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Abstract

In this article we study the global convergence result, boundedness, and periodicity
of solutions of the difference equation

xn+1 = axn−s +
bxn−l + cxn−k

dxn−l + exn−k
n = 0, 1, . . . ,

where the parameters a, b, c, d and e are positive real numbers and the initial
conditions x-t, x-t+1, . . . , x-1 and x0 are positive real numbers where t = max{s, l, k}.
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1 Introduction
Difference equations appear as natural descriptions of observed evolution phenomena

because most measurements of time evolving variables are discrete and as such these

equations are in their own right important mathematical models. More importantly,

difference equations also appear in the study of discretization methods for differential

equations. Several results in the theory of difference equations have been obtained as

more or less natural discrete analogues of corresponding results of differential

equations.

The study of rational difference equations of order greater than one is quite challen-

ging and rewarding because some prototypes for the development of the basic theory

of the global behavior of nonlinear difference equations of order greater than one

come from the results for rational difference equations. However, there have not been

any effective general methods to deal with the global behavior of rational difference

equations of order greater than one so far. Therefore, the study of rational difference

equations of order greater than one is worth further consideration.

Recently there has been a lot of interest in studying the global attractivity, bounded-

ness character, periodicity and the solution form of nonlinear difference equations. For

some results in this area, for example: Agarwal and Elsayed [1] studied the global stabi-

lity, periodicity character and gave the solution form of some special cases of the

recursive sequence

xn+1 = axn +
bxnxn−3

cxn−2 + dxn−3
.
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Aloqeili [2] obtained the form of the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1
.

Elabbasy et al. [3] investigated the global stability character, boundedness and the

periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γ xn−2

Axn + Bxn−1 + Cxn−2
.

Elabbasy et al. [4] get the dynamics such that the global stability, periodicity charac-

ter and gave the solution of special case of the following recursive sequence

xn+1 = axn − bxn
cxn − dxn−1

.

Elabbasy et al. [5] investigated the behavior of the difference equation especially glo-

bal stability, boundedness, periodicity character and gave the solution of some special

cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

El-Metwally et al. [6] dealed with the following difference equation

yn+1 =
yn−(2k+1) + p

yn−(2k+1) + qyn−2l
.

Saleh and Aloqeili [7] investigated the difference equation

yn+1 = A +
yn
yn−k

.

Simsek et al. [8] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Yalçınkaya [9,10] considered the dynamics of the difference equations

xn+1 =
axn−k

b + cxpn
, xn+1 = α +

xn−m

xkn
.

Zayed and El-Moneam [11,12] studied the behavior of the following rational recur-

sive sequences

xn+1 = axn − bxn
cxn − dxn−k

, xn+1 =
α + βxn + γ xn−1

A + Bxn + Cxn−1
.

Other related results on rational difference equations can be found in [1-45].

Our goal in this article is to investigate the global stability character and the periodi-

city of solutions of the recursive sequence

xn+1 = axn−s +
bxn−l + cxn−k

dxn−l + exn−k
, (1)
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where the parameters a, b, c, d and e are positive real numbers and the initial condi-

tions x-t, x-t+1, . . . , x-1 and x0 are positive real numbers where t = max{s, l, k}.

2 Some basic properties and definitions
Here, we recall some basic definitions and some theorems that we need in the sequel.

Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x-k,

x-k+1, . . . , x0 Î I, the difference equation

xn+1 = F(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (2)

has a unique solution {xn}∞n=−k .

Definition 1 (Equilibrium point)

A point x̄ ∈ I is called an equilibrium point of Equation (2) if

x̄ = F(x̄, x̄, . . . , x̄).

That is, xn = x̄ for n ≥ 0, is a solution of Equation (2), or equivalently, x̄ is a fixed

point of F.

Definition 2 (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ -k.

Definition 3 (Stability)

(i) The equilibrium point x̄ of Equation (2) is locally stable if for every ε >0, there

exists δ >0 such that for all x-k, x-k+1, . . . , x-1, x0 Î I with

|x−k − x̄| + |x−k+1 − x̄| + · · · + |x0 − x̄| < δ,

we have

|xn − x̄| < ε for all n ≥ −k.

(ii) The equilibrium point x̄ of Equation (2) is locally asymptotically stable if x̄ is

locally stable solution of Equation (2) and there exists g >0, such that for all x-k, x-k+1, .

. . , x-1, x0 Î I with

|x−k − x̄| + |x−k+1 − x̄| + · · · + |x0 − x̄| < γ ,

we have

lim
n→∞ xn = x̄.

(iii) The equilibrium point x̄ of Equation (2) is global attractor if for all x-k, x-k+1, . . .

, x-1, x0 Î I, we have

lim
n→∞ xn = x̄.

(iv) The equilibrium point x̄ of Equation (2) is globally asymptotically stable if x̄ is

locally stable, and x̄ is also a global attractor of Equation (2).

(v) The equilibrium point x̄ of Equation (2) is unstable if x̄ is not locally stable.
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The linearized equation of Equation (2) about the equilibrium x̄ is the linear differ-

ence equation

yn+1 =
k∑
i=0

∂F(x̄, x̄, . . . , x̄)
∂xn−i

yn−i. (3)

Theorem A: [34]Assume that pi Î R, i = 1, 2, . . . and k Î {0, 1, 2, . . . }. Then

k∑
i=1

|pi| < 1, (4)

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + · · · + pkyn = 0, n = 0, 1, . . .

Consider the following equation

xn + 1 = g(xn, xn−1, xn−2). (5)

The following two theorems will be useful for the proof of our results in this article.

Theorem B: [35] Let [a, b] be an interval of real numbers and assume that

g : [α, β]3 → [α, β],

is a continuous function satisfying the following properties:

(a) g(x, y, z) is non-decreasing in x and y in [a, b] for each z Î [a, b], and is non-

increasing in z Î [a, b] for each x and y in [a, b];
(b) If (m, M) Î [a, b] × [a, b] is a solution of the system

M = g(M,M,m) and m = g(m, m, M),

then

m = M.

Then Equation (5) has a unique equilibrium x̄ ∈ [α,β] and every solution of Equa-

tion (5) converges to x̄ .

Theorem C: [35] Let [a, b] be an interval of real numbers and assume that

g : [α, β]3 → [α, β],

is a continuous function satisfying the following properties:

(a) g(x, y, z) is non-decreasing in x and z in [a, b] for each y Î [a, b], and is non-

increasing in y Î [a, b] for each x and z in [a, b];
(b) If (m, M) Î [a, b] × [a, b] is a solution of the system

M = g(M,m,M) and m = g(m,M,m),

then

m = M.

Then Equation (5) has a unique equilibrium x̄ ∈ [α,β] and every solution of Equa-

tion (5) converges to x̄ .
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The article proceeds as follows. In Section 3 we show that the equilibrium point of

Equation (1) is locally asymptotically stable when 2 |(be - dc)| <(d + e)(b + c). In Sec-

tion 4 we prove that the solution is bounded when a <1 and the solution of Equation

(1) is unbounded if a >1. In Section 5 we prove that the there exists a period two solu-

tion of Equation (1). In Section 6 we prove that the equilibrium point of Equation (1)

is global attractor. Finally, we give numerical examples of some special cases of Equa-

tion (1) and draw it by using Matlab.

3 Local Stability of the equilibrium point of Equation (1)
This section deals with study the local stability character of the equilibrium point of

Equation (1).

Theorem 1 Assume that

2| (be − dc) | < (d + e) (b + c) .

Then the positive equilibrium point of Equation (1) is locally asymptotically stable.

Proof. Equation (1) has equilibrium point and is given by

x̄ = ax̄ +
b + c
d + e

.

If a <1, then the only positive equilibrium point of Equation (1) is given by

x̄ =
b + c

(1 − a)(d + e)
.

Let f: (0, ∞)3 ® (0, ∞) be a continuous function defined by

f (u, v, w) = au +
bv + cw
dv + ew

. (6)

Therefore it follows that

∂f (u, v,w)
∂u

= a,

∂f (u, v,w)
∂v

=
(be − dc)w

(dv + ew)2
,

∂f (u, v,w)
∂w

=
(dc − be)u

(dv + ew)2
.

Then we see that

∂f (x̄, x̄, x̄)
∂u

= a = −a2,

∂f (x̄, x̄, x̄)
∂v

=
(be − dc)

(d + e)2x̄
=
(be − dc)(1 − a)
(d + e)(b + c)

= −a1,

∂f (x̄, x̄, x̄)
∂w

=
(dc − be)

(d + e)2x̄
=
(dc − be)(1 − a)
(d + e)(b + c)

= −a0.

Then the linearized equation of Equation (1) about x̄ is

yn + 1 + a2yn−s + a1yn-l + a0yn-k = 0, (7)

whose characteristic equation is

λk+1 + a2λk−s + a1λk−l + a0 = 0. (8)
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It follows by Theorem A that, Equation (7) is asymptotically stable if all roots of

Equation (8) lie in the open disc |l| <1 that is if

|a2| + |a1| + |a0| < 1.

|a| +
∣∣∣∣(be − dc)(1 − a)

(d + e)(b + c)

∣∣∣∣ +
∣∣∣∣(dc − be)(1 − a)

(d + e)(b + c)

∣∣∣∣ < 1,

and so

2

∣∣∣∣(be − dc)(1 − a)
(d + e)(b + c)

∣∣∣∣ < (1 − a), a < 1,

or

2|be − dc| < (d + e)(b + c).

The proof is complete.

4 Existence of bounded and unbounded solutions of Equations (1)
Here we study the boundedness nature of solutions of Equation (1).

Theorem 2 Every solution of Equation (1) is bounded if a <1.

Proof. Let {xn}∞n=−t be a solution of Equation (1). It follows from Equation (1) that

xn+1 = axn−s +
bxn−l + cxn−k

dxn−l + exn−k
= axn−s +

bxn−l

dxn−l + exn−k
+

cxn−k

dxn−l + exn−k
.

Then

xn+1 ≤ axn−s +
bxn−l

dxn−l
+
cxn−k

exn−k
= axn−s +

b
d
+
c
e
for all n ≥ 1.

By using a comparison, we can write the right hand side as follows

yn+1 = ayn−s +
b
d
+
c
e
,

then

ysn+i = anys+i + constant, i = 0, 1, . . . , s,

and this equation is locally asymptotically stable because a <1, and converges to the

equilibrium point ȳ =
be + cd

de(1 − a)
.

Therefore

lim sup
n→∞

xn ≤ be + cd
de(1 − a)

.

Thus the solution is bounded.

Theorem 3 Every solution of Equation (1) is unbounded if a >1.

Proof. Let {xn}∞n=−t be a solution of Equation (1). Then from Equation (1) we see that

xn+1 = axn−s +
bxn−l + cxn−k

dxn−l + exn−k
> axn−s for all n ≥ 1.
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We see that the right hand side can write as follows

yn+1 = ayn−s ⇒ ysn+i = anys+i, i = 0, 1, . . . , s,

and this equation is unstable because a > 1, and lim
n→∞ yn = ∞ . Then by using ratio

test {xn}∞n=−t is unbounded from above.

5 Existence of periodic solutions
In this section we study the existence of periodic solutions of Equation (1). The follow-

ing theorem states the necessary and sufficient conditions that this equation has peri-

odic solutions of prime period two.

Theorem 4 Equation (1) has positive prime period two solutions if and only if

(i) (b − c)(d − e)(1 + a) + 4(bae + cd) > 0, d > e, b > c and l − odd, k, s − even.

(ii) (c − b) (e − d) (1 + a) + 4(acd + be) > 0, e > d, c > b and k − odd, l, s − even.

(iii) (c − b)(d − e) − 4be > 0, d > e, c > b, a < 1, and k, s − odd, l − even.

(iv) (b − c)(e − d) − 4cd > 0, e > d, b > c, a < 1, and l, s − odd, k − even.

Proof. We prove that when l- odd, k, s- even (the other cases are similar and will be

omitted.)

First suppose that there exists a prime period two solution

. . . , p, q, p, q, . . . ,

of Equation (1). We will prove that Condition (i) holds.

We see from Equation (1) when l- odd, k- even that

p = aq +
bp + cq
dp + eq

,

and

q = ap +
bq + cp
dq + ep

.

Then

dp2 + epq = adpq + aeq2 + bp + cq, (9)

and

dq2 + epq = adpq + aep2 + bq + cp. (10)

Subtracting (9) from (10) gives

d(p2 − q2) = −ae(p2 − q2) + (b − c)(p − q).

Since p ≠ q, it follows that

p + q =
(b − c)
(d + ae)

. (11)
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Again, adding (9) and (10) yields

d(p2 + q2) + 2epq = 2adpq + ae(p2 + q2) + (b + c)(p + q),

(d − ae) (p2 + q2) + 2(e − ad)pq = (b + c) (p + q).
(12)

It follows by (11), (12) and the relation

p2 + q2 = (p + q)2 − 2pq for all p, q ∈ R,

that

2(e − d) (1 + a)pq =
2(bae + cd)(b − c)

(d + ae)2
.

Thus

pq =
(bae + cd)(b − c)

(d + ae)2(e − d)(1 + a)
. (13)

Now it is clear from Equations (11) and (13) that p and q are the two distinct roots

of the quadratic equation

t2 −
(
(b − c)
(d + ae)

)
t +

(
(bae + cd)(b − c)

(d + ae)2(e − d)(1 + a)

)
= 0,

(d + ae)t2 − (b − c)t +
(

(bae + cd)(b − c)
(d + ae)(e − d)(1 + a)

)
= 0,

(14)

and so

[b − c]2 − 4(bae + cd)(b − c)
(e − d)(1 + a)

> 0,

or

[b − c]2 +
4(bae + cd)(b − c)
(d − e)(1 + a)

> 0.

(b − c)(d − e)(1 + a) + 4(bae + cd) > 0.

Therefore inequalities (i) holds.

Second suppose that inequalities (i) is true. We will show that Equation (1) has a

prime period two solution.

Assume that

p =
b − c + ζ

2(d + ae)
,

and

q =
b − c − ζ

2(d + ae)
,

where ζ =

√
[b − c]2 − 4(bae + cd)(b − c)

(e − d)(1 + a)
.
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We see from inequalities (i) that

(b − c)(d − e)(1 + a) + 4(bae + cd) > 0, b > c, d > e,

which equivalents to

(b − c)2 >
4(bae + cd)(b − c)
(e − d)(1 + a)

.

Therefore p and q are distinct real numbers.

Set

x−s = q, x−l = p, x−k = q, . . . , x−2 = q, x−1 = p and x0 = q.

We wish to show that

x1 = x–1 = p and x2 = x0 = q.

It follows from Equation (1) that

x1 = aq +
bp + cq

dp + eq
= a

(
b − c − ζ

2(d + ae)

)
+
b
(
b − c + ζ

2(d + ae)

)
+ c

(
b − c − ζ

2(d + ae)

)

d
(
b − c + ζ

2(d + ae)

)
+ e

(
b − c − ζ

2(d + ae)

) .

Dividing the denominator and numerator by 2(d + ae) gives

x1 =
ab − ac − aζ

2(d + ae)
+
b(b − c + ζ ) + c(b − c − ζ )
d(b − c + ζ ) + e(b − c − ζ )

=
ab − ac − aζ

2(d + ae)
+

(b − c)[(b + c) + ζ ]
(d + e)(b − c) + (d − e)ζ

.

Multiplying the denominator and numerator of the right side by (d + e)(b - c) - (d -

e)ζ gives

x1 =
ab − ac − aζ
2(d + ae)

+
(b − c)[(b + c) + ζ ][(d + e)(b − c) − (d − e)ζ ]

[(d + e)(b − c) + (d − e)ζ ][(d + e)(b − c) − (d − e)ζ ]

=
ab − ac − aζ
2(d + ae)

+
(b − c){(d + e)(b2 − c2) + ζ [(d + e)(b − c) − (d − e)(b + c)] − (d − e)ζ 2}

(d + e)2(b − c)2 − (d − e)2ζ 2

=
ab − ac − aζ
2(d + ae)

+
(b − c)

{
(d + e)(b2 − c2) + 2ζ (eb − cd) − (d − e)

(
[b − c]2 − 4(bae + cd)(b − c)

(e − d) (1 + a)

)}

(d + e)2(b − c)2 − (d − e)2
(
[b − c]2 − 4(bae + cd)(b − c)

(e − d) (1 + a)

)

=
ab − ac − aζ
2(d + ae)

+
(b − c)

{
(d + e)(b2 − c2) + 2ζ (eb − cd) − (d − e)(b − c)2 − 4(bae + cd)(b − c)

(1 + a)

}

(d + e)2(b − c)2 − (d − e)2
(
[b − c]2 − 4(bae + cd)(b − c)

(e − d)(1 + a)

)

=
ab − ac − aζ
2(d + ae)

+
(b − c)

{
2(b − c)

[
dc + eb − 2(bae + cd)

(1 + a)

]
+ 2ζ (eb− cd)

}

4(b − c)
[
ed(b − c) +

(e − d)(bae + cd)
(1 + a)

] .
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Multiplying the denominator and numerator of the right side by (1 + a) we

obtain

x1 =
ab − ac − aζ
2(d + ae)

+
(b − c)[(dc + eb)(1 + a) − 2(bae + cd)] + ζ (1 + a)(eb − cd)

2[ed(b − c)(1 + a) + (e − d)(bae + cd)]

=
ab − ac − aζ
2(d + ae)

+
(b − c)(eb − dc)(1 − a) + ζ (1 + a)(eb − cd)

2[ed(b − c)(1 + a) + (e − d)(bae + cd)]

=
ab − ac − aζ
2(d + ae)

+
(eb − dc){(b − c)(1 − a) + ζ (1 + a)}

2(eb − cd)(d + ae)

=
ab − ac − aζ
2(d + ae)

+
(b − c)(1 − a) + ζ (1 + a)

2(d + ae)

=
ab − ac − aζ + (b − c)(1 − a) + ζ (1 + a)

2(d + ae)
=

b − c + ζ

2(d + ae)
= p.

Similarly as before one can easily show that

x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus Equation (1) has the prime period two solution

. . . , p, q, p, q, . . . ,

where p and q are the distinct roots of the quadratic equation (14) and the proof is

complete.

Lemma 5 If l, k, s- even. Then there exists a prime period two solutions if and only if

a = -1.

Proof. First suppose that there exists a prime period two solution

. . . , p, q, p, q, . . . ,

then we see from Equation (1) that when l, k, s- even

p = aq +
b + c
d + e

, (15)

and

q = ap +
b + c
d + e

. (16)

Subtracting (15) from (16) gives

p − q = −a(p − q).

Since p≠ q, it follows that

a = −1.

Again, adding (15) and (16) yields

p + q =
b + c
d + e

.
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If we take

p =
b

d + e
, q =

c
d + e

, if b �= c.

Set

x−s = q, x−l = p, x−k = q, . . . , x−2 = q, x−1 = p and x0 = q.

We wish to show that

x1 = x−1 = p and x2 = x0 = q.

It follows from Equation (1) that

x1 = aq +
bq + cq
dq + eq

= a
( c
d + e

)
+
b + c
d + e

=
−c
d + e

+
b + c
d + e

=
b

d + e
= p.

Similarly as before one can easily show that

x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus Equation (1) has the prime period two solution

. . . , p, q, p, q, . . . ,

and the proof is complete.

Lemma 6 If l, k- odd, s- even. Then there exists a positive prime period two solutions

if and only if a = -1.

Proof. The proof as the previous Lemma and it will be omitted.

6 Global attractivity of the equilibrium point of Equation (1)
In this section we investigate the global asymptotic stability of Equation (1).

Lemma 7 For any values of the quotient
b
d
and

c

e
, the function f (u, v, w) defined by

Equation (6) has the monotonicity behavior in its two arguments.

Proof. The proof follows by some computations and it will be omitted.

Theorem 8 The equilibrium point x̄ is a global attractor of Equation (1) if one of the

following statements holds

(1) be ≥ dc and c ≥ b. (17)

(2) be ≤ dc and c ≤ b. (18)

Proof. Let a and b be a real numbers and assume that g: [a, b]3 ® [a, b] be a func-

tion defined by

g(u, v, w) = au +
bv + cw
dv + ew

.
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Then

∂g(u, v,w)
∂u

= a,

∂g(u, v,w)
∂v

=
(be − dc)w

(dv + ew)2
,

∂g(u, v,w)
∂w

=
(dc − be)u

(dv + ew)2
.

We consider the two cases:-

Case (1) Assume that (17) is true, then we can easily see that the function g(u, v, w)

increasing in u, v and decreasing in w.

Suppose that (m, M) is a solution of the system M = g(M, M, m) and m = g(m, m,

M). Then from Equation (1), we see that

M = aM +
bM + cm
dM + em

, m = am +
bm + cM
dm + eM

,

or

M(1 − a) =
bM + cm
dM + em

, m(1 − a) =
bm + cM
dm + eM

,

then

d(1 − a)M2 + e(1 − a)Mm = bM + cm, d(1 − a)m2 + e(1 − a)Mm = bm + cM.

Subtracting this two equations we obtain

(M − m){d(1 − a)(M +m) + (c − b)} = 0,

under the conditions c ≥ b, a < 1, we see that

M = m.

It follows by Theorem B that x̄ is a global attractor of Equation (1) and then the

proof is complete.

Case (2) Assume that (18) is true, let a and b be a real numbers and assume that g:

[a, b]3 ® [a, b] be a function defined by g(u, v, w) = au +
bv + cw
dv + ew

, then we can easily

see that the function g(u, v, w) increasing in u, w and decreasing in v.

Suppose that (m, M) is a solution of the system M = g(M, m, M) and m = g(m, M,

m). Then from Equation (1), we see that

M = aM +
bm + cM
dm + eM

, m = am +
bM + cm
dM + em

,

or

M(1 − a) =
bm + cM
dm + eM

, m(1 − a) =
bM + cm
dM + em

,

then

d(1 − a)Mm + e(1 − a)M2 = bm + cM, d(1 − a)mM + e(1 − a)m2 = bM + cm.
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Subtracting we obtain

(M − m){e(1 − a)(M +m) + (b − c)} = 0,

under the conditions b ≥ c, a <1, we see that

M = m.

It follows by Theorem C that x̄ is a global attractor of Equation (1) and then the

proof is complete.

7 Numerical examples
For confirming the results of this article, we consider numerical examples which repre-

sent different types of solutions to Equation (1).

Example 1. We assume l = 3, k = 4, s = 0, x-4 = 4, x-3 = 13, x-2 = 9, x-1 = 15, x0 = 2,

a = 0.9, b = 5, c = 2, d = 3, e = 1. See Figure 1.

Example 2. See Figure 2, since l = 3, k = 4, s = 2, x-4 = 3, x-3 = 11, x-2 = 9, x-1 = 5,

x0 = 7, a = 0.8, b = 5, c = 4, d = 3, e = 2.

Example 3. We consider l = 2, k = 3, s = 4, x-3 = 7, x-3 = 1, x-2 = 4, x-1 = 11, x0 = 3,

a = 1.5, b = 2, c = 3, d = 3, e = 2. See Figure 3.

Example 4. See Figure 4, since l = 1, k = 3, s = 2, x-3 = b/(d+e), x-2 = c/(d+e), x-1 =

b/(d + e), x0 = c/(d + e), a = -1, b = 5, c = 6, d = 3, e = 4.

Example 5. Figure 5 shows the solutions when l = 1, k = 2, s = 0, a = 0.8, b = 0.5, c

= 0.2, d = 5, e = 0.6, x-2 = q, x-1 = p, x0 = q.

⎛
⎜⎜⎜⎜⎝Since p, q =

b − c ±
√
[b − c]2 − 4(bae + cd)(b − c)

(e − d)(1 + a)

2(d + ae)

⎞
⎟⎟⎟⎟⎠ .
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n)

plot of x(n+1)= ax(n−s)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 1 This figure shows the solution of Equation (1) with l = 3, k = 4, s = 0, x-4 = 4, x-3 = 13, x-2
= 9, x-1 = 15, x0 = 2, a = 0.9, b = 5, c = 2, d = 3, e = 1.
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plot of x(n+1)= ax(n−s)+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Figure 2 This figure shows the solution of xn+1 = 0.8xn−2 +
5xn−3 + 4xn−4

3xn−3 + 2xn−4
, with the initial conditions

x-4 = 3, x-3 = 11, x-2 = 9, x-1 = 5, x0 = 7.
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Figure 3 This figure shows the behavior of the solution of Equation (1) when we take l = 2, k = 3,
s = 4, x-3 = 7, x-3 = 1, x-2 = 4, x-1 = 11, x0 = 3, a = 1.5, b = 2, c = 3, d = 3, e = 2.
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Figure 4 This figure shows the periodicity of the solution of xn+1 = −xn−2 +
5xn−1 + 6xn−3

3xn−1 + 4xn−3since x-3 = x-1 = b/(d + e), x-2 = x0 = c/(d + e).
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