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1 Introduction

Let (E, || - ||) be a real Banach space and P C E be a cone of E. The goal of this paper is to
study the existence, nonexistence, and multiplicity of positive solutions for the following
higher order boundary value problem with fractional integral boundary conditions:

‘Dx(t) = ha)f (6,%,%, ... ,x("_z))
+ kzb(t)g(t,x,x/, 2" Ty, Sx), te(0,1), 1.1)
«0)=6, 0<i<n-3,
£"2(0) + x"D(0) = P2 (y), (1.2)
x2(1) + 4D () + PP () = 6,
where 0 is the zero element of E, A1, A, are positive parameters, n — 1 <« < #n (n € N and
n > 3),°D¥ is the Caputo fractional derivative of order o, § > 3, I° is the Riemann-Liouville

fractional integral of order 8, 1/4 < u <1 <3/4,f € C(J x P, P), g€ C(J x P, P) (J =
[0,1]), the coefficients a,b € C((0,1), R*) may be singular at £ = 0 or ¢ = 1. Here,

t 1
Tx(t) = / K(t,s)x(s) ds, Sx(t) = / H(t,s)x(s) ds, (1.3)
0 0

in which K € C[D,R*], D={(t,s) €] x J: t > s}, H € C[J] x J,R*].
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Recently, there has been much attention on the fractional differential equations because
of their applications in a variety of different areas of sciences including physics, chem-
istry, engineering etc. Thus, intensive study has been done to investigate the positive solu-
tions for the nonlinear boundary value problems of fractional differential equations. For
instance, in [1], Zhao et al. studied the following problem:

DYy +r(®)f ) =0, VE€(0,1),q€ (11,1,
y90)=60, 0<i<n-3,
o{y("_Z)(t) - ﬂy(""l)(t) =n(), tel-t,0],

vy @) + 8y V() = £(t), telll+al

Existence results of at least one or two positive solutions are established to the fractional
functional differential equation by constructing a special cone and using the Krasnoselskii
fixed point theorem.

In [2], Zhang considered the following boundary value problem for a fractional differ-
ential equation:

D%u(t) + q(t)f(u, u,..., u(”_z)) =0, te(0,1),ae(n-1,nl,

u(0) =/ (0) = --- = u"2(0) = u"?(1) = 0.

The author obtained the existence of positive solutions by using the fixed point theorem
for mixed monotone operator. For more details and examples, we refer the reader to [3—10]
and the references therein.

On the other hand, the existence results of positive solutions for integer order differ-
ential equations have been studied extensively by several researchers (see [11-16] and the
references therein), but, as far as we know, only a few papers consider the BVP for higher
order fractional differential equations in Banach spaces. (See [7, 17] and the references
therein.) So, the aim of this paper is to fill this gap.

In this paper, we obtain the existence, multiplicity, and nonexistence of positive solutions
for the BVP (1.1), (1.2) in Banach spaces. The argument is based upon the Kuratowski
measure of noncompactness and fixed point theorem for strict set contraction operator.
To our knowledge, the existence results, especially obtained for higher order fractional
boundary value problems jointly with fractional integral boundary conditions are rarely
seen when the nonlinear term takes values in an abstract space.

Let the real Banach space E endowed with the norm ||x|| be a partially ordered by a cone
PofE, ie,x<yifand onlyif y — x € P. Recall that P is said to be normal if there exists a
constant N > 0 such that 6 <x <y implies ||x|| < N||y|l. (N is called the normal constant
of P.) In the present paper, we always assume that P is normal in E and without loss of
generality, we suppose that the normal constant N = 1.

The basic space using in this paper is C[/, E]. Clearly, C[J, E] is a Banach space with the
supremum norm ||x||. = sup ||x(¢)|| and Q = {x € C[J,E] : x(¢) > 6,¢ € J} is a cone of the
Banach space C[/, E].

A function x € C[J, E] whose « derivative exists on J is called a solution of (1.1), (1.2) if
x obeys (1.1), (1.2). x is a positive solution of (1.1), (1.2) if, in addition, x(¢) > 0 for ¢ € (0,1)
and x(¢) # 6.
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For convenience of the reader, we first state some basic definitions and lemmas which
can be found in [4, 5, 18-21].

Definition 1.1 ([4, 5]) The Riemann-Liouville fractional integral of order « € R* for a

continuous function /4 : (0, 00) — R is defined by

I“h(t) = e )/ (t—s)* " h(s) ds, (1.4)

where I'(-) is the Euler Gamma function, provided that the integral exists.

Definition 1.2 ([4, 5]) If & € C"[0,1], then the Caputo fractional derivative of order « is
defined by

¢ _ 1 ! _ n—a-17.(n) _ n—ay(n)
D h(t)-—r(n_a)/o(t s) W (s)ds =1"""h"(t), (1.5)

where n—1<a <n, n=[a] +1 and [«] denotes the integer part of the real number «.

Remark 1.1 ([4, 5]) If « = n € Ny, then the Caputo derivative coincides with a conven-
tional nth order derivative of the function 4(t).

Lemma 1.1 ([4, 5]) Ifa > B >0, then for h(t) € L(0,1), the equality
(CDﬁI"‘h)(t) =IPh(t)
is verified almost everywhere on [0,1].

Lemma 1.2 ([4,5]) Letn=[o] +1fora ¢ Nandn =« fora € N. Ify(t) € C"[0,1], then

(i)
(D)0 - 5 2@ Oy

i=0

Lemmal.3 ([4,5]) Leta >0andn=[o]+1fora ¢ Nandn =« fora € N. Ifh(t) € C[0,1],

then the homogeneous fractional differential equation
‘D*h(t)=0
has a solution
() =c1 + ot +c3t® + -+ + ¢t
wherec; e R (i=1,2,...,n).
Definition 1.3 ([18, 19]) Let E be a real Banach space and S be a bounded subset of E.

Let a(S) = inf{§ > 0: S = 7, S; with diam(S;) < 8,i=1,2,...,m}. Then «(S) is called the
Kuratowski measure of noncompactness.
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In this paper, we use «(-) and ac(-) to denote the Kuratowski measure of noncompact-
ness of a bounded set in E and C[J, E], respectively. For details of the definition and the
properties of the measure of noncompactness, we refer the reader to [18—21] and the ref-
erences therein.

Lemma 1.4 ([18]) IfH C C[I, E] is bounded and equicontinuous, then o(H(t)) is continu-
ous on I and

ac(H) =maxa(H(t)), a({/x(t)dt:er}) < /a(H(t)) dt,
I

tel 1
where I = [a,b], H(t) = {x(t) :x € H}, t € 1.

Definition 1.4 ([19]) Let P be a cone of real Banach space E. If P* = {{y € E* : ¥/ (x) >
0,Vx € P} then P* is called a dual cone of cone P.

Throughout this paper, for any y1,¥2,...,¥,41 € P and ¢ € P* with ||| =1, we define

W&y 92 Yn-1) |l

ff= lim  supmax =)
Yityil-p e Yo il

g;; _ lim  supmax gy, 92, » Yus1)
Srllylop e S il

LYLY2s s Yn-
W= lim  infmin LS BI0I2 03]
e R 2 iy il

6V Y25 e e e s Vs
(Yg)p= lim  infmin A ylnflz Yn+1))
Sl yill—-p b€ Syl

where 8 is 0 or co.

Lemma 1.5 [19] Let K be a cone in a Banach space E and K,.p ={x € K :r < ||x|]| <R},
R>r>0.Assume that A : K, r — K is a strict set contraction such that one of the following
two conditions hold:

(@) [IAx] > llxll, Vx € K, [lx]| = r; [|Ax|| < |lx]l, Vx € K, ||x]| = R.

(ii) llAx| < llxll, Vx € K, |lx|| = r; |Ax]| > [lx[l, Vx € K, ||x]| = R.
Then A has a fixed point x € K, g such that r < ||x|| <R.

2 Several lemmas
It is convenient to list the following assumptions which are to be used throughout the
paper:

(H1) f € C(J x P"L,P), g € C(J x P, P) and for any r > O, f(t,uy,ta,..., Uy_1),
g(t,u1,us,...,u,.1) are uniformly continuous on J x P:"l and J x Pf‘l X Ppx, X Pyx,, re-
spectively. Here, k*, ii*, P, are defined by

1 1
k* = sup / K(t,s)ds, W = sup / H(t,s)ds, (2.1)
0 1J0

te(0,1] tel0,1

Po={ueP:|u|=<r}



Yoruk Deren Advances in Difference Equations (2015) 2015:72 Page 5 of 24

(H2) a,b € C((0,1),[0,00)) may be singular at £ = 0 or ¢ = 1, a(t), b(¢) do not vanish
identically on any subinterval of (0,1) with

1
/ (a(s) + b(s))m(s) ds < +00,
0

where m(s) will be given in (2.30).
(H3) There exist nonnegative functions L;(-), My € L[0,1] (j=1,2,...,n - L k=1,2,...,
n + 1) such that

n-1
a(f(t, D1, Da,...,Dy)) < Y Lit)er(D)),
j=1

n+l
Ol(g(t,Dsz,umel)) = ZMk(t)Ol(Dk), vt €]~
k=1

Here D; C P (i=1,2,...,n +1) are bounded and

1
p/ m(s) ()qa(s)L(s) + Azb(s)M(s)) ds<1,
0

where
L)
L(s)=) ——"— +L,(s), (2.2)
1,2:1: (n—=2-)) !
n-2
_ My (s) k* h*
M(s) = kXZI: m +M,1(s) + mMn(S) + MM}’HI(S)’ (2.3)

and k* and /#* are given by (2.1).
In order to obtain the existence and nonexistence of positive solutions, we will consider

the following auxiliary problem:
CD"‘_’”Zy(t) = Ala(t)f(t, I"_zy, . ,Ily,y)
+hab(Og(61" 2y, ..., Iy, 3, T(I" %), S(I"%y)),  t€(0,1), (2.4)

¥(0) +¥'(0) = I’y(n),

(2.5)
y(1) +y (1) + Py(u) = 6,

where
Ij(y)(t):ri(i)/o t—sy'y(s)ds (i=1,2,...,n=2).

Lemma 2.1 The higher order fractional boundary value problem (1.1), (1.2) has a solution
if and only if the nonlinear fractional boundary value problem (2.4), (2.5) has a solution.

Proof Let x be a solution of the higher order fractional boundary value problem (1.1), (1.2)
and y(¢) = °D""2x(t). Then from the boundary value conditions (1.2) and the definition of
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the Caputo fractional derivative, we obtain
y(®) = D" x(t) = 2" 2 (1),

1 _ 7! (n-2) :L ! (n-2) — (n-3)
Iy(t)=I'x (t) F(l)/o X (s)ds=x (1),

Py(t) = Px" () = ﬁ /0 t(t — )& (s)ds = x"V(z),

1
I'n-2)

/t(t _ S)n—ot—ly//(s) ds
0

In—Zy(t) _ In—Zx(n—Z)(t) _

/ t(t - 8)"3x2 () ds = x(2),
0

1
'n-a)

cDrx—n+2y(t) —

_ 1 ! _ n—a-1,.(n)
F(n—a)/(;(t s) x"(s) ds

=D"x(¢),
which imply that

5(0) +5'(0) = I°y(n),
y(1) +y' (1) + PPy(n) = 6.
Hence, y(¢) = x"-2(¢) is a solution of the fractional boundary value problem (2.4), (2.5).
Conversely, if y is a solution of the fractional boundary value problem (2.4), (2.5), and
letting x(¢) = I""2y(¢t), then it follows from the definition of the Caputo fractional derivative
and the boundary value conditions (2.5) that
«(6) = D" 2y(t) = ‘DT y(e) = I"y(8),

x//(t) — sz(t) — cD21n—2y(t) — cD212ln—4y(t) — 1n—4y(t)’

22 (8) = D"2x(t) = D" 2y(8) = y(2),

CDax(t) I (x(n))(t) .y (In—Zy)(”)(t) .y (y//)(t) — cDot—nJrZy(t)’
which indicate that

x«0)=6, 0<i<n-3,
272(0) + 2" 70(0) = Pa" (),
x"2(1) + 2D (1) + PP () = 0.

Finally, x(¢) = I""2y(¢t) is a solution of the higher order fractional boundary value problem
(1.1), (1.2). Therefore, the proof of Lemma 2.1 is completed. O
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Lemma 2.2 For any h € C[(0,1), E] with fol(l — )" h(s) ds < +00, the following fractional

boundary value problem:

T 298) = h(t), te(0,1), .
‘D*"*2y(t) = h(t) (0,1) (2.6)
y(0) +y'(0) =9, .
y)+y(1)=0

has a unique solution
1
90~ [ Gle9ms)ds, 238)
0
where
(1-9)2 1 (1—g) 4 (t-5)* " (1-5)2"(1-1)
_ T(a—n+2 Famn » 5556
G(t,s) = {as)a_m(gg* S ey Y L (2.9)
I(a—n+2) [(a-n+l) -

Proof Let y(t) be a solution of the boundary value problem (2.6), (2.7). Applying the oper-
ator 172 to both sides of (2.6), by Lemma 1.2, we reduce (2.6) to an equivalent integral
equation

y(t) = I 2h(t) + ¢, + cot. (2.10)
Thus, differentiating (2.10), we have

Y (&) =" h(t) + c. (2.11)

By the boundary conditions of (2.7), we get

€= Ioz—n+2h(1) +Ia—n+1h(1)’
(2.12)
Cy = _Iat—n+2h(1) _Ia—rﬁ—lh(l)'

Substituting these values into (2.10), we obtain
1 ‘ 1 2 1
t)= ——— t—38)*""" h(s) d: 1-)[I*7"hQ) + 1“7 h(Q1
¥() F(a—n+2)/0( s) (s)ds+(1-1)[ @) + 0]

_ 1 ! a-n+l
= m/() (t-3s) h(s)ds

1-¢

! 1-t 1
o—n+l a—n
+m/0(1—5) h(s)d5+m/0(1_s) h(s)ds

= /1 G(t,s)h(s) ds.
0

Therefore, the proof of Lemma 2.2 is completed. g
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Lemma 2.3 For any h € C[(0,1), E] with fol(l —8)*"h(s) ds < +00, the following fractional
boundary value problem:

‘D 2y(t) = h(t), te(0,1), (2.13)
5(0) +/(0) = °y(n),
(2.14)
y(1)+y Q)+ Py(n) =6,
has a unique solution
1
y(t) = / H(t,s)h(s) ds, (2.15)
0
where
~ 1 M5+1 M(S s
H(t,s) = G(t,s) + $[2<1 + TG+ 2)) - t(l + o 1)>]I G(n,s)
1 2n5+1 }78 s
+ E[l_ ) —t(l— G +1))}1 G(,s), tsel0,1], (2.16)
~ 776 M6+1 Mé 2n5+1
V= 2(1 TG+ 1)) (1 "Te+ 2)) - (1 "Te+ 1)) (1_ TG+ 2))‘ @17)

Here, I°G(n,s) and I°G(u, s) denote the Riemann-Liouville integral of G(t,s) with respect
tot=nandt=pu, respectively.

Proof Let

1
u(t) = / G(t,s)h(s) ds. (2.18)
0
Then by Lemma 2.2, u(t) verifies

DX 2y(t) = h(t), te(0,1), (2.19)
u(0) + u/(0) =6,

(2.20)
u(l) +u'(1) = 0.

Suppose that y(¢) is a solution of the boundary value problem (2.13), (2.14), and let
z(t) = y(t) —u(t), te[0,1], (2.21)
then z(¢) satisfies the following fractional boundary value problem:

D¥M24(5) =0, te(0,1), (2.22)

2(0) +2/(0) = I’z(n) + I’ u(n),
(2.23)
z21) +2Z(1) + Pz() + Pu(p) = 6.
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Thus, we deduce from Lemma 1.3 that
te [0, 1],60,61 eR.

z(t) = ¢y + 1t

Replacing z(¢) into (2.23), we get

~ 1 s M8+1 s 2n5+1
“= E[ZZ ”(")(“ r(5+2)> H ”“”(1_ F(8+2>)}
i, 7 s i
“ ‘7[1 ”(“)(1_ re +1>) H ”“”(“ e +1>)}
where
~ 776 M8+1 M(S 2n5+1
v _2(1_ INE +1))(1+ F(8+2)) - (“ I +1)><l_ r'(s +2)>'
Finally, replacing (2.25) into (2.24), we have
~ 1 M8+1 M& s
4= Z[2<l+ e +2)) _t(“ e +1)>}I o

1 2n5+1 775 s
' J[I_ FG+2) _t(l_ r(8+1>>}1 )

Page 9 of 24

(2.24)

(2.25)

(2.26)

(2.27)

It follows from (2.21) and (2.27) that the integral equation (2.15) is satisfied. Therefore, the

proof of Lemma 2.3 is completed.

Remark 2.1 Note that v > 0 for % <pH=<n< % and § > 3, since we have

7]5 M5+1 4775 M5+1
¢:2(1+ 1“(5+1)>(1+ F(5+2)>_ F(8+1)<1+ F(8+2)>
M& 2n5+1
- (“ T +1))(1_ T +2)>

}78 2M5+1 2n8+1 4‘778 M(Hl
= (“ r(sn))(“ rs+2) r(5+2)> - r(5+1)<1+ r(5+2)>

37]5 Znéluﬁﬂ 2n6+1 2n26+1 2M6+1
=1- - + + +
rég+1) rE+nrE+2) rE+2) rE+nprE+2) rE+2)
3,78 2n8+1 2M8+1

>1-
=TTTe+D) TTG+2) "TG+2)
2n6+1 2/'L5+1
> +
reé+2) r@E+2)

> 0.

O

Lemma 2.4 Let n—1< o« <n. Then G(t,s) given by the expression (2.9) has the following

properties:
(i) G(¢,5) €C([0,1] x [0,1)), G(¢,5) >0, t,s € (0,1).
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(i) There exists a positive function ¢ € C(0,1) such that

G(t,s) <m(s), te]l0,1],s€(0,1), (2.28)
and
13
G(t,s) = p(s)m(s), te |:Z’ E]’S € (0,1), (2.29)
where

2(1 _ S)ot—n+l (1 _ S)a—n
Tae-n+2) Tla-n+1)

m(s) = se[0,1). (2.30)

Proof From the definition of G(t,s), it is easy to see that (i) holds. Now, we will prove the

inequalities of the Green’s function G(%, s).
Let us define the functions G;(t,s) and G,(t,s) as follows:

1=5)"11=t) +(t-5)*"™ (1-s5)*"(1-1)
IMNo-—n+2) * Moa-n+1) ’
(1-s)*"1-1) (1-s5)*"1-1)
+ , <s
IMNa-n+2) IMNa-n+1)

Gi(t,s) = s<t

Ga(t,s) =

’

then G,(t, s) is a nonincreasing function with respect to ¢. Thus, we get

2(1 _ S)oz—n+1 (1 _ s)u—n

Gi(t,s) < , 2.31
tren[g,)l(] i S)_F(a—n+2)+f‘(oz—n+1) 231)
1 1-— a—n+l 1—g)* "
min Gl(t,s)z—[( g, (=9 ] (2.32)
tel1,3) 4| T(a-n+2) T(a-n+1)
and
(1 _ S)a—n+1 (1 _ S)a—n
Gy(t,s) <
tem[g,)l(] 2(6:s) = F(ot—rz+2)+ IMNoa-n+1)
2(1 _ S)oz—m—l (1 _ S)a—n
, 2.33
<F(oe—n+2) MNoa-n+1) ( )
1 1-— a—n+l 1—s)¥"
min Gz(t,s)z—[( 9, (129 ] (2.34)
tel1,3) 4| T(a-n+2) T(a-n+1)

It follows from (2.31)-(2.34) that

2(1 _ S)a—n+1 (1 _ S)oz—n
G(t,s) < =
tI;l[g,)l(] (£:5) < m(s) F(a—n+2)+F(ot—n+1)

and

. 1
min G(t,s) > —
rel}3) 4

(1 _ S)oz—n+1 (1 _ S)a—n
|:F(oc—n+2) " F(a—n+1)]'
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Hence, if we take

Q=81 4 (¢ —n+1)(1L—s5)*"
8(1 - 5)2 "l + 4(ow —m + 1)(1 — )2’

@(s) = (2.35)
then the property (ii) holds and it is evident that ¢(s) € C[(0,1),(0,00)]. The proof of
Lemma 2.4 is completed. O

Remark 2.2 From the expression of the function ¢(s), we know that ¢(s) > é.

Lemma 2.5 Let n—1<«a < n. Then H(t,s) given by (2.16) has the following properties:
(i) H(t,s) € C([0,1] x [0,1)), H(t,s) >0, t,s € (0,1).
(i) There exist nonnegative numbers p and y such that

H(t,s) < pm(s), forte[0,1],s€(0,1), (2.36)
and
13
H(t,s) > yo(s)m(s), te [Z’ E:|’S €(0,1), (2.37)
where
37]5 2(n28+1 _ M25+1)
Pl TG D) T YTer DG

(2.38)

y:1+ 1 §+ 2M8+1 ~ 2n8+1 M_l b
Yyr@E+1)\2 T(@E+2) T6+2) 4) "

Proof From the definition of H(t,s), it is easy to see that property (i) is satisfied. Now,
property (ii) will be verified. From (2.16) and (2.28) for ¢ € [0,1], s € [0,1), we get

2 M5+1 1 n s
H(t,s) < m(s) + E(1+ NG +2))m/0 (n—-1)° " m(s)dr

1 2n5+1 1 1 5—1
W(l_r(mz))mfo (o mbs)de

_ 1 s M5+1 s 2n8+1
‘m(s)[“ YTG+1) [2" (“ F(6+2)> T (1_ F(8+2>)H

§ S+ S+
< m(s) (1 + 31 + 20— ) )
YL@ +1) YT+ +2)

On the other hand, we can derive from (2.16) and (2.29) that

17/5 2" 3u° I 51
HE:3) = gl5mls) + J[(Z "T6+2) arG+ 1)>W TG dr
1 2n5+1 3),}(3 1 I 51
i (E TT(G+2) 4G+ 1))@ G o) G(”)‘”]

1 5 2t 38 1\°
= w(s)m(s){l TUTG+D) [(E TTG+2) 4rG+ 1)) (" - E)
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1 2n8+1 37}5 1 s
* (Z_ r6+2) 4F(5+1)>(“_E> ]}
1 3 2M8+1 2n6+1 1 3
= (”(S)m(s)[l TUTG 1) (E "Te+2) TG+ 2)) <“ - Z) }

Therefore, the proof of Lemma 2.5 is completed. d

Lemma 2.6 Ifthere exists h € Q such that y(t) = fol H(t,s)h(s)ds < +oo, then y(t) > 6,t €],
ie,yeqQ.

Proof By means of Lemma 2.3 and Lemma 2.5, we have y(¢) >0, t € . O

Remark 2.3 Define o as follows:

14
- 2.39
o 3 ( )

If there exists & € Q such that y(¢) = fol H(t,s)h(s)ds < +00, then by Remark 2.2 and

Lemma 2.3, we get

1
min y(f) = min f H(t,s)h(s)ds
0

telp.f] tel.§]
1
Za/ m(s)h(s)ds
0
o 1
> —p/ m(s)h(s) ds
P Jo
o [l
> —/ H(s,s)h(s)ds
P Jo

- %y(s), sel. (2.40)

To establish the existence and nonexistence of positive solutions, we define a cone K by

K = {ye Q:30)= Zy0) 1 EZ]S e]},

where p and o are defined by (2.38) and (2.39), respectively.

In this paper, by means of Lemma 2.1, we will consider the boundary value problem
(2.4), (2.5). Here, we define the operator

1
Ay(t) = Al/() H(t,9)a(s)f (s, 1">y(s), ..., I'y(s), ¥(s)) ds

1
+k2/0 H(t,s)b(s)g(s,l”_Zy(s),...,Ily(s),y(s),

T(I”_zy(s)), S(]”’zy(s))) ds, (2.41)

where H(t,s) is given by (2.16).
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Lemma 2.7 Assume that (H1)-(H3) are satisfied. Then, for any r > 0, the operator A: QN
B, — Q is a strict set contraction, where B, = {y € C[J,E]: ||y|l. < r}.

Proof Let y € QN B,, then from (H1), for any ¢ € [0,1] we obtain
£(8) = sup{|[f (&, wr, uz, .. th1) || < (s s 1) € P < 400
and

gr(t) = SUP{ ”g(t: U, Uy vy un+1) || : (ulr Uzyenns Mn+1) € Prn71 X Pk*r X Ph*r}

< +00.

Using condition (H2), we have

1
|Ay(®)]| < p|:)»1/0 m(s)a(s)|f (s, 7" >y(s),.... I'y(s), (s)) || ds
1
+ AQ/O m(s)b(s) | g(s; " >y(), ... I'y(8), 5(s), T(I"2x(s)), S(I"25(s))) | ds:|
1
< ,0/ m(s)[km(s)f,(s) + Azb(s)g,(s)] ds < +00. (2.42)
0

Thus, A : QN B, — Q is bounded. Next, we shall prove that A is continuous. Let y,,,y €
QN B, with ||y,, = y|lc = 0 as m — oo. For any t;, £, € J, we have

1
[(Aym) (&) = (Aym)(82) | < /0 |H(t1,5) — H(t2,9)| [Ma(s)fy(s) + A2b(s)g(s) | ds.  (2.43)

It follows from (H1), (2.42), and (2.43) that Ay,, is equicontinuous on J. On the other
hand, for any ¢ € J, we have ||y,,(t) — y(&)|| = O, [[Iy,.(t) = Iy(&)| — 0 (i=1,2,...,n—2),
ISU™2)y(E) = SUHy(@)]] = 0 and [ TT"2)y(e) = TU2)y ()]l — 0, as m — oo. Thus,

by using the Lebesgue dominated convergence theorem and (2.42), we have

[(Ay) () = (AY)(©)|| = 0 asm — oo,z €], (2.44)
s0 (Ay,,)(¢) is relatively compact for every ¢ € J. Therefore, we deduce from the Ascoli-
Arzela theorem that {Ay,,} is relatively compact in Q. Now, we will show that ||Ay,, —
Ay|lc — 0 as m — o00. If not, then there exists € > 0 and {y,,,;} C {y,,} such that

Ay, —Ayll >e fori=1,2,.... (2.45)
Because {Ay,,} is relatively compact in | - ||, there exists a subsequence of {Ay,,} converg-
ing to some u € C[J, P]. Without loss of generality, we suppose that {Ay,,,} itself converges

to u, which means that

Ay —ulle = 0 asi— oo. (2.46)
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By (2.44) and (2.46), we get u = Ay. This relation contradicts (2.45). Hence, A is a contin-
uous operator.

Finally, we will prove that A : Q N B, — Q is a strict set contraction, i.e., there exists
1 €(0,1) such that

ac(AV) <lac(V), VCQNB,

where
1
l= p/ m(s)()qa(s)L(s) + Azb(s)M(s)) ds<1,
0

and the functions L(s) and M(s) are defined in (2.2) and (2.3), respectively.

Assume that V C B, is given arbitrarily, then from the above arguments, we know that
{Ay:y € V'} are uniformly bounded and equicontinuous, so by Lemma 1.4 and (H2), we
have

o (AV) = max a(AV)(z).
te[0,1]

Foranyye V, let

1-1/n

(A =1 / H(t, s)a(s)f(s,]”’zy(s), .. ,Ily(s),y(s)) ds

1/n

1-1/n
+ Ay /1 H(t,s)b(s)g(s, I"2y(s), ..., I'y(s), y(s),

In

T(I"y(s)), S(I"*y(s)) ) dis. (2.47)
By (2.42), it is easy to see that (4,)(t) = (Ay)(¢) as n — oo, y € V, t € . This shows that
dy ((A,V)(0), (AV)(2)) — 0, asn— oo, (2.48)

where dy (-, -) denotes the Hausdorff metric. Hence, by (2.48) and the property of the mea-

sure of noncompactness, we have
a((An V)(t)) — ot((AV)(t)), as 1 — 00. (2.49)

Now, we estimate for each «((4,,V)(¢)) and ¢ € J. By means of (H3), we have

1-1/n

H(t,)a(s)f (s, 1"V (s),...,I'V(s), V(s)) ds)

a((A)®) <« (?»1/
1

/n

1-1/n
+a ()\,2 / H(t,s)b(s)g(s, I"2v(s),...,I'V(s),
1

In

V(s), T(I"*V(s)), SI"*V(s))) ds)

1-1/n
<M\p / m(s)a(s)a (f (s, 1" >V (s),...,1'V(s), V(s))) ds
1

/n
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1-1/n
+ kzpf rrz(s)b(s)oz(g(s,]”‘2 V(s),...,I'V(s),

1/n

V(s), T(I"*V(s)), S(I"*V(s)))) ds

1-1/n n=2 L
<0 [W [m s)(Z o Ln_l(s))

1
2 *

K
+A2b(s)<k2 — k), Mya(5) + 5 M)

+ ﬁMrHl (S)> :| dSO[C(V)

<p /01 m(s) (Ala(s)L(s) + kzb(s)M(s)) dsa.(V), (2.50)

where L(s) and M(s) are given by (2.2) and (2.3), respectively. By using (2.49) and (2.50),
we have

1
a((AV)0) = p [ 19 (aa(0ILE) + b OMO) dsar V),
so, by Lemma 1.4, we can get
1
a(AV) <p / m(s)(Aa(s)L(s) + Aab(s)M(s)) dsae(V),
0
where
1
l= p/ m(s)(kla(s)L(s) + kgb(s)M(s)) ds<1.
0

Thus, the operator A : QN B, — Q is a strict set contraction. The proof of Lemma 2.7 is
completed. O

Lemma 2.8 Assume that (H1)-(H3) are satisfied. Then A(K) CK and A : K, — K is a
strict set contraction.

Proof By Remark 2.3, it is obvious that the operator A leaves the cone K invariant; i.e., A :
K — K. Besides, by K, r C K, A(K, g) C K holds. Thus, A : K, g — K. This and Lemma 2.7
complete the proof of Lemma 2.8. d

3 Main results
In this section, we give the existence, multiplicity, and nonexistence results of positive
solutions for the BVP (1.1), (1.2).

For convenience, let us define

K+ e [ B
[Z l‘f (s) + b(s)) ds + (n—3)!/0 m(s)b(s)ds] )

3/4 -1 3/4 a
B:[/M m(s)“(s)”’s} . C =[ /. m(S)b(s)ds] .

(3.1)
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Now, we assume the following condition on f(¢,y1,...,¥,-1) and g(&, y1, ..., Yu+1)-

(H4) There exist constants 0 < r < R < +00 such that for all £ € J

-1 n-1
If &yt yn) | == leylll, yi€P(i=12..,n-1,0=) |yl <r,
i=1 i=1

n+l n+l

A
lgt, 71,y H_anyln yi€P(i=12..,n+1,0=<) |yl <r,

i=1

n-1
pRB )
w(f(t,ylr-n’ynfl)) 2 m; J/i GP\O (l :1,2,...,}’[—1),R S Z ”yl” < +00,
1

i=1

where p and o are given by (2.38) and (2.39), respectively, and ¢ € P* with ||| = 1.

Theorem 3.1 Suppose that (H1)-(H4) are satisfied and P is normal. Then the BVP (1.1),
(1.2) has at least one positive solution y(t), t € ] such that

k h* n-2 1 -1
((n +3)v Z;) r< |y < gR. (3.2)

Proof Assume that the operator given by (2.41) is the cone preserving, strict set contrac-
tion. Choose

* * -2 -
(k +h Z 1‘) r. (3.3)
=0

It is evident that r, < r. Let y € K with ||y||. = r1, then by (H4), we have

1
|Ay(®)]| < ,0|:)»1/0 m(s)a(s)|f (s, 7">y(s),.... I'y(s), (s)) || ds
1
+)»2/0 m(s)b(s) | g(s; " *y(s), ... I'y(8), 5(s), T(I"2¥(s)), S(I"25(5))) | ds]

1 n-2
< pA |:/0 m(s)(a(s) + b(s)) |:2H1iy(s) ” + ”y(s) ||:| ds

i=1
1
[ BT )] + [0 2500) ||]ds}
< pA||y||c|:Z / m(s) a(s + b(s)) ds + / m(s)b(s) ds:|
= [lylle.
If we choose €21 = {y € K : ||y||c < r1}, then we have

1Ayl < llylle forally e KN ag2. (3.4)
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Next, set R=2Rand 2 = {y € K : [|yllc <R}. Then y € K with [yl =R, t€[,3],s €
[0,1] implies that

so we have

o— 13
lye)| = “R=& te[4 4]

that is, | Y 1, 2I‘y(s M+ lly(s)]| = R for all s € [i, %]. Then, from condition (H4) again, we
have

1
|Ay®) | = v (Ay)(@) = 1 /0 H(t,s)a(s)y (f (s, 1" y(s),..., I'y(s),y(s))) ds

3/4
> Mo / m(s)a(s)y (f (s,I"2y(s), ..., I'y(s), y(s)) ) ds

1/4

3/4
- PRB

m(s)a(s) ds

0 Ji/a

p —
=—R=R=|yl..
o
Thus, we have
IAylle > llylle forally € KN oK. 35)

Lemma 1.5 together with (3.4) and (3.5) shows that there exists a fixed point y(¢) in K N
(R, \ Q1) satisfying Z (" +h* + Y 02 %)‘lr < y@®| < §R. This and Lemma 2.1 complete
the proof of Theorem 3 1 O

Similarly, we can prove the following result.

Corollary 3.1 Suppose that (H1)-(H3) hold and P is normal. If f° = 0, g° = 0 and (Yf) s =
00, then the BVP (1.1), (1.2) has at least one positive solution y(t), t € ] in P for r > 0 suffi-
ciently small and R > 0 sufficiently large.

In the next theorem, we also assume the following condition on f(t,y1,...,¥,-1) and

g(tyylr e 1yn+1)'
(H5) There exist constants 0 < 7 < R < +00 such that for all £ € /

PBY ! lyill , -
V(e yn1)) = ol yi€P\O (i=1,2,...,n-1),0 <) |yl <r,
i=1
-1 n-1

@y oy < - Zny,n, yi€P(i=12..,n-1,R<Y |yl <00,

i=1
n+l

(F{CR TR Znyln Yi€P(i=12,...,n+1),R<Y |y <00,
i=1

i=1

where p and o are given by (2.38) and (2.39), respectively, and ¢ € P* with |y =1.
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Theorem 3.2 Suppose that (H1)-(H3) and (H5) are satisfied and P is normal. Then the
BVP (1.1), (1.2) has at least one positive solution y(t), t € ], such that

n-2 -1
i(z;) r< o] <r 6:6)

p i=0

Proof Assume that the operator given by (2.41) is a cone preserving, strict set contraction.

Choose
n-2 -1
() o
i=0

Clearly, r, < r. Let y € K with ||y|¢ = r2, then by (H5), we have

S| =

1
|Ay(®)|| = v ((An©) = /0 H(t,8)a )y (f (s, 1"72y(s), ..., I'y(s), ¥(5))) ds

3/4
> MO f m(s)a(s)y (f(s, I"2y(s),... ,Ily(s),y(s))) ds

1/4

Bp ;

=22 [ mgat| S0+ b
Bp 3/4

> 200, / m(als)ds
o 1

= [lylle.

Set Q1 = {y e K: ||y|lc < r2}, thus we have

lAylle = lIylle  forally € K ML (3.8)

Finally, let y € K with [|y||. = R. Then from condition (H5), we get

1
||Ay(t)H < p[klfo m(s)a(s) |Lf(s,1”’2y( Ly(s), (s H ds

1
+A2/O m(s)b(s)||g (s, 1" *y(s), ..., I'y(s), (5), T (I"*¥(5)), S(I"*y(s))) | ds]

1 n-2
< ,0A|:/0 m(s)(a(s) + b(s)) |:ZHI’ )| + [|y6s) ||:| ds

i=1

1
+/0 m(s)b(s)[”T(I”_zy(s)) ” + HS(I”_zy(s)) H]ds:|

n-2 1 1 I+ I 1
< pAIIyllc[;;E/O m(s)(a(s) + b(s)) ds + (nj?))!/o WI(S)b(S)dS}

=yl
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Therefore, we have
1Ayl < llylle forally € KNy, (3.9)

where Q, = {y € K : |||l < R}. Lemma 1.5 together with (3.8) and (3.9) shows that there
exists a fixed point y(¢) in K N (2, \ Q) satisfying %(Z?:oz D7 < lly@®)|l < R. This and
Lemma 2.1 complete the proof of Theorem 3.2. g

Similarly, we can also prove the following results.

Corollary 3.2 Suppose that (H1)-(H3) hold and P is normal. If f*° = 0, = 0 and (Vf)o =
00, then the BVP (1.1)-(1.2) has at least one positive solutiony in P for r > O sufficiently small
and R > 0 sufficiently large.

Theorem 3.3 Suppose that (H1)-(H3) are satisfied, P is normal and the following two con-
ditions hold:
(H6) There exist constants 0 < r < R < +00 such that forall t € ]

-1

W(f(t:yl: 3 Vn- 1 ils yiGP(i=1y2w~,n—1):Z||J’i|| =n

i=1

p ZVH—I ”yl“ ol
eza i, €P(i=12...,n+1),) Iyl =R

i=1

W(g(td’h X -’yn+1))

(H7) There exists b > 0 such that

sup If &y sy < : b :
(t,yl,...,y,,,,l)e]xP” 1 2)‘1p fo m(s)a(s) ds
b

sup lgt 1, oyma)]|| < : ,

(691 V1) €T X P Py X Py 2h2p [y m(s)b(s)ds

where p, o, k*, and h* are given by (2.38), (2.39), and (2.1), respectively, and v € P* with

Iyl =1.
Then the BVP (1.1), (1.2) has at least two positive solutions.

Proof Suppose that the operator given by (2.41) is a cone preserving, strict set contraction.
Let

n-2 1 -1
ry = (Z 5) r. (3.10)

i=0

Clearly, r3 < r. Then for ¢t € J, y € K with ||y||. = r3, we have

1
|4y®] = v (A ®) = 1 /0 H(t,8)a(s)y (f (s, 1" y(s), ... I'y(s), ¥(5))) ds

3/4
> Ao f m(s)a($)y (f (s, I"2y(s), ..., I'y(s), y(s)) ) s

1/4
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B n-2
> Gp /1/ m(s)a(s)[znpy(s)” ||y(s)||]

3/4
p o
—_wm/ m(s)a(s) ds
P 1/4
=l
If we choose Q) = {y € K : ||| < r3}, then we have
Ayl > llylle forally e KNaKy. (3.11)

Further, set r, = max{2rs, §R} and Q, ={y € K : ||y|l < ra}. Then y € K with ||y||. = 74,
te [%, %], s € [0,1] implies that

y(t) = zy(s),
0

so we have

o 13
||y(t)||zgr4=R, te[4 4]

that is, [| 7" 2y(s) || + IST2y) + 1| Y0 Iyl + ly(s)]l = R for all s € [1, 3]. Then,
from condition (H6) again, we have

[4@]
= ¥ ((A)()

1
> )q/o H(t,9)b(s) Y (g(s, 1" 729(5), ..., I'y(5), y(s), T(I"*y(5)), S(I"*y(s)))) ds

3/4
> koo / m(s)b(s)¥ (g(s, I"2y(s), ..., I'y(s), ¥(s), T(I”_Zy(s)),S(I”‘Zy(s)))) ds

1/4

C n-2 '
=7, ’”‘””‘”[” T(2ys)| + [s26)] | s + [ d “
* i=1
,o 3/4
wmj m(s)b(s) ds
1/4
= [lylle.
Hence, we have
l1Ayllc > llyllc forally e KNay,. (3.12)

Finally, let b € K with ||y||. = b, r3 < b < r4, then we get
|4y@]

1
<p|:)q/0 m(s)a(s) Hf(s,]”‘zy(s),...,Ily(s),y(s)) || ds
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1
+ )q/o m(s)b(s) | g(s; " >y(), ... I'p(8), ¥(s), T(I"2x(s)), S(I"2x(5))) | ds]

1
§p|:)q sup |Lf(t,y1,...,yn,1)||/(; m(s)a(s) ds

(E91yn-1) €/ x Py

1
+ Ao sup ||g(t,y1,...,y,,+1)||/ m(s)b(s)dsi|
0

(t,yl,.‘.,yn_l)e/xPZ‘l XPk*b XPh*b

<b.
Therefore, we have
1Ayl < Iyl forally e KNaQs, (3.13)

where Q3 = {y € K : ||y|l; < b}. Lemma 1.5 together with (3.11), (3.12), and (3.13) shows that
there exist a fixed point y;(¢) in F,M and a fixed point y,(¢) in fbym. This and Lemma 2.1
complete the proof of Theorem 3.3. d

Now, we shall present the nonexistence results of positive solutions for the BVP (1.1),
(1.2).

Theorem 3.4 Suppose that (H1)-(H3) hold, P is normal and

-1 n-1

. PB <

©) MY Eyny2- ) > p D il Vel Iyl >0,
i1 i=1

or

n+l n+l

.. oC
(i) 2oy (g&yy2 I > = Dyl VyieP> il >0,
i=1 i=1

then the BVP (1.1)-(1.2) has no positive solution.

Proof Suppose that y(¢) is a positive solution of the BVP (1.1)-(1.2). Then y € K, ||y > 0
for t € J and

3/4
Iylle > o /1 . m(s)a(s)y (f (s, 1" 2y(s), .., I'y(s), y(s)) ) ds

pB 3/4 n-2 p )
>= /1/4 m(s)a(s) ;H y(s)| + |y)| | ds

3/4

po
> 2% y1.B / m(s)als) ds
op 1/4

= [Iylles

which is a contradiction. Similarly, when (ii) holds, one can prove that the conclusion of
Theorem 3.4 also is satisfied. This and Lemma 2.1 complete the proof. O
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Theorem 3.5 Suppose that (H1)-(H3) hold, P is normal,

n-1

A n-1
”f(t,ylryzy'u)yn—l)” < A—IZ”%”, V)’z GP(iZ1,2,~~-;1’1—1),Z||)’i|| >O,
i=1 i=1

and

A n+l n+l
letenyone )] < 5 > llyill, YyieP(i=12,...,n+1),) |yl >0,
i=1 i=1

then the BVP (1.1)-(1.2) has no positive solution.

Proof Suppose to the contrary that y(¢) is a positive solution of the BVP (1.1)-(1.2). Then
yeK, |lyll. >0 fort €], and

Iylle =

t

sup [|y(®)|
€[0,1]
1
5,0[/\1 /0 m(8)a(s) |f (s,I"*y(s),...,I'y(s), 5(s)) || ds

1
- /" SO |g (51" 7y(s) - L)y, T 56). S5 O))| ds}
1 n2
<pA |:/0 m(s)(a(s) + b(s)) |:Z||1iy(s) [+ [ ||i| ds
i=1
1
+/0 m(s)b)[ | T(I" >y | + | SI*¥(s)) ||]ds:|

n-2 1 1 Ko+ b [l
prIIyH{;E /0 ) (als)+ b)) s+ o /0 m(s)b(s) ds}
= 1l

which is a contradiction. This and Lemma 2.1 complete the proof. d

4 An example
To demonstrate how our main results can be used in the application of our results, we give

an example.

Example 4.1 Consider the following fractional boundary value problem of a finite system
of scalar fractional differential equations:

—t —2t
7/ e 3 e
D"2x,(t) = Al—(x,, +, +xZ) +A2m<xn +X, 4

NG
¢ 1 2
+/0 sin(t + s)e x,,(s)ds+/0 cos(t —s)e x,,(s)ds) ,

te(0,1),n=1,2,...,m), (4.1)
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%,(0) =x/,(0) = 0,

8 12 /1 7/2
x,(0) +x,/(0) = 10577 J, <5 —s> x,(s) ds, (4.2)

1/3 7/2
x,(1) + (1) + 8 l—s x'(s)ds = 0.
" " 1057 Jo \3 "

Conclusion System (4.1), (4.2) has at least one positive solution.

Proof Let the Banach space
E=R"= {x: (X1, %2,5 2 2y X)) 2 Xy eR,n:l,Z,...,m}

with the norm ||x|| = maxi<,<m [%,| and P = {x = (x1,%2,..., %) : %, > 0,m =1,2,...,m}.
Then P is a normal cone in E and problem (4.1), (4.2) can be taken into consideration as
a BVP form (1.1), (1.2) in E. Here, A1, Ay > 0 are real numbers, a = %, S = %, n= %, u= é,
a(t) = %, b(t) = W, K(t,s) = sin(t + s)e™*, H(t,s) = cos(t — s)e™®, x = (X1, X2, ..., %), f =
(ﬁ;_fZ) v 7fm)1 g= (glrgZ’ v 7gm)’ where

Sultsu, v, w) =267 (y + vy + W),

2t(

gt u,v,w,z,t)=e Uy + vy + wy + 2z, + )%

Clearly, f € C[J x P3,P], g € C[J x P5,P] (J = [0,1]), and P* = P, thus we can choose ¥ =
(1,1,...,1); then for any x € P we get

m

v (f(tu,v,w)) = an(t, u, v, w).

n=1

Now, conditions (H1)-(H3) will be verified. It is easy to see that (H1) holds. Observe that,
for any ¢ € (0,1) and r > 0, we have

f(t) <54e'r, g (t) <25e7%r.

Thus (H2) is satisfied. Furthermore, assumption (H3) is satisfied automatically since E is
finite dimensional.

On the other hand,
. t,u,v,w
on Wt mvwl
(leell + vl + 1wl +1z1)—0 el ull + [[v[| + Iwll
0 . ”g(t: u,v, W’Z!T)”

’

lim sup max =
Ul +vl+Iwl+ izl +l1)—0 te] Nlull + vl + lw]l + |zl + |IT]l

and

viuvw) _ IfGuv,w

> (lzell + vl + w]| — o0),
llaell + MvIF+ AWl = laell + vl + [[wll

which means (¥f)s = co. Therefore, Corollary 3.1 shows that (4.1), (4.2) has a solution.
O
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