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Temperament influences endotoxin-
induced changes in rectal temperature,
sickness behavior, and plasma epinephrine
concentrations in bulls
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Jeffery W Dailey2, Michael A Ballou3, Ronald D Randel4,
Scott T Willard5, Rhonda C Vann6 and Thomas H Welsh Jr1

Abstract

This study was designed to determine the influence of temperament on endotoxin-induced changes in body temperature,

sickness behavior, and stress hormone concentrations in cattle. Brahman bulls were selected based on temperament

score measured 28 d prior to weaning. In dwelling recording devices were used to monitor rectal temperature, and

jugular catheters were used to collect blood samples to determine cortisol and epinephrine concentrations before

and after LPS administration (0.5 mg/kg body weight). Temperamental bulls had the lowest peak rectal temperature and

sickness behavior scores relative to the Calm and Intermediate bulls. Prior to the administration of LPS, Temperamental

bulls had greater cortisol and epinephrine concentrations than Calm or Intermediate bulls. Cortisol concentrations

increased following LPS administration but were not affected by temperament. Epinephrine concentrations peaked 1 h

after LPS administration in Calm bulls. Temperamental bulls did not exhibit an epinephrine response to LPS challenge.

These data demonstrate that the temperament of calves can modulate the physiological, behavioral, and endocrine

responses of pre-pubertal Brahman bulls to endotoxin challenge. Specifically, temperament differentially affected the

rectal temperature, sickness behavior and epinephrine, but not cortisol, responses to LPS challenge.
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Introduction

Reducing the effects of disease is a major goal in the
cattle industry as morbidity is more costly to producers
than mortality due to the: (i) expense of treating dis-
ease, and (ii) negative impact of disease on perfor-
mance.1 Stress is one of the main factors influencing
immune function. Chronic stress can negatively
impact growth, reproductive, and immune functions.2–7

In contrast, acute stress is not necessarily detrimental to
the health of an animal, and may even elicit beneficial
immune responses.8–11 As data related to the dynamics
of stress hormone modulation of immune function are
accumulated, the immuno-endocrine concept continues
to evolve.

The innate immune system can be activated by mol-
ecules or chemicals derived from pathogens that cause
acute inflammation and infection.12,13 Exposure to

endotoxin (LPS; a component of the cell wall of
Gram-negative bacteria) initiates an inflammatory cas-
cade and increases stress hormone concentrations in
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mammals.14–17 For example, Williams et al.17 demon-
strated that cortisol, epinephrine and norepinephrine
increased in young pigs in response to an i.v. LPS
challenge.

Often unappreciated is the influence of temperament
and stress responsiveness on livestock health and pro-
ductivity. Temperament is defined as the fear response
of cattle to humans or novel or unfamiliar environ-
ments.18 More stress responsive, temperamental cattle
characteristically have greater basal concentrations of
the stress hormones cortisol and epinephrine,19–21

depressed immune functions,22 a slower growth
rate,23,24 and reduced carcass value.21 Furthermore,
the excitable nature of Temperamental cattle make
them more difficult to manage and increases the
risk of injury to themselves and personnel, and
increases damage to facilities.24 Due to the greater
basal concentrations of stress hormones exhibited by
Temperamental cattle, it is hypothesized that tempera-
ment may affect the stress hormone response to LPS.
Thus, this study was designed to determine whether the
febrile response and the production of cortisol and epi-
nephrine induced by an acute endotoxin challenge are
different due to the temperament of young, growing
Brahman bulls.

Materials and methods

Experimental design

All experimental procedures were in compliance with
the Guide for the Care and Use of Agricultural
Animals in Research and Teaching and approved by
the Institutional Animal Care and Use Committees
of Texas A&M University and the USDA. Bulls
(10 months of age) from the Texas AgriLife Research
Center’s Brahman herd in Overton, Texas were selected
for use in this study based on their temperament score
measured 28 d prior to weaning (133� 3 d of age).
Temperament score21 was an average of exit velocity
(EV) and pen score (PS). Exit velocity, the rate of
speed of a calf traversing a distance of 1.83m after its
exit from a working chute, was determined using two
infrared sensors (FarmTek Inc., North Wylie, TX,
USA) and was done by calculating velocity [veloc-
ity¼ distance (m)/time (s)].19,25 Pen score26 is a subjec-
tive measurement obtained by separating cattle into
small groups of three to five and scoring their
reactivity to a human observer on a scale of 1 (calm,
docile, approachable) to 5 (aggressive, volatile, crazy).
Based on temperament score, the 8 most Calm,
8 Intermediate, and 8 most Temperamental were
selected from a pool of 60 bulls. However, during the
experiment, one calm bull died (1-h post-LPS),
researchers intervened to prevent death of another
calm bull (3.5-h post-LPS), and one temperamental
bull’s catheter became dislodged (0-h post-LPS).

Therefore, only the data from the 6 most Calm
(1.01� 0.16 EV and 1.00� 0.00 PS), 7 most
Temperamental (3.51� 0.25 EV and 5� 0.00 PS), and
the 8 Intermediate bulls (1.59� 0.12 EV and
2.25� 0.16 PS) are presented. Two days prior to the
initiation of the endotoxin challenge part of the study,
bulls were fitted with rectal temperature recording
devices (A HOBO Pro v2 Temp data logger probe;
Part #U23-004, Onset Corp., Pocasset, MA, USA)
that measured rectal temperature continuously at
1-min intervals in the absence of a human operator.
During these procedures, cattle were restrained in a
working chute for approximately 5min. The factory-
calibrated rectal temperature recording devices were
tested for accuracy upon receipt from the manufac-
turer. Rectal temperature recorders became displaced
from some animals during the study; temperature
data presented include only those bulls that yielded
a complete data set (n¼ 5, 6, and 7 for Calm,
Intermediate and Temperamental bulls, respectively).
On the day prior to the study, bulls were fitted with
jugular catheters. During these procedures, cattle were
restrained in a working chute for approximately
5 to 10min. Following these procedures, bulls were
moved to the facility that contained individual stalls
(2.13-m long� 0.76-m wide) that housed the bulls
through the duration of the study. Bulls were randomly
placed in their stalls. During the challenge, the bulls
had ad libitum access to feed and water. The extension
tubing of the catheter was extended above the stall
to allow researchers to collect blood throughout the
study without disturbing the calf, whether the calf
was standing or lying down. Blood samples were col-
lected (to harvest serum and plasma) every 30min
beginning 2 h prior to, and continuing 8 h after, admin-
istration (0.5 mg/kg body weight LPS; Escherichia coli
O111:B4; Sigma-Aldrich, St Louis, MO, USA) for
determination of cortisol and epinephrine concentra-
tions, respectively.

Sickness behavior

Sickness behavior scores were assigned to animals at
30-min intervals from 0 to 6 h post-LPS challenge.
Bulls were scored on a scale of 1 (active or agitated)
to 5 (lying on side with labored breathing; Table 1).

Assays for cortisol and epinephrine

Serum concentrations of cortisol were determined using
a single antibody radioimmunoassay (DSL-2100;
Diagnostic Systems Labs, Webster, TX, USA) utilizing
rabbit anti-cortisol antiserum coated tubes according to
the manufacturer’s directions.27 The minimum detect-
able cortisol concentration was 1.2 ng/ml and the intra-
and interassay coefficients of variance were 4.3% and
2.4%, respectively. Serum concentrations of cortisol
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were determined by comparison to a standard curve
generated with known concentrations of cortisol and
presented as the concentration in nanogram per
millilitre.

Plasma concentrations of epinephrine were deter-
mined by enzyme immunoassay according to the man-
ufacturer’s directions (17-BCTHU-E02; Alpco
Diagnostics, Boston, MA, USA) by comparison of
unknowns to standard curves generated with known
concentrations of epinephrine.27 Data are presented
as picogram per millilitre. The minimum detectable epi-
nephrine concentration was 11 pg/ml and the intra- and
interassay coefficients of variation were 3.7% and
7.4%, respectively.

Statistical analysis

Prior to analysis, rectal temperature data were averaged
into 30-min intervals. Rectal temperature, cortisol, and

epinephrine data were analyzed using the MIXED pro-
cedure of SAS (SAS, Inc., Cary, NC, USA) specific for
repeated measures with temperament, time, and
time*temperament interaction included as fixed effects.
Specific pre-planned comparisons were made using
Fisher’s Protected LSD with P< 0.05 considered signif-
icant. Data are presented as least squares means
(LSM)�SEM.

Results

Rectal temperature

Prior to the administration of LPS, rectal temperature
was greater in Temperamental bulls than Calm and
Intermediate bulls (P< 0.001), with Intermediate bulls
having greater rectal temperature than Calm bulls
(P¼ 0.05). Rectal temperatures prior to the administra-
tion of LPS were not affected by time (P> 0.05;
Figure 1). Rectal temperature increased in all bulls fol-
lowing administration of LPS, peaking around 210min,
with Temperamental bulls having the smallest increase
in rectal temperature (relative to baseline values) com-
pared to Calm and Intermediate bulls (P< 0.001).
Twenty-four h (1440min) after the administration of
LPS, rectal temperature of Calm and Intermediate
bulls had returned to baseline values; however,
Temperamental bulls had lower rectal temperatures
than Calm and Intermediate bulls (P< 0.05).
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Figure 1. Rectal temperature response to an endotoxin (lipopolysaccharide, LPS; 0.5 mg/kg body weight) challenge (Calm, n¼ 5,

Intermediate, n¼ 6, and Temperamental, n¼ 7). Rectal temperature data are presented as LSM (SEM� 0.20 for Calm, �0.16 for

Intermediate, and �0.15 for Temperamental bulls). Baseline rectal temperature data presented as average of LSM for pre-LPS rectal

temperatures (–120 to 0 min; SEM� 0.17 for Calm, �0.17 for Intermediate, and �0.16 for Temperamental bulls).

Table 1. Sickness behavior score descriptions

Score Behavior Description

1 Active or agitated

2 Appeared normal

3 Calm with head distended

4 Clinical signs of sickness, increased respiration

5 Lying on side with labored breathing
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Sickness behavior

Prior to the administration of LPS, sickness behavior
scores were similar amongst temperament groups
(P> 0.05; Figure 2). Following administration of LPS
at time 0, sickness behavior scores increased in all bulls
(P< 0.001). Calm calves had greater sickness behavior
scores when compared to Intermediate (P¼ 0.005) and
Temperamental bulls (P< 0.001). Additionally,
Intermediate bulls had greater sickness behavior
scores than Temperamental bulls (P< 0.001). There
was a tendency for a time*temperament interaction
(P¼ 0.06). Specifically, peak sickness behavior scores
occurred at 0.5 h post-LPS administration for Calm
bulls, and at 1 h post-LPS administration in
Intermediate and Temperamental bulls. Peak sickness
behavior scores were greater in Calm and Intermediate
bulls compared to Temperamental bulls (P< 0.001 and
P¼ 0.007 for Calm and Intermediate bulls,
respectively).

Cortisol and epinephrine

Prior to the administration of LPS, Temperamental
bulls had greater concentrations of cortisol than Calm
and Intermediate bulls (P< 0.001) as depicted in
Figure 3. Cortisol concentrations tended to decrease
from -2 h to time 0 (P¼ 0.07). Following administra-
tion of LPS at time 0, cortisol concentrations increased
(P< 0.001) through 2 h before declining, and were sim-
ilar among temperament groups (P¼ 0.80).

Prior to the administration of LPS, Temperamental
bulls had greater concentrations of epinephrine than
Calm and Intermediate bulls (P< 0.001) as depicted
in Figure 4. There was a significant time effect
(P< 0.001) and time*temperament interaction
(P¼ 0.014) prior to the administration of LPS with epi-
nephrine concentrations increasing from –2 h to –1 h in
Calm (P¼ 0.05) and Temperamental (P< 0.001) bulls,
and increasing from –2 h to �0.5 h in Intermediate bulls
(P¼ 0.02). Relative to time 0, epinephrine concentra-
tions did not change in response to the LPS challenge in
Intermediate bulls (P> 0.05). Epinephrine concentra-
tions tended to peak 1 h after the administration of
LPS in Calm bulls (P¼ 0.06). In contrast, epinephrine
concentrations in Temperamental bulls decreased from
time 0 h to 0.5 h after the administration of LPS
(P¼ 0.01). Epinephrine concentrations then increased
from 0.5 h post-LPS, with significantly higher concen-
trations of epinephrine at 1, 2, 3, 3.5, 4, 4.5, 5, and 5.5 h
post-LPS compared to values at 0.5 h (P< 0.05). Post-
LPS administration, Temperamental bulls maintained
greater epinephrine concentrations than either the
Calm or the Intermediate bulls (P< 0.05).

Discussion

These data demonstrate that temperament modifies the
endocrine, behavioral, and physiological responses of
pre-pubertal Brahman bulls to endotoxin challenge.
Rectal temperature, sickness behavior, cortisol, and
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Figure 2. Sickness behavior response to an endotoxin (LPS; 0.5 mg/kg body weight) challenge (Calm, n¼ 6; Intermediate, n¼ 8; and

Temperamental, n¼ 7 bulls). Data presented as LSM� SEM. yIntermediate bulls differ compared to Calm bulls (P< 0.05).

*Temperamental bulls differ compared to Calm bulls (P< 0.05). **Temperamental bulls differ compared to Intermediate and Calm bulls

(P< 0.05).
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Figure 4. Plasma epinephrine response to an endotoxin (LPS; 0.5 mg/kg body weight) challenge (Calm, n¼ 6; Intermediate, n¼ 8; and

Temperamental, n¼ 7 bulls). Data presented as LSM� SEM.
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Figure 3. Serum cortisol response to an endotoxin (LPS; 0.5 mg/kg body weight) challenge (Calm, n¼ 6; Intermediate, n¼ 8; and
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epinephrine increased in response to administration of
LPS. Specifically, temperament differentially affected
the rectal temperature, sickness behavior, and epineph-
rine, but not cortisol, responses to LPS challenge.

No differences in baseline body temperature were
found in rats selectively bred to differ in behavior
(high-anxiety and low-anxiety behavior lines).28

However, documentation regarding the potential for
temperament to influence thermoregulation is limited
in cattle. In the present study, there was an effect of
temperament on pre-LPS rectal temperatures in bulls,
with Temperamental bulls having greater rectal temper-
atures than Intermediate and Calm bulls. This is similar
to our prior study which demonstrated that rectal tem-
perature was greater in Temperamental bulls than
Calm and Intermediate bulls immediately after loading
into a trailer.29

An increase in body temperature has been utilized as
a characteristic response of cattle to LPS challenge, and
as a sign of inflammation.30–37 An increase in body
temperature in response to LPS is stimulated by pro-
inflammatory cytokines, mainly TNF-a, IL-1b and
IL-6.38–40 In response to LPS, peak rectal temperatures
in the pre-pubertal Brahman bulls used in this study
were attained within 3.5 h, which was earlier than the
6 h required for Holstein cows to attain peak rectal
temperatures post-LPS challenge.32 Also, in the current
study, attainment of peak rectal temperature occurred
1 h earlier than previously reported for Angus steers
(peak rectal temperature attained at 4.5 h post-LPS).35

However, the Jacobsen study32 used a lower dose of
LPS (0.1 mg/kg) and was performed in mature dairy
cows, in contrast to the current study which utilized a
higher LPS dose (0.5 mg/kg) in young, pre-pubertal
Brahman beef bulls. The study on Angus steers35 used
a larger dose of LPS (2.5 mg/kg) than the current study.
Therefore, although similar febrile responses have been
demonstrated in cattle studies, the dose administered
and the breed of cattle can vary the time to reach
peak values and the duration in which rectal tempera-
tures are elevated.

Twenty-four hours after the administration of LPS,
the rectal temperature of Calm and Intermediate bulls
had returned to baseline. However, at this time,
Temperamental bulls had significantly lower rectal tem-
perature compared to their baseline value. The mecha-
nism for LPS to reduce rectal temperature below
baseline values in Temperamental cattle is unclear.
Several rodent models have been employed to study
LPS-induced hypothermia.41,42 However, in many
rodent models, hypothermia can precede fever, or is
the only temperature response. The manifestation of
this hypo- or hyperthermic response in rodents depends
on the dose of LPS administered.41,42 This sequence of
lower followed by higher temperature in rodents fol-
lowing LPS administration is not what was observed
in the current study that utilized cattle. However, it is

difficult to compare the response of rodents to cattle
due to the relative refractoriness of rodents to
endotoxin.

Although changes in body temperature following
LPS administration have been studied in cattle, the
authors restricted data collection to the initial 12 h
post-LPS which prevents assessment of further tempo-
ral changes.34,37,43 Nevertheless, a study by Borderas
et al.33 using dairy calves did not find a decrease in
rectal temperature below baseline values when mea-
surements were collected 24-h post-LPS challenge.
Application of the rodent models enabled detection of
interactions between cytokines, prostaglandins, and
lipid mediators, each of which have a role in the regu-
lation of hypothermia.41,42,44 It has been suggested that
the capability to minimize or lessen the increase in body
temperature in response to an endotoxin (such as LPS)
increases survival.45 While not the only reason for sur-
vival, the change in rectal temperature may be a factor
in this study, as all of the Temperamental and
Intermediate bulls survived, yet one of the Calm bulls
died, and the authors intervened in order to prevent the
death of another Calm bull. However, this can be
argued as increases in body temperature are typically
considered to inhibit the growth of prokaryotic organ-
isms, thus serving as a host survival mechanism.
Additionally, many other factors regulate survival
(cardiovascular output, electrolyte concentrations)
and are not necessarily dependent on changes in body
temperature. Future studies are needed to determine
the mechanisms resulting in LPS-induced changes in
body temperature, particularly in cattle. The elevated
stress hormones in more Temperamental cattle may
serve as a protective mechanism when challenges with
endotoxin occur.

Thermoregulation in response to LPS may involve
catecholamines within the central nervous system.46,47

Tolchard et al.47 demonstrated that agonists for the
a2-adrenergic receptor, the receptor that inhibits
responses to the catecholamines epinephrine and nor-
epinephrine, inhibited LPS-induced hypothermia, sug-
gesting a role for catecholamines. This is interesting as
epinephrine concentrations were greater in
Temperamental bulls prior to, and following, the
administration of LPS, as discussed in more detail
below. Thermoregulation induced by substances such
as LPS is regulated by thermosensitive central nervous
system neurons that innervate the hypothalamus.46

In mice, Jüttler et al.46 demonstrated that the neurons
responsible for mediating actions of pro-inflammatory
cytokines within this region contain the active tran-
scription factor NF-kB, which is responsible for down-
stream actions of LPS, including an increase in
inflammatory response. It will be necessary to deter-
mine if the cytokine response to LPS is affected by tem-
perament, thereby explaining the differences in rectal
temperature observed in Temperamental bulls.48
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Animals respond behaviorally to illness in various
ways, simultaneously with physiological changes, in
order to help the animal cope with the illness.33 These
behaviors include weakness, malaise, inability to con-
centrate, depression, lethargy, and decreases in eating
and drinking.49,50 Sickness behavior is induced by pro-
inflammatory cytokines including IL-1, IL-6, TNF-a
and interferons.49 The systemic administration of
these cytokines results in the onset of sickness behavior
in both humans and in animals, with these responses
mimicked by the administration of LPS.49 Whereas
there are several studies utilizing rodent and human
models, there are limited studies describing the effect
of LPS on sickness behavior in cattle.

A study in young dairy calves found an increase in
the amount of time calves were lying inactive, and
found a decrease in the time eating hay and ruminating
2 h before and after the peak in rectal temperature in
response to low doses (0.025 and 0.05mg/kg body
weight) of LPS.33 In the current study, calves of Calm
and Intermediate temperament spent more time lying,
as indicated by their sickness behavior scores. The bull
calves lying on their side may be a mechanism for which
an animal increases heat loss through transfer of heat
from the body to the ground; however, this is debatable
as cattle most often use evaporative cooling through the
production of sweat, which would be inhibited by cattle
lying down. Additionally, calves lying down may be a
way for the calves to conserve energy, as it takes less
energy to lay down then it does for an animal to remain
standing. Our observations that Temperamental bulls
had a lower sickness behavior score than did either
Intermediate or Calm bulls suggest that temperament
can influence sickness behavior in cattle. Several
research articles have put forth the concept that sick-
ness behavior is not a manifestation of innate behav-
ioral or psychological weakness but is an expression of
a motivational state.49–51 Specifically, Dantzer49 stated
that motivation to exhibit fear behavior competes with
sickness behavior, with fear taking priority over sick-
ness-related behavior. Therefore, it may be that
Temperamental bulls did not appear as sick as
Intermediate and Calm bulls due to an increase in
fear behavior to their environment and the human
workers. Further research is needed in order to eluci-
date the mechanisms by which cytokines (both periph-
erally and in the brain) regulate sickness behavior, and
the mechanisms by which temperament influences this
response.

Peripheral blood concentrations of cortisol and epi-
nephrine prior to the administration of LPS were
greater in Temperamental bulls than in Intermediate
and Calm bulls. This is in agreement with our previous
studies19–21 and studies conducted by others,52 in which
basal concentrations of cortisol and epinephrine were
greater in Temperamental bulls. The elevation in
plasma epinephrine concentrations prior to the LPS

challenge is most likely in response to the presence of
human researchers, as humans were not present in the
facility prior to the collection of the –2-h sample. The
increase in baseline epinephrine concentrations in
response to the presence of humans is not surprising,
as temperament is defined as the reactivity to humans.
Therefore, Temperamental bulls reacted to the presence
of humans with a greater epinephrine response com-
pared to Calm and Intermediate bulls prior to the
LPS challenge. It is unclear as to the exact causes for
the difference in cortisol concentrations in Calm versus
Temperamental cattle. Grandin53 suggests that temper-
ament is a genetic factor due to its heritability.
However, temperament can be reduced with repeated
handling,19,52,54 which suggests a complex interaction
between genetics and environment resulting in changes
in physiology. In humans, morning plasma cortisol
concentrations had a heritability of 0.45, with unbound
(free or active) cortisol having a higher heritability of
0.51, which suggests a genetic basis for cortisol concen-
trations.55 Studies in both humans and livestock have
indicated a relationship between cortisol output,
including individual variability in cortisol secretion,
with disease risk.56,57 Although the cortisol response
to LPS challenge was not affected by temperament,
the difference in cortisol concentrations due to temper-
ament prior to the LPS challenge may have influenced
the overall response to LPS challenge.

Cortisol is a potent anti-inflammatory hormone that
is secreted in response to endotoxin challenge.
Temperament differentially affected the response of epi-
nephrine, but not cortisol, to endotoxin challenge.
Previous studies in cattle have established that LPS
induces an increase in cortisol concentrations.35–37,58

The cortisol response to LPS in this study was similar
to that described by Carroll et al.35 In contrast, Kahl
et al.,58 utilizing pubertal beef heifers, found that LPS
stimulated an increase in cortisol concentrations 2 h
after administration, and concentrations remained
elevated through 7 h post-challenge. It should be noted
that Kahl et al.58 used a 5-fold larger dose (2.5 mg/kg
body weight) of LPS than was used in the current study.

Whether Bos taurus and Bos indicus vary in sensitiv-
ity to endotoxin merits investigation. Bos indicus cattle,
such as those used in this study, appear to be more
sensitive than B. taurus cattle to endotoxin. Other stud-
ies suggested a breed difference in response to immuno-
logical stimuli.43,59 For example, Blecha et al.59

reported a greater response to a phytohemagglutinin
skin test by Angus steers than by Brahman�Angus
cross steers. Compared to the current study, Carroll
et al.35 delivered a 5-fold greater dose of LPS to
pure-bred Angus steers (of undefined temperament),
yet produced a cortisol response similar in duration
and magnitude to that which we observed for pure-
bred Brahman bulls. This suggests that the B. taurus
genotype may convey added protection or resistance
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to the detrimental actions of LPS. Similarly, it has been
demonstrated that B. indicus influenced cattle are more
sensitive to stimulation by gonadotropins (luteinizing
hormone and follicle stimulating hormone) than
B. taurus influenced cattle.60,61 Therefore, breed of
cattle, as well as temperament of the cattle, should be
considered during the design and the comparison of
results of experiments in which LPS is utilized to stim-
ulate the innate immune system as well as an inflam-
matory response.

While there was no difference among the temperament
groups with respect to the cortisol response to LPS chal-
lenge, there were clear differences due to temperament in
the epinephrine response to LPS challenge. Specifically,
epinephrine concentrations in Temperamental bulls did
not increase in response to LPS compared to time 0 (prior
to the administration of LPS). However, as discussed
earlier, epinephrine concentrations increased in
Temperamental bulls prior to the administration of
LPS; therefore, time 0 epinephrine values may not be a
true representation of baseline values. A longer collection
period prior to the administration of LPS is required in
order to characterize baseline epinephrine concentrations
more fully. Epinephrine concentrations decreased from
time 0 to 0.5 h post-challenge before increasing at 1 h
post-challenge. Therefore, in response to an endotoxin
challenge, temperament may differentially affect the
response of the adrenal medulla, not the adrenal cortex.
This is supported by the report that more aggressive mice
have greater concentrations of phenylethanolamine
N-methyltransferase (PNMT), the enzyme that converts
norepinephrine to epinephrine, in the adrenal medulla,
with no differences in cortisol production.62 However,
there is no prior documentation on the effect of temper-
ament on the stress hormone response to LPS challenge.
Based on our survey of the relevant literature, this
appears to be the first or at least among the earliest dem-
onstration of the temporal epinephrine response of
Brahman cattle to an endotoxin challenge. The peak epi-
nephrine response of the Calm bulls is similar in magni-
tude to the response in young pigs, but occurred 45min
later.17 Studies have suggested that epinephrine tolerance
protects mice and dogs against endotoxin-induced
shock.63,64 Taking into consideration that the
Temperamental bulls had greater basal concentrations
of cortisol when compared to bulls of Calm and
Intermediate temperament, the greater basal concentra-
tions of cortisol may protect Temperamental bulls. A
recent study by Frank et al.65 found that pre-treatment
with glucocorticoids prior to stimulation with LPS
increased pro-inflammatory cytokines in the hippocam-
pus, which may have priming actions of the nervous
system and mediate the manner in which the mice
respond to the inflammatory stimuli. However, this
does not explain why epinephrine concentrations did
not increase in response to the challenge with LPS. The
response may indicate that Temperamental bulls did not

require an increase in epinephrine in order to stabilize and
maintain the cardiovascular system, as concentrations of
epinephrine were already elevated. Thus, the epinephrine
response exhibited by Calm bulls represents a greater
response to stabilize the cardiovascular system in
response to LPS challenge, a response that was not nec-
essary for Temperamental bulls. The endocrine response
of Temperamental bulls to LPS is unique and requires
more attention to elucidate the mechanism in which tem-
perament differentially affects the production of stress
hormones by the adrenal gland.

Conclusions

Lipopolysaccharide induced the secretion of the stress
hormones cortisol and epinephrine, and increased
rectal temperature and sickness behavior. While rectal
temperature, sickness behavior, and epinephrine differ-
entially responded based on temperament, tempera-
ment did not affect the response of the adrenal cortex
to endotoxin challenge. It is not yet clear whether this
differential innate response to LPS (i.e. diminished feb-
rile response, sickness behavior, and failure to produce
an epinephrine response) is beneficial or potentially det-
rimental to either the near- or long-term health of
Temperamental bulls. These data suggest that temper-
ament of cattle should be accounted for in the design of
experiments, as it may be a significant source of varia-
tion. Future studies should determine if temperament
affects properties of both the innate and adaptive
immune response to LPS challenge. A clearer under-
standing of the inter-relationship between stress hor-
mones and the inflammatory process may lead to
methods of early intervention to minimize the debilitat-
ing impacts of illness on growth and productivity.
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