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Abstract

In this article, the authors discuss £5¢) and o solutions of the second order
generalized difference equation

Ajulk) +f(kuk) =0, kelao0)a>0

and we prove the condition for non existence of non-trivial solution where

Agu(k) = ulk + £) — u(k) for £ > 0. Further we present some formulae and examples to
find the values of finite and infinite series in number theory as application of Ay.
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1 Introduction

Difference equations usually describe the evolution of some certain phenomena over time
and are also important in describing dynamics for fundamentally discrete system, see [1].
For example, in the numerical integration, the standard approach is to use the difference
equations. Similarly, the population dynamics have discrete generations; the size of the
(k +1)st generation u(k + 1) is a function of the kth generation u(k). This can be expressed

as difference equation of the form

u(k +1) = f (u(k)),

see for example [2]. Further, the concept of difference equations with many examples in
applications such as asymptotic behavior of solutions of difference equations were studied
extensively by Elaydi [3] where the analytic and geometric approaches were also combined
in order to studying difference equations. Further, in [3], both classical and modern treat-
ment of the difference equations were presented in excellent form. For related results on
difference equations, see [4—38]. In the present article, we study £5(;) and cy( solutions of

the following second order generalized difference equation
A%u(k) +f(k, u(k)) =0, kela,0),a>0, (1)
where Agu(k) = u(k + £) — u(k) for £ > 0. We provide some related definitions and devel-

opment for the present article.
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The basic theory of difference equations is based on the operator A defined as
Au(k) =u(k +1) —u(k), keN, (2)

where N ={0,1,2,3,...,}. Even though many authors [1-4] have suggested the definition
of A as

Au(k) =u(k +€) —u(k), keNLeR-{0} (3)

and there are several research took place on this line. By defining A, and its inverse A},
many interesting results and applications in number theory as well as in fluid dynamics can
be obtained. By extending the study for sequences of complex numbers and ¢ to be real,
some new qualitative properties like rotatory, expanding, shrinking, spiral and weblike
structures were studied for the solutions of difference equations involving A,. For similar
results, we refer to [9-13].

In particular, the £, and ¢y solutions of second order difference equations of (1) when
£ =1, were discussed in [8]. In this article, we discuss £y(¢) and co() solutions for the sec-
ond order generalized difference Equation (1) and present some applications of A, in the
finite and infinite series of number theory. Throughout this article, we use the following
notation:

(i) [k] denotes the integer part of k,
(i) N={0,1,2,3,...}, N(a) = {g,a+1,a+2,...},
(i) No() = {j,j + €,j + 2¢,...} and R is the set of all real numbers.

2 Preliminaries
In this section, we present some of the preliminary definitions and related results which
will be useful for future discussion. The following three definitions held in [9].

Definition 2.1 Letu: [0,00) — Cand £ € (0, 0o) then, the generalized difference operator
Ay is defined as

Apu(k) = ulk + £) — u(k). (4)
Similarly, the generalized difference operator of the rth kind is defined as
Ap=A(A7Y) ifr=2. (5)

Definition 2.2 For arbitrary x,y € R the i-factorial function is defined by

) —hy F(% +1)

xh = m, (6)

where T is the Euler gamma function. Note that when x = k, & = £, y = n € N(1) Defini-
tion 2.2 coincides with Definition 2.1.

Definition 2.3 Let u(k), k € [0,00) be a real or complex valued function and ¢ € (0, c0).
Then, the inverse of A, denoted by A;* and defined as follows.

If Agv(k) = u(k), then v(k) = Azlu(k) +¢j, (7)


http://www.advancesindifferenceequations.com/content/2012/1/105

Manuel et al. Advances in Difference Equations 2012, 2012:105 Page 3 of 14
http://www.advancesindifferenceequations.com/content/2012/1/105

where ¢; is a constant for all k € Ny(j), j = k — (2—‘]6.

Definition 2.4 The generalized polynomial factorial for £ > 0 is defined as
ké") =k(k—0)(k—2£)--- (k- (n-1)¢). (8)
Lemma 2.5 If¢ >0 and n € Ny(1) then,

_17.(n 1 n+1)
AFE = R (k=) 4 ¢ )

forall k e Ny(j), j=k - {IZ‘]Z and c; is constant.

Lemma 2.6 ([13] Product formula) Let u(k) and v(k) be any two functions. Then

Afulk)v(k)} = uk + €) Av(k) + v(k) A u(k)
= v(k + £)Aou(k) + u(k)Aev(k), Vk € Ny(a). (10)

Lemma 2.7 ([12]) Let £> 0, n € N(2), k € (¢,00) and kﬁ") 0. Then,

L1 -1
AE ) = —(Vl*l) + C]‘. (11)
k, (n-1)e(k - £),
Definition 2.8 A function u(k), k € [a, 00) is said to be in the space £yy), if
Z|u(a+j+y€)|2<oo for all j € [0, £). (12)

y=0
Iflim,, o |u(a +j + r€)| = 0, for all 0 <j < £ then u(k) is said to be in the space cq).

Lemma 2.9 ([9] Summation formula of finite series) Ifreal valued function u(k) is defined
forall k € [0,00), then

r&

Atu(k) = Z u(k —re) +c;, (13)

r=1

where c; is a constant for allk € Ny(j), j = k— f'ﬂﬁ, Since [0,00) = (., Ne(j), each complex
number cj, (0 < j < {) is called an initial value of k € Ny(j). Usually, each initial value c; is

taken from any one of the values u(j), u(j + £), u(j + 2£), etc.

Lemma 2.10 (Summation formula of infinite series) Iflimy_, o, u(k) =0 and € > 0, then

[ee]

AFuk) == "ulk +re). (14)

r=0
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Proof Assume z(k) = Y2, u(k + rt). Then,
Agz(k) = Z ulk+€+re) - Z u(k + rt) = —u(k).

r=0 r=0

Now, the proof follows from limy_, o, #(k) = 0 and Definition 2.3.

Theorem 2.11 Iflimy_, o u(k) =0 and € > O, then

APulk) =" "ulk +ril +ry0).
r1=0ry=0

Proof The proof follows by taking A;! on (14).

Corollary 2.12 Let k € [£,00) and £ € (0,00). Then

JETE S
Cktk—0)  ek—20)

and hence

20: (k+ro)k+rt—0) Ck—20)

Proof The proof follows from Equation (14) and ¢; = 0 as k — 0.

The following example illustrates Corollary 2.12.

Example 2.13 Taking ¢ = 0.8, k =1 in (16), we obtain

1 1 1 1
+ + o= .
1x02 18x1 26x18 0.8 x0.2

The following example shows that ﬁ € coqy and £op).
4

(15)

(16)

Example 2.14 Assume # € N(2) and k € [n¢, 00). Let u(k) = 1,1) . By Lemmas 2.7 and 2.10,

N
we obtain

Since ¢; = 0 as k — oo. Replacing k by a + j, we get

> 1 1
Z . = L for a > nt.
o a+j+rl), (n—-1)t(a +)),

Since

2 1

< )
(a+j+re)

1

(a+j+ rk)i")

’

17)
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for a > nt thus Equation (17) yields

1 1

2

E ula+j+re) <E = - <00
s | / | o (a+j+ r[)i") (n—1)¢(a +;)"D

By Definition 2.8, the function — k 5 € £y Since

1 1
lim —— =0, — € Co)-
T (@ 4+ M)e kén)

Now taking a = n€ then u(k) is an ;) space function.

3 Main results
In this section, we present the condition for non existence of non-trivial solution of (1).

Lemma 3.1 Leta > 2¢ and k € |a, 00). Then

1 4

kS (krls VOWEVE—D)

Proof We have

4
Wk + €+ VW, + k- 1)
_ Ak - VR W= VEk-0)

52

3 o\ 2
. 1+2) —1ll1-(1-=
Ve (1) - ()]
AT LE_ L1V 1130V 118506\
“e |l 2k T 2a\k) Taa2\x) "wmaz2\x)
i1t 11(ey?_ 113 ey 113500
U 2k 214\k/) 3ra2\k a1422\k) ’

Since each positive term is greater than the consecutive negative term in the first expres-

sion, we find
4kT1e 11/¢0\> 1¢ 11@2113431135
JR— —_—— e —— — X __+__ — —_— = —— —— +...
22k 214\k 2k "21a\k) T3a2\k) Twa22 k
4Te e¢1¢][1¢ 11£2113E31135£
_____ __+__ J— _— —_——— — +...
Nz 2ak|l2k T2a\k) T3a2\k) Twa22\k
_4e[le 1106\ 11370\’ 11350¢\
“ealak Tawa\k) Taaa\k) Tawaxa\x) *
401¢1¢ 11/¢\*> 113/¢\° 1135/¢
—— |t =)t ) o +oee
224k|2k 214\ k 3142\ k 41422\ k

_LL2[L1 0N 113 76) 1135(¢
Tk e 2al\k) Taa2\x) Twaza\k) 7
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1 2(1/3 3
=+ —| - -=--
k 4¢[3'\2 4
135/(7 5
+ _—— e —
5!122\2 4
since the second term is positive. d
Lemma 3.2 Leta > 2¢ and k € [a, o0). Then

\/k+€_ Vk 1
Vk Vk+l+vk—¢

(18)

Proof From the Binomial theorem for rational index, we find

+e [(k+0)2 —(k-0)7]
. 1¢ 111/¢\* 1113/¢\°
ok Taw22\k) Taa22\k
k 1¢ 111/¢\* 1113/¢\°
__1+ ______ — + ———— = —_— .
20 2k 2122\ k 31222\ k
115 111/€¢\> 1113/¢\°
U 2k 2122\k) 31222\k/)
. 1¢ 111/¢\* 1113/¢\°
T ok T 222\%) Taz22\k) T

kTe 1113/¢\°
“oelk Taaa2\k) T

Since each negative terms is greater than the next consecutive positive term and k > 2¢,

\/I<+E_ vk _(1 {)%_E
Vk o Vk+l+vk—t 2¢

we get

Vk+t vk e 11 e
Vk o Vkre+Vk-¢ 2k 2 2 2k

Lemma 3.3 Leta >2¢. If

Agz(k) < a(k) + B(k)z(k) (19)
and _75 <B< _k—‘;zforallk € [a, 00) then
rkaia rk4

(1+f5(]’+a+r€))1) < a(k) (1+/3(]’+u+r€))71, (20)

r=0

Ay (z(k)

r=0

. k=
wherej =k —a—[=*]L.

Page 6 of 14


http://www.advancesindifferenceequations.com/content/2012/1/105

Manuel et al. Advances in Difference Equations 2012, 2012:105
http://www.advancesindifferenceequations.com/content/2012/1/105

Proof From the inequality (19) and 1 + (k) > O for all k € [a, £), we find,

z(k +£) a(k)
vt R = 1w
which yields,
e rzai
z(k + £) A 3 . .
(1+BG+a+re)” —z(k) (L+BG+a+ro)
T+ gl 13 [1
ka1
k —
<tipig 1] tesvearro)’

Now (20) follows by taking r = [1%1 andj+a+ f’%’w =k.

The following theorem shows the nonexistence of solutions of (3).

Theorem 3.4 For all (k,u) € [a,00) x R, let the function f(k, u) be defined and

2

[f(k, u)} < %k‘z|u|.

(21)

Then, if u(k) € Ly is a solution of (3), there exists a real ki > a (a > 2¢) such that u(k) = 0

for all k € [ky, 00).

Proof Since u(k) is a solution of (3) and belong to £5(), we have Y o, [u(a +j + r£)|* < 00

which yields limy_, o, #(k) = 0 and hence

lim Ayu(k) = lim A%u(k) =0.
k— 00 k— o0

(22)

By using Equations (3) and (22), and applying A;' on Equation (3) with Lemma 2.10, we

obtain
Au(k) =Y " f(k+rt,u(k + re)).
r=0

Now by applying again A;' on both sides, and by Theorem 2.10, we get

oo o0

which yields

u(k) ==Y (r+ Df (k+rt,ulk +r0)), ke la,o0).

r=0

Therefore, from (21), we obtain

£2
u)] = v,

(23)

(24)

(25)

(26)

Page 7 of 14
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where
v(k) = Z(r +1)(k +re)2 |u(k +re)|, forallke[a,o0). (27)
r=0

Obviously v(k) > 0 for all k € [a, 00) and limy_, o, v(k) = 0.

If v(k +j) = 0, Vj € [0, £), for some k = k; > a, then (r + 1)(k + j + r€)2u(k +j + r£) = 0 for
allr=0,1,2,.... Hence u(k) = 0 for all k > k. In this case, the proof is complete.

Now, we suppose that v(k) > 0 for all k € [a, 00), from (27), we have

Apv(k) = - Z(k + r@)_2|u(k + rE)|

r=0

and
A%v(k) = k’2|u(k) |

From (26), we have

KZ
A%v(k) < Ek_zv(k) for all k € [a, 00). (28)

From (27), a > 24, k’:rle < %' by Schwartz’s inequality, we obtain

[e.¢]

v(k) < €7 (k+r0)Mulk + ro)| < €7 (Z(k + rz)2> (Z|u(k + re)|2)
r=0 r=0

r=0

1
2

By using Corollary 2.12, we get

v(k) < 3 \/leg (;|u(k+ rﬁ)|2) .

If w(k) = €3 /k — €v(k), then

w(k)5(2||u(k+rz)||2> , forall k € [a,00). (29)
r=0

Hence we have

wk)— 0 and w(k)>0, Vke [a,o0). (30)
By applying Lemma 2.6 to Equation (29) twice, we obtain

A2w(k) = €3 (Vk + EA2V(k) + 28 v(K) A VK + v(k) A2VE — €). (31)

Again from Lemma 2.6 and Equation (29), we obtain

Av(k) = €73 (% Agw(k) + w(k) A \/%) (32)
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From (31), (32) and by Lemma 2.6, we find that

A[ (klegW(k)>

1

¢
= EA%W(k) — (m)A[W(/{)
= %2 {(VEk+ EA3v(E) + 28 (k) ANk + v(k) AFVE - £}
¢
- <k(k-5)>A"’W(k)
3 3 k
= %{vk +LAZV(k) + 2072 I:LAgW(k) + 2$Ag \/klj:|Ae«/z
03 ) ¢
+ ?v(k)AZ«/k—K} - (m)AKW(k)
3 (k 3
:ﬁ( k+Z>A%v(k) + %zz\/k-zv(k)m\/;jmﬁ
03
L2

2 V4
VK ANk = €+ —— Ayw(k) Ak — ———— Aw(k
3 (k) Ay P ew(k) Ay ew(k)

k(k—1¢)
s (C2Vk+t 203 —— 1
562 Ve )V(k)+7 /(—KV(/()A(\//?Agﬁ
03
+ 7v(/<)A§«/k—E

2k —-10) l
Ak—=)—A
+< W ok k)k—ﬁ wi(k)
which in view of (28), (30) gives

Agz(k) < a(k) + (k)z(k),

(33)

where

() = —— Agw(k) (34)

4 ) w(K),

s (OVk+e 2 1 1
=02 ———— + SV A NVEA —— + = A2k -

a(k) ez( ot Vk-eank Ce ik E)v(k) (35)

and

_(2(k-10) _é
Since (21((/;;)

(36)
YAk > 0, from (1 + %)% <1+ %%, we obtain
14 22
X < B(k) < L where k € [a, 00).

(37)

Page 9 of 14
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Further, since

ik - m(ﬁAZL = Wk+t-VEWk - -k

Jk—¢
(2
N TN N N

and

AWk —C=vEk+-Vk+Vk-t-k
_ Wk - VRWk+ L+ V) (VE= - VR L+ VE)
- Wk+ €+ Vk) (Wk=1 + k)
B Vk=—t-Vk+t
T Wk €+ VR(WE =L+ k)

0 - 0 (z2\/k+z . _242M‘/l?(‘/k_z_‘/k*@)v(k)
YA Y/ S e BV YV S 2l A

From Lemmas 3.1 and 3.2

) < 03 <z2\/k+z 4
4 VN 2k (Wk+ €+ VRO + k=€)

+—222+£\/I?(«/k—€—«/k+£)>v(k)
Wk + €+ VE) Wk + k=€)

) 203 <e2\/k+z ek —62)1/(/()
WKWK+ L+ VOWK+VE=O\ VK Vk+l+Vk—¢

~ 203 (vk+l_ Vk _
VKWK L+ VWK +VE-O\ vk Vk+ L+ V=€

1) v(k). (38)

By Lemma 3.2, we find y (k) < 0 for all k € [4, 00). Thus from Lemma 3.3 and y (k) <0, we
find

Ay (z(k) (1+BG+a+ rZ))_l) <0, forallk e [a+¢,00).

That is,

2(k) (1+BG+a+r0)"

r=0

is decreasing by £ steps.
If

2(k) (1+BG+a+r0)" >0

Page 10 of 14
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for all k € [a + £,00), then z(k) > 0. From (34) we find A,w(k) > 0 and hence w(k) is in-
creasing by ¢ steps, but this contradicts (30).
If there exists a real K > a + £ such that

-1

z(K) (1+,3(j+a+r£))_1:p,<0
r=0

forall 0 <j<¢, then

z(k) (1+,B(j+u+r€))_1<pj

r=0

for all k € [K, 00), that is,

z(k) < pj (1+ﬁ(j+a+r£)).

However from (37), since 1 + (k) > (k- £)/k >0 and j = k — (’%W, it follows that z(k) <
p;(j +a—£)/(k —£), and hence from (34), we find A,w(k) < p;(j + a — £). Further, since

1
wk)—>0, k>K+24 = Z(k—K—E)zl

we get w(k + £) < w(k) + p;(j + a — £) which yields w(k) < w(k — £) + p;(j + a — £) and hence
we get

w(k) < w(K +£) + %p,»(j +a-L0)(k-K-1¢)
for all k € [K + 2¢£,00), since
k>K+2¢ = k-K=>2¢, %(k—](—z)zl.
But this implies that w(k) — —oco, and again we get a contradiction to (30).

Thus combining the above arguments, we conclude that our assumption v(k) > 0 for all
k € [a,00) is not correct, and this completes the proof. d

Theorem 3.5 For all (k,u) € [0,00) x R, let the function f(k, u) be defined and
_ 5

Then, if u(k) is a solution of (3) € cow), there exists an integer ky > a (a > 4{) such that
u(k) = 0 for all k € [k, 00).

Proof Let u(k) be a solution of (3) such that limy_,  |#(k)| = 0. Then,

lim Ayu(k) = lim A%u(k) =0
k—o00 k— o0
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for all £ > 0. Thus, for this solution also the relation (24) holds. Further, since there exists
a constant ¢; > 0 such that |u(k)| < ¢; for all k € [a,00), where 0 <j =k — {%]E < £, we find

that
Z(r + D|f ((k + 7€), ulk + re))| < Z(r + l{;zq(k +70) " ulk + r€)|>
r=0 r=0

= (k+r0) 100 u(k + ro)|

r=0

< cjéq’l Z(k +r0)11  wherej=k - (%—‘K

=l K+ Z(k + rﬂ)lq:|

00 k 1-q
= 0T K4 e Z(Z + r>
L r=1

[ () 1
= 0T KT 4 01 |:—l + ri| :|
L 2-q Ik

€

_ -
= cjﬁq_l K4 < 00,
L Uq-2)

for all k € [ky, 00). Therefore, this solution also has the representation (24).

Now as in Theorem 3.4, we define

v(k) = Z(r +1)(k + rE)*q|u(k + r6)| = Zz’q(r + 1)<% + r)qfu(k + rﬂ)f.
r=0 r=0

Sinceq>%,we find
o0 k -2 oo
vk) <™ r+1)| = +r ulk +ro)| = 0>71 r+ 1)k + 1) |ulk +re
(k) < 203 )(L, )|( )| ZO( )k + 1) ulk +re)|

then it follows that

) E_% 00 5 %
v(k) < Ez_q( > { u(k +re) } .
— 20:! |

Hence we define

(k) = 093k — ew(k),
1

E(k) = ZT:;]gZ&[IV(kj

7 (k) = eq'(e‘“:;l 2« AZJ_A@J_+kA2Vk—E>ﬁ(k),

_ 2k — )
(= k —
B(k) ( " )AN?

£
k’
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and applying similar arguments as in the previous theorem one can see that there exists a
positive integer k; such that u(k) = 0 for all k € [k, 00). O

In the next we present some formulae and examples to find the values of finite and infi-
nite series in number theory as application of Ay. First of all we need the following theo-
rem.

Theorem 3.6 Let k € [£,00) and £ € (0,00). Then

[%]+s

(k=1 +2€)* —3¢2 ¢ 1

= (40)

(k—réhé 1)

ky ™ kqy?
k-1t + 402Kk = rt +0) e ke 3kY

where s = -1 for k € Ny(£), s = 0 for k ¢ N¢(€) and each c; is a constant for all k € Ny(j),
j=k- [%]E. In particular c; is obtained from (40) by substituting k = £ + j. Further

> (k +re)® —¢3 1
Z @ (rezatyy ~ rky” (1)
r=0 £"((k +r€)> —2€%) " (k+re+ ), ° ((k—0)> -2k, *
Proof By Definition 2.1, we find
o1 (G20 —3epltl i
¢ @ (&t~ 9 (5
(k+4¢), (k+0), * (k+30)k, *
and (40) follows by Lemma 2.9 and
(k= ([%] + )€ + 2¢)* — 3¢2
4 > 0
o (’Vk—([lzf]+s)f+i_‘
k= (5145 + 40P (k- (X1 +9)e+0),  ° 0

The following example illustrates Theorem 3.6.

Example 3.7 By taking £ = 1.7, k =2 and j = 0.3 in (40), we get ¢; = % and hence (40)

becomes

€3

(k= 1.7r + 2(1.7))% - 3(1.7)?
>

r k—l{;+1,7 )

7 177k - 17r + 407) 2k - 1.7 +1.7)\0
85 1

= a - k.
81(17)171 (k4 3(1.7))/<f71‘7n

, k=2,37,54,...

Example 3.8 Taking ¢ = 3.5 in (41), we obtain

> (k +3.5r)® = 3.5%
Z @) (l—k+3.5r+345-‘)
r=0 3.5"((k + 3.5r)2 —2(3.5)2),” (k + 3.5r + 3.5)3 5 *°

B 1

- &1’

(k- 3.5)2 ~ 2(3.5)2)k,
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In particular, when k = 9, above series becomes

93 -3.5° 12.5% - 3.5
+
(922352801258 3.5(12.52 - 2(3.5)2)2165)
16% - 3.5 1

+ +oe= .
3.52(162 — 2(3.5)2)219.5\) (5.52 —2(3.5)2)9%)

4 Concluding remarks

In the difference equations there are several interesting development, see for example,
[4—-6], and [8-16]. Recently, in [7], the fractional h-difference equations was studied. In
the present work we study the €5 and cq() solutions of the second order generalized
difference equation

A%u(k) +f(k, u(k)) =0, kela,00),a>0

and we prove the condition for non existence of non-trivial solution.
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