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Abstract

Some oscillation criteria are established for the second order nonlinear neutral
difference equations of mixed type.

�2(xn + axn−τ1 ± bxn+τ2 )
α = qnx

β
n−σ1

+ pnx
β
x+σ2

,n ≥ n0

where a and b are ratio of odd positive integers with b ≥ 1. Results obtained here
generalize some of the results given in the literature. Examples are provided to
illustrate the main results.
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1 Introduction
In this article, we study the oscillation behavior of solutions of mixed type neutral dif-

ference equation of the form,

�2(xn + axn−τ1 ± bxn+τ2 )
α = qnx

β
n−σ1

+ pnx
β
x+σ2

where n Î N(n0) = {n0, n0 + 1, ...}, n0 is a nonnegative integer, a, b are real nonnega-

tive constants, τ1, τ2, s1, and s2 are positive integers, {qn} and {pn} are positive real

sequences and a, b are ratio of odd positive integers with b ≥ 1.

Let θ = max {τ1, s1}. By a solution of Equation (E±) we mean a real sequence {xn}

which is defined for n ≥ n0 - θ and satisfies Equation (E±) for all n Î N(n0). A nontri-

vial solution of Equation (E±) is said to be oscillatory if it is neither eventually positive

nor eventually negative. Otherwise it is known as nonoscillatory.

Equations of this type arise in a number of important applications such as problems

in population dynamics when maturation and gestation are included, in cobweb mod-

els, in economics where demand depends on the price at an earlier time and in electric

networks containing lossless transmission lines. Hence it is important and useful to

study the oscillation behavior of solutions of neutral type difference Equation (E±).

The oscillation, nonoscillation and asymptotic behavior of solutions of Equation (E±),

when b = 0 and pn ≡ 0 or a = 0 and pn ≡ 0 or b = 0 and qn ≡ 0 have been considered

by many authors, see for example [1-4] and the reference cited therein. However, there

are few results available in the literature regarding the oscillatory properties of neutral

difference equations of mixed type, see for example [1-8]. Motivated by the above
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observation, in this article we establish some new oscillation criteria for the Equation

(E±) which generalize some of the results obtained in [1-3,5-7].

In Section 2, we present conditions for the oscillation of all solutions of equation (E

±). Examples are provided in Section 3 to illustrate the results.

2 Oscillation results
In this section, we obtain sufficient conditions for the oscillation of all solutions of

Equation (E±). First we consider the Equation (E-), viz,

�2(xn + axn−τ1 − bxn+τ2 )
α = qnx

β
n−σ1

+ pnx
β
x+σ2

, n ∈ N(n0).

To prove our main results we need the following lemma, which can be found in [9].

Lemma 2.1. Let A ≥ 0, B ≥ 0 and g ≥ 1. Then

Aγ + Bγ ≥ 1
2γ−1

(A + B)γ , (2:1)

and

Aγ − Bγ ≥ (A − B)γ , if A ≥ B. (2:2)

Theorem 2.2. Let s1 >τ1, s2 >τ2 and {qn} and {pn} are positive real nonincreasing

sequences. Assume that the difference inequalities

i)

�2yn − pn

2β−1(1 + aβ)β/α
yβ/αn+σ2 ≥ 0 (2:3)

has no eventually positive increasing solution,

ii)

�2yn − pn

2β−1(1 + aβ)β/α
yβ/αn−σ2+τ1

≥ 0 (2:4)

has no eventually positive decreasing solution,

iii)

�2yn +
qn
bβ

yβ/αn−σ1−τ2
+
pn
bβ

yβ/αn+σ2−τ2
≤ 0 (2:5)

has no eventually positive solution.

Then every solution of Equation (E-) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of Equation (E-). Without loss of general-

ity, we may assume that there exists n1 Î N(n0) such that xn-θ > 0 for all n ≥ n1. Set

zn = (xn + axn−τ1 − bxn+τ2 )
α .

Then

�2zn = qnx
β
n−σ1

+ pnx
β
n+σ2

> 0, n ≥ n1,
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which implies that {zn} and {Δzn} are of one sign for all n2 ≥ n1. We claim that zn > 0

eventually. To prove it assume that zn < 0. Then we let

0 < un = −zn = (bxn+τ2 − axn−τ1 − xn)α ≤ bαxα
n+τ2

.

Thus

xβ
n ≥ 1

bβ
uβ/α
n−τ2

, n ≥ n2.

From Equation (E-), we get

0 = �2un + qnx
β
n−σ1

+ pxx
β
n+σ2

≥ �2un +
qn
bβ

uβ/α
n−σ1−τ2

+
pn
bβ

uβ/α
n+σ2−τ2

.

Hence {un} is a positive solution of inequality (2.5), a contradiction.

Therefore zn ≥ 0. We define

yn = zn + aβzn−τ1 − bβ

2β−1
zn+τ2 . (2:6)

Then, we have

�2yn = �2zn + aβ�2zn−τ1 − bβ

2β−1
�2zn+τ2

= qnx
β
n−σ1

+ pnxβ
n+σ2

+ aβqn−τ1x
β
n−σ1−τ1

+ aβpn−τ1x
β
n+σ2−τ1

− bβ

2β−1
qn+τ2x

β
n−σ1+τ2

− bβ

2β−1
pn+τ2x

β
n+σ2+τ2

.

(2:7)

Using the inequality (2.1) in (2.7), we obtain

�2yn ≥ qn
2β−1

(xn−σ1 + axn−σ1−τ1 )
β − bβ

2β−1
qn+τ2x

β
n−σ1+τ2

+
pn

2β−1
(xn+σ2 + axn+σ2−τ1 )

β − bβ

2β−1
pn+τ2x

β
n+σ2+τ2

.

Now using the inequality (2.2), we obtain

�2yn ≥ qn
2β−1

zβ/αn−σ1
+

pn
2β−1

zβ/αn+σ2 > 0. (2:8)

Consequently {yn} and {Δyn} are of one sign, eventually. Now we shall prove that yn >

0. If not, then let

0 < vn = −yn =
bβ

2β−1
zn+τ2 − aβzn−τ1 − zn ≤ bβ

2β−1
zn+τ2 .

Hence

zn ≥ 2β−1

bβ
vn−τ2 ,

and (2.8) implies

0 ≥ �2vn +
qn
bβ

vβ/αn−σ1−τ2
+
pn
bβ

vβ/αn+σ2−τ2
.
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We obtain that {vn} is a positive solution of inequality (2.5), a contradiction. Next we

consider the following two cases:

Case 1: Let Δzn < 0 for n ≥ n3 ≥ n2. We claim that Δyn < 0 for n ≥ n3. If not, then

we have yn > 0, Δyn > 0 and Δ2yn ≥ 0 which implies that lim
n→∞ yn = ∞ . On the other

hand, zn > 0, Δzn < 0 implies that lim
n→∞ zn = c < ∞ . Then applying limits on both sides

of (2.6) we obtain a contradiction. Thus Δyn < 0 for n ≥ n3. Using the monotonicity of

{zn}, we now get

yn−σ1 = zn−σ1 + aβzn−σ1−τ1 − bβ

2β−1
zn−σ1+τ2 ≤ (1 + aβ)zn−σ1−τ1 .

This together with (2.8) implies

�2yn ≥ qn

2β−1(1 + aβ)β/α
yβ/αn−σ1+τ1

.

Thus {yn} is a positive decreasing solution of inequality (2.4), a contradiction. Case 2:

Let Δzn > 0 for n ≥ n3. Now we consider the following two cases. Case (i): Assume

that Δyn < 0 for n ≥ n3. Proceeding similarly as above and using the monotonicity of

{zn} we obtain

yn−σ1 ≤ (1 + aβ)zn−σ1 .

Then using this in (2.8) we obtain

�2yn ≥ qn
2β−1

zβ/αn−σ1
≥ qn

2β−1(1 + aβ)β/α
yβ/αn−σ1

≥ qn

2β−1(1 + aβ)β/α
yβ/αn−σ1+τ1

,

and again {yn} is a positive decreasing solution of inequality (2.4), a contradiction.

Case (ii): Assume that Δyn > 0 for n ≥ n3. Then yn+σ2 ≤ (1 + aβ)zn+σ2
which in view

of (2.8) implies

�2yn ≥ pn
2β−1

zβ/αn+σ2 ≥ pn

2β−1(1 + aβ)β/α
yβ/αn+σ2 ,

that is, (2.3) has a positive increasing solution, a contradiction. The proof is

complete.

Remark 2.1. Theorem 2.2 permits us to obtain various oscillation criteria for Equa-

tion (E-). Moreover we are able to study the asymptotic properties of solutions of Equa-

tion (E-) even if not all assumptions of Theorem 2.2 are satisfied. If the difference

inequality (2.3) has an eventually positive increasing solution then the conclusion of

Theorem 2.2 is replaced by “Every solution of Equation (E-) is either oscillatory or |xn|

® ∞ as n ® ∞“.

Remark 2.2. In [2, Theorem 7.6.26], the author considered the Equation (E-) with a =

b = 1, pn ≡ p, and qn ≡ q and obtain oscillation results with (1 + a - b) > 0. Hence

Theorem 2.2 generalize and improve the results of [2, Theorem 7.6.26].

Remark 2.3. Applying existing conditions sufficient for the inequalities (2.3), (2.4), and

(2.5) to have no above mentioned solutions, we immediately obtain various oscillation

criteria for Equation (E-).
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Theorem 2.3. Let s1 >τ1, s2 ≥ 2, and b = a. Assume that

lim sup
n→∞

n+σ2−τ2∑
s=n

(n + σ2 − s − 1)ps > (1 + aα)2α−1, (2:9)

and

lim sup
n→∞

n∑
s=n−σ1+τ1

(n − s + σ1 − τ1 + 1)qs > (1 + aα)2α−1, (2:10)

and that the difference inequality (2.5) has no eventually positive solution. Then every

solution of Equation (E-) is oscillatory.

Proof. Conditions (2.9) and (2.10) are sufficient for the inequality (2.3) to have no

increasing positive solution and for (2.4) to have no decreasing positive solution,

respectively (see e.g., [2, Lemma 7.6.15]). The proof then follows from Theorem 2.2.

Remark 2.4. Taking into account the result of [2], we see that the absence of positive

solution of (2.5) can be replaced by the assumption that for the corresponding equation

�2yn +
qn
bβ

yβ/αn−σ1−τ2
+
pn
bβ

yβ/αn+σ2−τ2
= 0

every solution of this equation are oscillatory.

Next we consider the difference Equation (E+)

�2(xn + axn−τ1 + bxn+τ2 )
α = qnx

β
n−σ1

+ pnx
β
n+σ2

and present conditions for the oscillation of all solutions of Equation (E+).

Theorem 2.4. Assume that s1 ≥ τ1, s2 ≥ τ2 + 2, q∗
n = min{qn−σ1 , qn, qn+τ2}and

p∗
n = min{pn−σ1 , pn, pn+τ2 } . If

�2yn − p∗
n

4β−1

(
1 + aβ +

bβ

2β−1

)β/α
yβ/αn−τ2+σ2

≥ 0.,
(2:11)

has no eventually positive increasing solution, and

�2yn − p∗
n

4β−1

(
1 + aβ +

bβ

2β−1

)β/α
yβ/αn−σ2+τ2

≥ 0,
(2:12)

has no eventually positive decreasing solution, then every solution of (E+) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of (E+). Without loss of generality, we

assume that there exists an integer n1 Î N(n0) such that xn-θ > 0 for all n ≥ n1. Setting

zn = (xn + axn−τ1 + bxn+τ2 )
α

and

yn = zn + aβzn−τ1 +
bβ

2β−1
zn+τ2 . (2:13)
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Then zn > 0, yn > 0 and

�2zn = qnx
β
n−σ1

+ pnx
β
n+σ2

≥ 0. (2:14)

Then {Δzn} is of one sign, eventually. On the other hand

�2yn = qnx
β
n−σ1

+ pnxβ
n+σ2

+ aβqn−τ1x
β
n−σ1−τ1

+ aβpn−τ1x
β
n+σ2−τ1

+
bβ

2β−1
qn+τ2x

β
n−σ1+τ2

+
bβ

2β−1
pn+τ2x

β
n+σ2+τ2

.
(2:15)

Using (2.1) in (2.15) we obtain

�2yn ≥ q∗
n

2β−1
(xn−σ1 + axn−σ1−τ1 )

β +
qn+τ2

2β−1
bβxβ

n−σ1+τ2

+
p∗
n

2β−1
(xn+σ2 + axn+σ2−τ1 )

β +
pn+τ2

2β−1
bβxβ

n+σ2+τ2

or

�2yn ≥ 1
4β−1

(
q∗
nz

β/α
n−σ1

+ p∗
nz

β/α
n+σ2

)
, n ≥ n1. (2:16)

Next we consider the following two cases:

Case 1: Assume that Δzn > 0. Then Δyn > 0. In view of (2.16), we have

�2yn+τ2 ≥ 1
4β−1

p∗
n+τ2

zβ/αn+σ2+τ2 . (2:17)

Applying the monotonicity of zn, we find

yn+σ2 = zn+σ2 + aβzn−τ1+σ2 +
bβ

2β−1
zn+τ2+σ2 ≤

(
1 + aβ +

bβ

2β−1

)
zn+τ2+σ2 . (2:18)

Combining (2.17) and (2.18) we have

�2yn+τ2 ≥ p∗
n+τ2

4β−1

(
1 + aβ +

bβ

2β−1

)β/α
yβ/αn+σ2 .

(2:19)

Thus

�2yn − p∗
n

4β−1

(
1 + αβ +

bβ

2β−1

)β/α
yβ/αn−τ2+σ2

≥ 0.

Therefore {yn} is a positive increasing solution of the difference inequality (2.11), a

contradiction.

Case 2: Assume that Δzn < 0. Then Δyn < 0. In view of (2.16) we see that

�2yn−τ1 ≥ 1
4β−1

q∗
n−τ1

zβ/αn−τ1−σ1
.
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From the monotonicity of {zn} we find

yn−σ1 ≤
(
1 + aβ +

bβ

2β−1

)
zn−τ1−σ1 .

Combining the last two inequalities, we obtain

�2yn−τ1 ≥ q∗
n−τ1

4β−1

(
1 + aβ +

bβ

2β−1

)β/α
yβ/αn−σ1. (2:20)

�2yn − q∗
n

4β−1

(
1 + aβ +

bβ

2β−1

)β/α
yβ/αn−σ1+τ1

≥ 0.

Therefore {yn} is a positive decreasing solution of the difference inequality (2.12), a

contradiction. This completes the proof.

Theorem 2.5. Assume that s1 ≥ τ1, s2 ≥ τ2+2, b = a, q∗
n = min{qn−σ1,qn,qn+r2}and

p∗
n = min{pn−σ1 , pn, pm+r2} . If

lim sup
n→∞

n+σ2−τ2−2∑
s=n

(n + σ2 − τ2 − s − 1)p∗
s > 4α−1

(
1 + aα +

bα

2α−1

)
, (2:21)

has no eventually positive increasing solution, and

lim sup
n→∞

n∑
s=n−σ1+τ1

(n − s + 1)q∗
s > 4α−1

(
1 + aα +

bα

2α−1

)
, (2:22)

has no eventually positive decreasing solution, then every solution of (E+) is oscillatory.

Proof. Conditions (2.21) and (2.22) are sufficient for the inequality (2.11) to have no

increasing positive solution and for (2.12) to have no decreasing positive solution,

respectively (see e.g., [2, Lemma 7.6.15]). The proof then follows from Theorem 2.4.

Remark 2.5. When a = b = 1, Theorem 2.5 involves result of Theorem 7.6.6 of [2].

Theorem 2.6. Let β = α, δ1 =
σ1 − τ1

2
> 0, and δ2 =

σ2 − τ2

2
> 0 . Suppose that

there exist two positive real sequence {jn} and {ψn} with Δjn ≥ 0 and Δψn ≤ 0, such

that

q∗
n ≥ 4α−1

(
1 + aα +

ba

2α−1

)
φn+1φn−δ1 , (2:23)

and

p∗
n ≥ 4α−1

(
1 + aα +

bα

2α−1

)
ψn+1ψn+δ2 , (2:24)

where p∗
n , q

∗
n are as in Theorem 2.4. If the difference inequality

�vn + φn−δ1vn−δ1 ≥ 0 (2:25)
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has no eventually negative solution, and

�vn + ψn−δ2vn−δ2 ≥ 0 (2:26)

has no eventually positive solution, then every solution of Equation (E+) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of Equation (E+). Without loss of general-

ity, we assume that there exists an integer n1 Î N(n0) such that xn-θ > 0 for all n ≥ n1.

Define zn and yn as in Theorem 2.4. Proceeding as in the proof of Theorem 2.4, we

obtain (2.16). Next we consider the following two cases.

Case 1: Assume Δzn > 0. Clearly Δyn > 0. Then as in case 1 of Theorem 2.4, we find

that {yn} is a positive increasing solution of inequality (2.19). Let Bn − �yn + ψnyn+δ2 .

Then Bn > 0. Using (2.24), we have

�Bn − �ψn

ψn
Bn − ψn+1Bn+δ2 = �2yn − �ψn

ψn
�yn − ψn+1ψn+δ2yn+2δ2

≥ �2yn − ψn+1ψn+δ2yn+2δ2

≥ �2yn − p∗
n

4α−1

(
1 + aα +

bα

2α−1

)yn−τ2+σ2

≥ 0.

Define Bn = ψnvn. Then {vn} is a positive solution of (2.26), a contradiction. Case 2:

Assume that Δzn < 0. Clearly Δyn < 0. Then as in case 2 of Theorem 2.4, we find that

{yn} is a positive decreasing solution of inequality (2.20). Let An − �yn + φnyn−δ1 . Then

An < 0. Using (2.23), we have

�An − �φn

φn
− φn+1An−δ1 = �2yn − �φn

φn
�yn − φn+1φn−δ1yn−2δ1

≥ �2yn − φn+1φn+δ1yn−2δ1

≥ �2yn − q∗
n

4α−1

(
1 + aα +

bα

2α−1

) yn−σ1+τ1 ≥ 0.

Define An = jnvn. Then {vn} is a negative solution of inequality (2.25), a contradic-

tion. This completes the proof.

From Theorem 2.6 and the results given in [7] we have the following oscillation cri-

teria for Equation (E+).

Corollary 2.7. Let β = α, δ1 =
σ1 − τ1

2
> 0, and δ2 =

σ2 − τ2

2
> 0 . Suppose that

there exist two positive real sequence {jn} and {ψn} with Δjn ≥ 0 and Δψn ≤ 0 such

that (2.23) and (2.24) holds. If

lim inf
n→∞

n−1∑
s=n−δ11

φs−δ1 >

(
δ1

δ1 + 1

)δ1+1

, (2:27)

and

lim inf
n→∞

n+δ2−1∑
s=n

ψs+δ2 >

(
δ2

δ2 + 1

)δ2+1

(2:28)
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then every solution of Equation (E+) is oscillatory.

Proof. It is known (see [7]) that condition (2.27) is sufficient for inequality (2.25) to

have no eventually negative solution. On the other hand, condition (2.28) is sufficient

for inequality (2.26) to have no eventually positive solution.

Remark 2.6. From the results presented in this section, we observe that when the coef-

ficient pn = 0 or the condition on {pn} is violated the conclusion of the theorem may be

replaced by “Every solution {xn} of equation (E±) is oscillatory or xn ® ∞ as n ® ∞“.

Once again from the proofs, we see that if qn = 0 or condition on {qn} is violated then

the conclusion of the theorems may be replaced by “Every solution {xn} of Equation (E±)

is oscillatory or xn ® 0 as n ® ∞“.

3 Examples
In this section, we provide some examples to illustrate the main results.

Example 1. Consider the difference equation

�2 (
xn + 2τ1xn−τ1 − 2−τ2xn+τ2

)
=
1
2

(
2σ1xn−σ1 + 2−σ2xn+σ2

)
. (3:1)

Here α = β = 1, a = 2τ1 , b = 2−τ2 , qn = 2σ1−1, pn = 2−σ2−1..

It is easy to see that condition (2.9) of Theorem 2.3 is not satisfied and hence Equa-

tion (3.1) has a nonoscillatory solution {xn} = {2n} ® ∞ as n ® ∞.

Example 2. Consider the difference equation

�2 (
xn + 2−τ1xn−τ1 − 2τ2xn+τ2

)
=
1
8

(
2−σ1xn−σ1 + 2σ2xn+σ2

)
. (3:2)

Here α = β = 1, a = 2−τ1 , b = 2τ2 , qn = 2−σ1−3, pn = 2σ2−3, σ1 > τ1, σ2 > τ2. . It

is easy to see that condition (2.10) of Theorem 2.3 is not satisfied and hence Equation

(3.2) has a nonoscillatory solution {xn} =
{
1
2n

}
→ 0as

n ® ∞.

Example 3. Consider the difference equation

�2 [(
xn + axn−τ1 + bxn−τ2

)α]
= q xα

n−σ1
+ p xα

n+σ2
, n ≥ n0. (3:3)

where p > 0, q > 0 are constants and s1 >τ1 and s2 >τ2. It is easy to see that

p∗
n = p and p∗

n = p . Assume that � > 0. Let φn =
(
2 + ε

2

)(
δ
δ1
1

(δ1 + 1)δ1+1

)
,

ψn =
(
2 + ε

2

)(
δ
δ2
2

(δ2 + 1)δ2+1

)
, where δi =

σi − τi

2
, i = 1, 2.

Clearly {jn} and {ψn} satisfies the condition of Corollary 2.6. If

q > 4α−1
(
2 + ε

2

)2
(

δ
δ1
1

(δ1 + 1)δ1+1

)2 (
1 + aα +

bα

2α−1

)
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and

p > 4α−1
(
2 + ε

2

)2
(

δ
δ2
2

(δ2 + 1)δ2+1

)2 (
1 + aα +

bα

2α−1

)

then condition (2.23) and (2.24) holds. Further we see that

lim inf
n→∞

n−1∑
s=n−δ1

φs−δ1 =
(
2 + ε

2

)
δ
δ1
1

(δ1 + 1)δ1+1
δ1 >

(
δ1

δ1 + 1

)δ1+1

and

lim inf
n→∞

n+δ2−1∑
s=n

ψs+δ2 =
(
2 + ε

2

)
δ
δ2
2

(δ2 + 1)δ2+1
δ2 >

(
δ2

δ2 + 1

)δ2+1

By Corollary 2.6, we see that all solutions of Equation (3.3) are oscillatory.

We conclude this article with the following remark.

Remark 3.1. It would be interesting to extend the results of this article to the equa-

tion

�
(
an�

(
xn + b xn−τ1 ± c xn+τ2

)α)
= qnx

β
n−σ1

+ pnx
γ
n+σ2

where a, b, and g are ratio of odd positive integers.
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