it is
observed that as the order of approximation is increased the total averaged squared resid-
ual errors and averaged squared residual errors are getting smaller, but when K = ., the
error is increased as compared to the case for K = . as shown in Figure (b). Similarly in
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Figure 4 Residual error using 20th-order (HAM) via Mathematica package BVPh2.0 approximation,
where Ma = 1, M = 1, ϒ = 0.127013, Pr = 0.2, Gr = 5 and S = 0.2.

Figure 5 The effect of K on velocity profile and temperature profile with Ma = 5, M = 1, ϒ = 0.027013,
Pr = 0.2, Gr = 5, S = 0.2.

cases for Gr = ,  it is observed that as the Grashof number is increased the error is in-
creased as shown in Figures (a) and (b), respectively. Next for the cases for Pr = ., .
it is observed that as the Prandtl number is increased the residual error is decreased as
shown in Figures (a), (b), (c) and (d), respectively. While it is also observed that as the
order of approximation increased the residual error decreased shown in Figure . Here
Figures (a), (b), (c) and (d) are about the residual error of azimuthal velocity f and
the residual error of the temperature θ . As second grade parameter, K increases both the
residual errors of the azimuthal velocity f and the temperature θ , as shown in Figure . In
addition, Table  presents the optimal values of convergence control parameters as well
as the minimum values of total averaged squared residual error versus different orders of
approximation for Ma = , M = , ϒ = ., Pr = ., Gr = , S = ., K = .. Ta-
ble  for Ma = , M = , ϒ = ., Pr = ., Gr = , S = . and K = . displays the
individual average squared residual error at different orders of approximations using the
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self-selection of optimal values by Mathematica package BVPh.. Table  shows that
 decimal place accuracy takes place of f ′′() and  decimal place accuracy takes place
of θ ′() after  orders of approximation.

Hence, HAM Mathematica package BVPh. is a choice of selection to the set of local
convergence control parameters to get convergent results.

3.4 Results and discussion
From second grade fluid (viscoelastic fluid) we obtained nonlinear couple of differential
equations () and () subject to the physical boundary conditions () and (), which
are analytically solved by using HAM via the Mathematica package BVPh. for selected
non-dimensional values of the film thickness β , unsteady parameter S, Hartmann number
Ma, skin friction, Prandtl number Pr, thermocapillary number M, heat flux, free surface
temperature, and Grashof number Gr. Different effects of auxiliary parameters �f and �θ

on β = ϒ

 , f ′′(), θ () and –θ ′() are shown in Table  using a th-order HAM approx-

imation when Ma = , M = , Pr = ., Gr = , S = ., and K = ., ., .. The effects
of the non-dimensional values K , Pr, Gr and S on β = ϒ , f ′′(), θ () and –θ ′() are pre-
sented in Tables -. For investigation, the effect of various involved physical parameters
are studied with the aid of graphs and with tabulated results by means of analytical method
HAM.

Based on Table , increasing the value of second grade parameter K will reduce the film
thickness β = ϒ and the heat flux –θ ′() also decrease, but the skin friction f ′′() and the
value of free temperature θ () increases for the case Gr = , and for Gr =  significant
impacts in the values of –θ ′(), θ () and f ′′() is seen. In Table  significant impact is
involved in heat flux –θ ′() and free temperature θ (), by increasing the values of Prandtl
number Pr will decrease the film thickness β = ϒ and heat flux –θ ′() while, the skin
friction f ′′() and free temperature θ () increases for the case K = . and for K = .
similar pattern are investigated in Table . Similarly by increasing the Grashof number Gr,
the film thickness β = ϒ and the heat flux –θ ′() decreases, while free temperature θ ()

Table 4 Variation of β2 = ϒ , f ′′(0), θ (1) and –θ ′(0) using 20th-order (HAM) via Mathematica
package BVPh2.0 approximation when Ma = 1, M = 1, Pr = 0.2, Gr = 5 and S = 0.2

�f �θ β2 f ′′(0) θ (1) –θ ′(0)

K = 0.1
–0.832780 –0.941760 0.727013 –3.16449 0.977408 0.0721367
–0.836000 –0.857229 0.527013 –3.11339 0.983654 0.0524063
–0.838367 –0.795225 0.327013 –3.06291 0.989878 0.0325884
–0.840192 –0.717392 0.127013 –3.01303 0.996077 0.0126844
–0.840993 –0.617020 0.027013 –2.98831 0.999166 0.0027005

K = 0.2
–0.720505 –0.669723 0.727013 –2.98309 0.977904 0.0721543
–0.72187 –0.614013 0.527013 –2.93775 0.984014 0.0524153
–0.72276 –0.555679 0.327013 –2.89292 0.990101 0.0325917
–0.723643 –0.475951 0.127013 –2.84858 0.996164 0.0126848
–0.724163 –0.372249 0.027013 –2.82660 0.999185 0.0027003

K = 0.3
–0.632928 –0.491987 0.727013 –2.84154 0.978332 0.0721680
–0.633377 –0.453117 0.527013 –2.80042 0.984325 0.0524221
–0.633868 –0.413418 0.327013 –2.75968 0.990294 0.0325937
–0.634495 –0.359594 0.127013 –2.71935 0.996239 0.0126836
–0.634866 –0.309759 0.027013 –2.69935 0.999201 0.0026989
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Table 5 Variation of β2 = ϒ , f ′′(0), θ (1) and –θ ′(0) using 20th-order HAM via Mathematica
package BVPh2.0 approximation when Ma = 1, M = 1, Pr = 0.2, S = 0.2 and K is varied

K β2 f ′′(0) θ (1) –θ ′(0)

Gr = 5
0.10 0.727013 –3.16449 0.977408 0.0721367
0.15 0.527013 –3.01960 0.983841 0.0524111
0.20 0.327013 –2.89292 0.990101 0.0325917
0.25 0.127013 –2.78049 0.996202 0.0126846
0.30 0.027013 –2.69935 0.999201 0.0026989

Gr = 10
0.10 0.727013 –3.17265 0.977385 0.0721359
0.15 0.527013 –3.02354 0.983833 0.0524109
0.20 0.327013 –2.89432 0.990099 0.0325917
0.25 0.127013 –2.78069 0.996202 0.0126846
0.30 0.027013 –2.69935 0.999201 0.0026989

Table 6 Variation of β2 = ϒ , f ′′(0), θ (1) and –θ ′(0) using 20th-order HAM via Mathematica
package BVPh2.0 approximation when Ma = 1, M = 1, Gr = 5, S = 0.2 and Pr is varied

Pr β2 f ′′(0) θ (1) –θ ′(0)

K = 0.1
0.4 0.527013 –3.11042 0.967667 0.1042320
0.6 0.327013 –3.05718 0.970051 0.0970981
0.8 0.127013 –3.00845 0.984435 0.0505359
1.0 0.027013 –2.98683 0.995842 0.0134874

K = 0.3
0.4 0.527013 –2.79721 0.968979 0.1042950
0.6 0.327013 –2.75420 0.971266 0.0971506
0.8 0.127013 –2.71525 0.985072 0.0505494
1.0 0.027013 –2.69804 0.996014 0.0134869

Table 7 Variation of β2 = ϒ , f ′′(0), θ (1) and –θ ′(0) using 20th-order HAM via Mathematica
package BVPh2.0 approximation when Ma = 1, M = 1, Pr = 0.2, S = 0.2 and Gr is varied

Gr β2 f ′′(0) θ (1) –θ ′(0)

K = 0.1
1 0.727013 –3.15798 0.977426 0.0721373
3 0.527013 –3.11168 0.983657 0.0524064
5 0.327013 –3.06291 0.989878 0.0325884
10 0.127013 –3.01328 0.996077 0.0126844
20 0.027013 –2.98834 0.999166 0.0027005

K = 0.3
1 0.727013 –2.83675 0.978347 0.0721684
3 0.527013 –2.79914 0.984328 0.0524222
5 0.327013 –2.75968 0.990294 0.0325937
10 0.127013 –2.71954 0.996239 0.0126833
20 0.027013 –2.69937 0.999201 0.0026989

and the skin friction f ′′() increases when K = ., where for the case K = ., increasing
in Gr also increases the free temperature θ () and the skin friction f ′′(), while the film
thickness β = ϒ and heat flux –θ ′() decreases as shown in Table ; significant impact
is involved in f ′′() and θ (). By increasing the stretching parameter S will increase the
skin friction f ′′(), while film thickness β = ϒ


 decreases, but swing impact is detectable

in both free temperature θ () and heat flux –θ ′() when K = . as shown in Table .
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Table 8 Variation of β2 = ϒ , f ′′(0), θ (1) and –θ ′(0) using 20th-order HAM via Mathematica
package BVPh2.0 approximation when Ma = 1, M = 1, Pr = 0.2, Gr = 5 and S is varied

S β2 f ′′(0) θ (1) –θ ′(0)

K = 0.1
0.2 0.727013 –3.16449 0.977408 0.0721367
0.3 0.527013 –2.98620 0.970255 0.0779990
0.4 0.327013 –2.80557 0.973148 0.0645101
0.5 0.127013 –2.62791 0.986181 0.0315136
0.6 0.027013 –2.47627 0.996330 0.0080868

K = 0.3
0.2 0.727013 –2.84154 0.978332 0.0721680
0.3 0.527013 –2.71539 0.970797 0.0780346
0.4 0.327013 –2.58351 0.973421 0.0645281
0.5 0.127013 –2.45124 0.986266 0.0315166
0.6 0.027013 –2.33454 0.996345 0.0080868

Figure 6 The effect of Ma on velocity profile and temperature profile with K = 0.1, M = 1,
ϒ = 0.027013, Pr = 0.2, Gr = 5, S = 0.2.

Figure 7 The effect of M on velocity profile and temperature profile with K = 0.1, Ma = 5,
ϒ = 0.027013, Pr = 0.2, Gr = 5, S = 0.2.

Meanwhile the case when K = . has been discussed in Table  and a similar behavior
is observed as it was seen for K = ..

Demonstration of the temperature and velocity profiles for electrically conducted
hydromagnetics second grade flow under non-isothermal condition over an unsteady
stretching sheet is shown in Figures - when K , Ma, M, ϒ , Pr and S are varying over
many values, respectively. By increasing the value of viscoelastic parameter K , tempera-
ture increases as shown in Figure (b), while the flow velocity initially increases and after
η = . it starts decreasing with the increasing of viscoelastic parameter. It means lit-
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Figure 8 The effect of ϒ on velocity profile and temperature profile with K = 0.1, M = 1, Ma = 5,
Pr = 0.2, Gr = 5, S = 0.2.

Figure 9 The effect of Pr on velocity profile and temperature profile with K = 0.1, M = 1, Ma = 5,
ϒ = 0.027013, Gr = 5, S = 0.2.

Figure 10 The effect of S on velocity profile and temperature profile with K = 0.1, M = 1, Ma = 5,
ϒ = 0.027013, Pr = 0.2, Gr = 5.

tle swing impact is observed in the velocity profile as shown in Figure (a). Figures (a)
and (b) demonstrate the effect of applied transverse magnetic field parameter Ma, we
observed interesting results of the physical problem. As Ma increases in Figure (a), the
flow velocity decreases initially but after η = . it starts increasing slightly due to the
fact that initially applied transverse magnetic field produces a drag in the form of Lorentz
force thereby decreasing the magnitude of the velocity. Meanwhile the temperature of
the flow increases significantly with the increment in the magnetic field Ma as shown in
Figure (b). By increasing the surface tension gradient M (thermocapillary number), the
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flow velocity decreases initially but after η = . it starts increasing, that is, the flow turns
from slight deceleration to higher velocity and the temperature decreases as shown in Fig-
ures (a)-(b), respectively. Increasing the thermocapillary number M leads to higher heat
diffusivity on the stretching sheet; thus the Nusselt number Nux is increased, while the
flow is cooling down. Reduction of the temperature produces the vibrating force in the
fluid molecules. According to the mass conservation law if the force is reduced in the flow
direction, then the skin friction Cf also decreases. The effect of film thickness β = ϒ on
the velocity profile and the temperature distribution is shown in Figures (a) and (b).
Thin film flow slightly swings from deceleration to higher velocity, it means that the flow
velocity initially decreases up to η = . and then increases consistently, while the tem-
perature effect uniformly decreases see in Figures (a) and (b), respectively. The effect
of the Prandtl number Pr (the ratio of momentum diffusivity and thermal diffusivity), on
velocity profile and temperature distribution is shown in Figures (a) and (b). One can
see in Figure (b) that increasing the Prandtl number Pr, the heat transfer –θ ′() slows
down and this decrease is seen in the whole domain of fluid, causing the flow to cool.
But the flow velocity remains unchanged as the Prandtl number increases as shown in
Figure (a). Here, it can be seen in Figure (a) that the friction and velocity of fluid flow
increases by increasing the stretching parameter, S. As a result heat flux θ ′() increases in
the boundary layer region, which is compatible with the physical phenomena. Figure (b)
is plotted to observed the effect of the temperature distribution. Here we see that when
the stretching parameter, S, is increasing, the temperature consistently decreases.

4 Concluding remarks
In this investigation, the effects of Grashof number Gr and Prandtl number Pr under the
influence of MHD convection in second grade fluid flow over the surface of a stretch-
ing sheet with heat transfer is studied. The system of two-dimensional partial differential
equations is transformed into a system of ordinary differential equations. The developed
nonlinear ordinary differential equations are solved analytically by HAM. The following
conclusions are drawn during investigation:

. It is concluded that as the second grade parameter K increases the flow velocity
decreases slightly up to some extent and then increases, it means swing impact is
detectable, while temperature consistently increases.

. It is also concluded that by increasing magnetic parameter Ma, the thin film flow
swings from slight deceleration to higher velocity and temperature is lowered.

. It is found that increasing the thermocapillary number M, the flow velocity form a
parabolic profile while temperature is lowered.

. Moreover, increasing the film thickness ϒ , the flow swings from lower velocity to
higher velocity and temperature is lowered consistently.

. Furthermore increasing the Prandtl number Pr, the flow temperature decreases and
velocity remains unchanged for fixed values of parameter.

. It is also investigated that as the magnitude of stretching parameter S rise the velocity
increases and the temperature is lowered.
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