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Abstract
In this paper, we explore P-type learning laws for impulsive Riemann-Liouville
fractional-order controlled systems (0 < α < 1) with initial state offset bounded to
track the varying reference accurately by using a few iterations in a finite time interval.
By using the Gronwall inequality and fundamental inequalities, we obtain open-loop
and closed-loop P-type robust convergence results in the sense of (PC1–α ,λ)-norm
‖ · ‖PC1–α ,λ. Finally, numerical examples are given to illustrate our theoretical results.
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1 Introduction
Since Uchiyama and Arimoto put forward the concept of iterative learning control (ILC
for short), ILC has been extended to tracking tasks with iteratively varying reference tra-
jectories [–] extensively. Up to now, a wide variety of iterative learning control problems
and related issues have been proposed and studied in many fields. For example, ILC for
fractional differential systems [–], ILC for impulsive differential systems [, ], research
on the robustness of ILC [–], and so on.

Recently, the fractional-order differential system has played an important role in various
fields such as electricity, signal and image processing, neural networks [–], and control
problems []. Furthermore, the qualitative theory of fractional differential systems has
been studied extensively. The existence theory of solutions to fractional-order differential
equations involving Riemann-Liouville and Caputo derivatives has been investigated in
[–]. Meanwhile, it is remarkable that some interesting existence and controllability re-
sults have been obtained for fractional controlled systems involving the Caputo derivative
[–]. Moreover, the concept and existence of solutions for impulsive fractional differ-
ential equations involving Riemann-Liouville and Caputo derivatives have been studied in
[–]. There are few papers on ILC for integer-order and Caputo type fractional-order
impulsive differential systems [–]. Since Riemann-Liouville fractional-order systems
play the same important role in theory analysis and application, it is necessary to deal with
ILC problems for Riemann-Liouville type fractional impulsive differential systems.
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In this paper, we discuss ILC for impulsive Riemann-Liouville fractional controlled sys-
tems with initial state offset bounded and present the robust convergence analysis results.
More precisely, we study

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Dα
,txk)(t) = μxk(t) + f (t, xk(t), uk(t)) + ξk(t), t ∈ [, T] \ {t, . . . , tm},μ < ,

limt→+(I–α
,t xk)(t) = xk(),

�(I–α
,tj

xk)(tj) = Gj(t–
j , xk(t–

j )), tj ∈ {t, . . . , tm},
yk(t) = g(t, xk(t)) + Buk(t) + ηk(t),

()

where Dα
,t denotes Riemann-Liouville fractional derivatives of the order α ∈ (, ) from

lower limit zero and I–α
,t denotes Riemann-Liouville fractional integral the order  – α

from lower limit zero (see Definition .), k denotes the kth learning iteration, T denotes
pre-fixed iteration domain length, impulsive term

�
(
I–α

,tj
x
)
(tj) := I–α

,t+
j

x
(
t+
j
)

– I–α
,t–

j
x
(
t–
j
)

= �(α)
[

lim
t→t+

j
(t – tj)–αx(t) – lim

t→t–
j
(t – tj)–αx(t)

]
,

where I–α
,t+

j
x(t+

j ) and I–α
,t–

j
x(t–

j ) denote the right and the left limits of I–α
,t x(t) at tj ∈

{t, . . . , tm}. For more details on �(I–α
,tj

x)(tj), one can see [], Lemma ., Chapter . Also,
tj, j = , , . . . , m, denotes the jth impulsive points satisfying  = t < t < · · · < tm < tm+ = T .
The nonlinear terms f : J × Rn × Rn → Rn and Gj, g : J × Rn → Rn are given functions. The
functions ξk , ηk : J → Rn represent the state interference and output disturbance, respec-
tively. The variables xk , uk , yk ∈ Rn denote state, input, and output, respectively. Moreover,
B is a n × n real matrix.

According to [], (.), the continuous solution of the system () can be formulated by
the solution of the fractional integral equations

xk(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα–Eα,α(μtα)xk()
+

∫ t
 (t – s)α–Eα,α(μ(t – s)α)[f (s, xk(s), uk(s)) + ξk(s)] ds, t ∈ [, t],

tα–Eα,α(μtα)xk()
+

∫ t
 (t – s)α–Eα,α(μ(t – s)α)[f (s, xk(s), uk(s)) + ξk(s)] ds

+
∑j

i= Eα,α(μ(t – ti)α)(t – ti)α–Gi(t–
i , xk(t–

i )),
t ∈ (tj, tj+], j = , , . . . , m,

()

where Eα,α denotes Mittag-Leffler type function (see Definition .).
The ILC problems for Riemann-Liouville type fractional impulsive differential systems

have not been studied extensively. The main difficulties are the following two facts:
(i) The initial value involving singular term in Riemann-Liouville fractional differential

equations of order α ∈ (, ) is much different from Caputo fractional differential
equations with the same order.

(ii) Impulsive conditions make the formula of solutions to fractional differential
equations more complex due to the memory property of the fractional derivative.

After carefully observing, we have to introduce the piecewise continuous space with
weighted norm to deal with the singular term appearing in the initial condition via a new
singular impulsive Gronwall inequality, which is the main difficult to be solved by us.
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For the system (), we consider an open-loop P-type ILC updating law with the initial
state offset bounded,

�uk = Poek(t),
∥
∥�xk()

∥
∥ ≤ d, ()

and a closed-loop P-type ILC updating law learning with initial state offset bounded,

�uk = Pdek+(t),
∥
∥�xk()

∥
∥ ≤ d, ()

where �uk = uk+ – uk , ek = yd – yk , �xk = xk+ – xk denote the tracking error and yd the
iteratively varying reference trajectory, and d is positive constant, Po and Pd are unknown
n × n matrix parameters to be determined.

The main objective of this paper is to generate the control input uk such that the impul-
sive fractional system output yk tracking the iteratively varying reference trajectories yd

(may be continuous or discontinuous) as accurately as possible when k → ∞ uniformly
on [, T] in the sense of (PC–α ,λ)-norm by adopting a P-type ILC updating law with initial
state offset bounded.

The main contribution of this paper are as follows.
(i) We establish a standard study framework of the ILC problem for an impulsive

Riemann-Liouville fractional system associated with an impulsive Gronwall
inequality with singular kernel given by us (see [], Lemma .).

(ii) Sufficient conditions ensuring the robust convergence of ILC problem for impulsive
Riemann-Liouville fractional system with order lying in (, ) are derived.

The rest of this paper is organized as follows. In Section , we give some necessary nota-
tions, concepts, and lemmas. In Section , two sufficient conditions ensuring convergence
results of the system () are presented. An interesting example is given in the final section
to demonstrate the application of our main results.

2 Preliminaries
Set J = [, T]. Let C(J , Rn) be the Banach space of vector-value continuous functions from
J → Rn endowed with the standard norm ‖·‖. In order to define the solutions of system (),
we consider a Banach space PC(J , Rn) = {x : (t – tj)–αx(t) ∈ C((tj, tj+], Rn), and limt→t+

j
(t –

tj)–αx(t) exists, j = , , . . . , m} endowed with the (PC–α ,λ)-norm

‖x‖PC–α ,λ = max
{

(t – tj)–αe–λ(t–tj)
∥
∥x(t)

∥
∥ : j = , , . . . , m

}
.

Next, we recall some basic definitions on fractional calculus.

Definition . (see [], Formula (..)) For a given function f , the Riemann-Liouville
fractional integral Iα

a,xf is defined by

(
Iα

a,xf
)
(x) :=


�(α)

∫ x

a

f (t)
(x – t)–α

dt, x > a;  < α < ,

and the Riemann-Liouville fractional derivative Dα
a,xf is defined by

(
Dα

a,xf
)
(x) :=

d
dx

(
I–α

a,x f
)
(x) =


�( – α)

d
dx

∫ x

a

f (t)
(x – t)α

dt,

where �(·) is the Gamma function.
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Definition . (see [], (..)) The two-parameter Mittag-Leffler type function is de-
fined by

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α > ,β ∈ R, z ∈ R.

The following lemmas will be used in the sequel.

Lemma . (see [], Lemma ) Let α ∈ (, ] and λ >  be arbitrary. The functions Eα(·),
Eα,α(·) are nonnegative and

Eα

(
–tαλ

) ≤ , Eα,α
(
–tαλ

) ≤ 
�(α)

.

Lemma . (see [], Lemma .) Let v ∈ PC(J , R+) satisfy the following inequality:

v(t) ≤ c(t) + c

∫ t


(t – s)β–v(s) ds +

k∑

j=

θjv
(
t–
j
)
,

where c(t) is nonnegative continuous and nondecreasing on J , and c, θj >  are constants.
Then

v(t) ≤ c(t)
(
 + θEβ

(
c�(β)tβ

))jEβ

(
c�(β)tβ

)
, for t ∈ (tj, tj+],

where θ = max{θj : j = , , . . . , m}.

Lemma . (see [], Lemma ) Let dk be a sequence of real number which converges to the
limit d∞ as k → ∞. Suppose that ak is a sequence of real number such that

pak + qak– ≤ dk , p > –q ≥ .

Then we have

lim sup
k→∞

ak ≤ d∞
p + q

.

3 Robust convergence analysis of P-type
In this section, we discuss robust convergence results for () via an ILC of an open-loop
P-type ILC () and closed-loop (), respectively.

For a start, we impose the following assumptions:
(A) The function f : J × Rn × Rn → Rn is continuous and there exist two nonnegative

functions Lf (·) and If (·) such that
∥
∥f (t, x, u) – f (t, x̂, û)

∥
∥ ≤ Lf (t)‖x – x̂‖ + If (t)‖u – û‖,

for any x, x̂, u, û ∈ Rn and all t ∈ J .
The function g : J × Rn → Rn is continuous and there exists a constant Lg >  such that

∥
∥g(t, x) – g(t, x̂)

∥
∥ ≤ Lg‖x – x̂‖,

for any x, x̂ ∈ Rn and all t ∈ J .
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We have the function Gj : J × Rn → Rn, j = , , . . . , m, and there exists a nonnegative
function LGj (·) such that

∥
∥Gj(t, x) – Gj(t, x̂)

∥
∥ ≤ LGj (t)‖x – x̂‖,

for any x, x̂ ∈ Rn and all t ∈ J .
(A) For nonnegative functions Lf (·), If (·), and LGj (·), we set

M = max

{

sup
t∈(tj ,tj+]

Lf (t)
(t – tj)–α

, sup
t∈(tj ,tj+]

If (t)
(t – tj)–α

, j = , , . . . , m
}

,

M = max
{

LGj (tj), j = , . . . , m
}

,

ML = max{M, M}.

(A) For uncertainty and disturbance terms ξk(t) ∈ Rn, ηk(t) ∈ Rn and the initial value
xk() ∈ Rn are bounded as follows, for all t ∈ (tj, tj+], j = , , . . . , m, and for any k, ‖ξk+(t) –
ξk(t)‖ ≤ dξ , ‖ηk+(t) – ηk(t)‖ ≤ dη , where dξ and dη are positive constants.

Now we are ready to present the robust convergence analysis result for an open-loop
P-type ILC.

Theorem . For the system (), the assumptions (A)-(A) hold. If ‖I – BPo‖ < , then,
for arbitrary initial input u, () guarantees that yk(t) is uniformly bounded for t ∈ J as
k → ∞ in the sense of (PC–α ,λ)-norm. Further, yk(t) uniform convergent to yd(t) for t ∈ J
if disturbance is converge asymptotically to zero.

Proof Without loss of generality, we only consider t ∈ (tj, tj+], j = , , , . . . , m. Linking ()
and (), we have

ek+(t) = (I – BPo)ek(t) + g
(
t, xk(t)

)
– g

(
t, xk+(t)

)
+ ηk(t) – ηk+(t). ()

Taking the norm ‖ · ‖ on both sides of (), one can derive that

∥
∥ek+(t)

∥
∥ ≤ ‖I – BPo‖

∥
∥ek(t)

∥
∥ + Lg

∥
∥�xk(t)

∥
∥ + dη. ()

In the following, we prove ‖ek+‖PC–α ,λ is uniformly bounded as k → ∞.
Taking the norm ‖ · ‖ on both sides of (), one can apply (A) and (A) to derive that

∥
∥�xk(t)

∥
∥ ≤ tα–

�(α)
∥
∥�xk()

∥
∥ +


�(α)

∫ t


(t – s)α–[Lf (s)

∥
∥�xk(s)

∥
∥ + If (s)

∥
∥�uk(s)

∥
∥
]

ds

+


�(α)

∫ t


(t – s)α–dξ ds +


�(α)

j∑

i=

(t – ti)α–LGi (ti)
∥
∥�xk

(
t–
i
)∥
∥. ()

Multiplying (t – tj)–α on both sides of (), using (A) we have

(t – tj)–α
∥
∥�xk(t)

∥
∥

≤ ( – tj
t )–α

�(α)
d +

(t – tj)–αeλ(t–tj)ML

λα
‖Po‖‖�ek‖PC–α ,λ
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+
(tj+ – tj)–αML

�(α)

∫ t


(t – s)α–(s – tj)–α

∥
∥�xk(s)

∥
∥ds +

(t – tj)–αtα

�(α + )
dξ

+
(t – tj)–α

�(α)

j∑

i=

(t – ti)α–(ti – ti–)α–LGi (ti)(ti – ti–)–α
∥
∥�xk

(
t–
i
)∥
∥. ()

Note that the fact t–tj
t–ti

≤  since tj ≥ ti and

(t – tj)–α(t – ti)α– =
(

t – tj

t – ti

)–α

≤ .

Then () reduces to

(t – tj)–α
∥
∥�xk(t)

∥
∥

≤ ( – tj
t )–α

�(α)
d +

(t – tj)–αeλ(t–tj)ML

λα
‖Po‖‖�ek‖PC–α ,λ

+
(tj+ – tj)–αML

�(α)

∫ t


(t – s)α–(s – tj)–α

∥
∥�xk(s)

∥
∥ds +

(t – tj)–αtα

�(α + )
dξ

+


�(α)

j∑

i=

(ti – ti–)α–ML(ti – ti–)–α
∥
∥�xk

(
t–
i
)∥
∥. ()

For the inequality (), we set v(t) = (t – ti)–α‖�xk(t)‖. Then one can apply Lemma .
to derive that

(t – tj)–α
∥
∥�xk(t)

∥
∥

≤
( ( – tj

t )–α

�(α)
d +

(t – tj)–αMLeλ(t–tj)

λα
‖Po‖‖�ek‖PC–α ,λ

+
(t – tj)–αtα

�(α + )
dξ

)
(
 + θEα

(
(tj+ – tj)–αtαML

))jEα

(
(tj+ – tj)–αtαML

)
, ()

where

θ = max

{
(tj+ – tj)α–ML

�(α)
: j = , , , . . . , m

}

.

Multiplying e–λ(t–tj) on both sides of () and noting the fact that Eα(z), z >  is an in-
creasing function, we have

(t – tj)–αe–λ(t–tj)
∥
∥�xk(t)

∥
∥

≤ Nj

(
d

tj+�(α)
+

ML

tα
j λα

‖Po‖‖�ek‖PC–α ,λ +
dξ

�(α + )

)

× (
 + θEα(NjML)

)jEα(NjML), ()

where

Nj =
[

 –
tj

tj+

]–α

× tj+.
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For (), one can take the (PC–α ,λ)-norm to derive that

‖�xk‖PC–α ,λ ≤ Nmax

(
d

t�(α)
+

ML

tα
 λα

‖Po‖‖�ek‖PC–α ,λ +
dξ

�(α + )

)

× (
 + θEα(NmaxML)

)mEα(NmaxML), ()

where

Nmax = max{Nj : j = , , . . . , m}.

Linking () and (), we have

‖ek+‖PC–α ,λ ≤ ‖I – BPo‖‖ek‖PC–α ,λ + Lg‖�xk‖PC–α ,λ + �t–α
j maxdη, ()

where

�t–α
j max = max

{
(tj+ – tj)–α : j = , , . . . , m

}
.

Submitting () into (), we obtain

‖ek+‖PC–α ,λ ≤ q̃‖�ek‖PC–α ,λ + M̃, ()

where

M̃ =
[

LgNmaxd

t�(α)
+

LgNmaxdξ

�(α + )

]
(
 + θEα(NmaxML)

)mEα(NmaxML) + �t–α
j maxdη,

q̃ = ‖I – BPo‖ +
LgNmaxML

tα
 λα

‖Po‖
(
 + θEα(NmaxML)

)mEα(NmaxML).

Note that there exists a large enough λ such that q̃ <  due to ‖I – BPo‖ < . Concerning
(), one can use Lemma . to derive that

lim
k→∞

sup‖ek+‖PC–α ,λ ≤ M̃
 – q̃

,

which shows that yk(t) is uniformly bounded in the sense of (PC–α ,λ)-norm. Further, if the
disturbance has asymptotic convergence, which means that dξ → , dη → , and d → ,
as k → ∞, then yk(t) uniform convergent to yd(t) for t ∈ J if the disturbance converges
asymptotically to zero. �

Remark . In Theorem ., If we set α = , xk() = xk+(), ξk(t) = ηk(t) = ,  < β < ∂g
∂x <

β, Gj(t, x) = Gj(x), Lf (t) = Lf , If (t) = If , and LGj (t) = LG, then yk(·) is uniform convergent
to yd(·) in the sense of (PC,λ)-norm, which is a parallel result to [], Theorem ., in the
sense of the L-norm.

Next, we present the robust convergence analysis result for a closed-loop P-type ILC.
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Theorem . For the system (), the assumptions (A)-(A) hold. If (I + BPd)– exists and
‖(I + BPd)–‖ < , () guarantees that yk(t) is uniformly bounded for t ∈ J as k → ∞ in the
sense of the (PC–α ,λ)-norm. Moreover, if the disturbance converges asymptotically to zero,
then yk(t) is uniform convergent to yd(t) for t ∈ J .

Proof Similar to the proof of Theorem ., we consider t ∈ (tj, tj+], j = , , . . . , m. Linking
() and (), we have

ek+(t) = ek(t) + g
(
t, xk(t)

)
– g

(
t, xk+(t)

)
– BPdek+(t) + ηk(t) – ηk+(t)

= (I + BPd)–ek(t) + (I + BPd)–(g
(
t, xk(t)

)
– g

(
t, xk+(t)

))

+ (I + BPd)–(ηk(t) – ηk+(t)
)
. ()

Taking the norm ‖ · ‖ on both sides of (), we have

∥
∥ek+(t)

∥
∥ ≤ ∥

∥(I + BPd)–∥∥
∥
∥ek(t)

∥
∥ + Lg

∥
∥(I + BPd)–∥∥

∥
∥�xk(t)

∥
∥ +

∥
∥(I + BPd)–∥∥dη. ()

Next, we apply the analogy method in Theorem . to prove that ‖ek+‖PC–α ,λ is uni-
formly bounded as k → ∞.

By repeating the procedure to derive (), one has

‖�xk‖PC–α ,λ ≤ Nmax

(
d

t�(α)
+

ML

tα
 λα

‖Pd‖‖�ek+‖PC–α ,λ +
dξ

�(α + )

)

× (
 + θEα(NmaxML)

)mEα(NmaxML), ()

where Nj, θ , and Nmax are defined in Theorem ..
Substituting () into (), we have

‖ek+‖PC–α ,λ ≤ ∥
∥(I + BPd)–∥∥‖ek‖PC–α ,λ + Lg

∥
∥(I + BPd)–∥∥‖�xk‖PC–α ,λ

+
∥
∥(I + BPd)–∥∥�t–α

j maxdη. ()

Taking () into (), we have

‖ek+‖PC–α ,λ ≤ ∥
∥(I + BPd)–∥∥‖ek‖PC–α ,λ

+ Lg
∥
∥(I + BPd)–∥∥Nmax

(
d

t�(α)
+

ML

tα
 λα

‖Pd‖‖ek+‖PC–α ,λ +
dξ

�(α + )

)

× (
 + θEα(NmaxML)

)mEα(NmaxML) +
∥
∥(I + BPd)–∥∥�t–α

j maxdη,

which implies that

‖ek+‖PC–α ,λ

≤ ‖(I + BPd)–‖
H

‖ek‖PC–α ,λ +
Lg‖(I + BPd)–‖Nmax

H

(
d

t�(α)
+

dξ

�(α + )

)

× (
 + θEα(NmaxML)

)mEα(NmaxML) +
‖(I + BPd)–‖

H
�t–α

j maxdη, ()
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where

H =  –
Lg‖(I + BPd)–‖ML

tα
 λα

‖Pd‖
(
 + θEα(NmaxML)

)mEα(NmaxML).

Let

M̄ =
Lg‖(I + BPd)–‖Nmax

H

(
d

t�(α)
+

dξ

�(α + )

)
(
 + θEα(NmaxML)

)mEα(NmaxML)

+
‖(I + BPd)–‖

H
�t–α

j maxdη,

q̄ =
‖(I + BPd)–‖

H
.

Then () reduces to

‖ek+‖PC–α ,λ ≤ q̄‖ek‖PC–α ,λ + M̄.

Note that ‖(I + BPd)–‖ < . It is not difficult to see that q̃ <  for some large enough λ. By
Lemma ., we have

lim
k→∞

sup‖ek+‖PC–α ,λ ≤ M̃
 – q̃

. ()

Thus, the demised results are obtained immediately. The proof is finished. �

Remark . In Theorem ., if we set α = , xk() = xk+(), ξk(t) = ηk(t) = ,  < β < ∂g
∂x <

β, Gj(t, x) = Gj(x), Lf (t) = Lf , If (t) = If , and LGj (t) = LG, then yk(·) is uniform convergent
to yd(·) in the sense of (PC,λ)-norm, which is another parallel result to [], Theorem .,
in the sense of L-norm.

4 Simulation examples
In this section, one numerical example is presented to demonstrate the validity of the
designed method. In order to describe the stability of the system which is associated
with the increase of the iterations, we denote the total energy in the kth iteration as
Ek = ‖uk‖∞ = maxt∈[,T] ‖uk(t)‖.

Example . Consider the following impulsive fractional controlled systems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(D.
,t xk)(t) = –xk(t) + t(t – .)uk(t) + t

k+ , t ∈ [, ] \ {.},
limt→+(I.

,t xk)(t) = ,
�(I.

,t x)(t–
 ) = t–

 xk(t–
 ), t = .,

yk(t) = xk(t) + .uk(t) + e–kt ,

()

and the P-type ILC

uk+(t) = uk(t) + Poek(t).
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Figure 1 The system output and the tracking
error.

Figure 2 The system output and the tracking
error.

Set α = ., μ = –, f (t, xk , uk) = t(t – .)uk , Gj(t–
j , xk(t–

j )) = t–
 xk(t–

 ), j = , ξk(t) = t
k+ ,

ηk(t) = e–kt , t ∈ [, ]. Obviously, Lf (t) = , If (t) = t(t – .), LGj (t) = ., t ∈ [, ]. It is not
difficult to verify that M = ., M = .. Set ML = .. Then (A)-(A) are satisfied.

Case : The original reference trajectory is a piecewise continuous function,

yd(t) =

⎧
⎪⎨

⎪⎩


 t + , t ∈ [, .],

 t + (t + .) + , t ∈ (., .],

 t + (t + .) + (t + .) + , t ∈ (., ].

(i) We set uk() =  and B = ., Po = .. Obviously, | – BPo| = . < . ξk(t) = t
k+ ,

ηk(t) = e–kt , t ∈ [, ]. All the conditions of Theorem . are satisfied. Meanwhile, the dis-
turbances have asymptotic convergence, then yk(t) is uniform convergent to yd(t), for
t ∈ [, ].

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

(ii) We set uk() =  and B = ., Po = .. Obviously, | – BPo| = . < . Then all the
conditions of Theorem . are satisfied. The yk(t) is uniform convergent to yd(t), for t ∈
[, ].
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Figure 3 The system output and the tracking
error.

Figure 4 The system output and the tracking
error.

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

Conclusions:
From Figures  and  or  and , we find that the tracking error decreases with k
increasing.
From Figures  and  or  and , we find that the tracking error decreases with Po

increasing.
Case : The second original reference trajectory is continuous,

yd(t) = t( – t) + t – .

(iii) We set uk() =  and B = ., Po = .. Obviously, | – BPo| = . < . All the con-
ditions of Theorem . are satisfied. Meanwhile, the disturbances are asymptotic conver-
gence, then yk(t) uniform convergent to yd(t), for t ∈ [, ].

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..
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Figure 5 The system output and the tracking
error.

Figure 6 The system output and the tracking
error.

Figure 7 The system output and the tracking
error.

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

(iv) We set uk() =  and B = ., Po = .. Obviously, | – BPo| = . < . Then all the
conditions of Theorem . are satisfied. The yk(t) uniform convergent to yd(t), for t ∈ [, ].

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..

� Figure  shows the output yk of equation () of the th iteration and the reference
trajectory yd . The lower figure of Figure  shows the ∞-norm of the tracking error in each
iteration and the error is ..
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Figure 8 The system output and the tracking
error.

Conclusions:
From Figures  and  or  and , we can see that the tracking error decreases with k
increasing.
From Figures  and  or  and , we can see that the tracking error decreases with Po

increasing.

5 Conclusions
Due to the fact that impulse phenomenon and fractional-order systems widely exist in
engineering, we investigated the P-type learning laws for impulsive Riemann-Liouville
fractional-order controlled systems ( < α < ) with initial state offset bounded. We obtain
open-loop and closed-loop P-type robust convergence results in the sense of (PC–α ,λ)-
norm ‖ · ‖PC–α ,λ via an impulsive Gronwall inequality. Furthermore, one example is given
to verify the effectiveness and feasibility of the obtained results. The proposed scheme can
deal with the robust convergence of impulsive Riemann-Liouville fractional systems. We
would like to point out that it is possible to extend our results to other impulsive fractional-
order models such as non-instantaneous impulsive fractional-order systems and so on.
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24. Wang, J, Ibrahim, AG, Fečkan, M: Nonlocal impulsive fractional differential inclusions with fractional sectorial

operators on Banach spaces. Appl. Math. Comput. 257, 103-118 (2015)
25. Wang, J, Fec̆kan, M, Zhou, Y: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806-831

(2016)
26. Ganesh, R, Sakthivel, R, Mahmudov, NI: Approximate controllability of fractional functional equations with infinite

delay. Topol. Methods Nonlinear Anal. 43, 345-364 (2014)
27. Sakthivel, R, Ganesh, R, Anthoni, SM: Approximate controllability of fractional nonlinear differential inclusions. Appl.

Math. Comput. 225, 708-717 (2013)
28. Li, Y, Chen, YQ, Ahn, HS: Fractional-order iterative learning control for fractional-order linear systems. Asian J. Control

13, 54-63 (2011)
29. Lan, YH, Zhou, Y: Dα type iterative learning control for fractional order linear time-delay systems. Asian J. Control 15,

669-677 (2013)
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