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Abstract. In the present paper, we study the local convergence analysis of a Steffensen-like
method considered also in Amat et al. [1] modified suitably to solve equations in the Banach
space. Using our idea of restricted convergence domains we extend the applicability of this
method. Numerical examples where earlier results cannot apply to solve equations but our results
can apply are also given in this study.
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1. Introduction

Recently, Amat et al. in [1] studied the efficiency of a frozen family of Steffensen-like methods
defined by

O

o — %o

(1.1
XU = X0 p-1F (x,(,j)> ’
where x,,, = ,(,k),xflo) = Xx,,X, € D an initial point k a natural number, n = 0,1,2,...,0 <
j<k-1A4A, = [x,,x,+ F(x,); Fl with [.,.] : DX D — L(X) being a divided difference
of order one on D [2]. That is, they considered k—step iterative method from the Steffensen’s
method with frozen divided difference operator for solving a system of nonlinear equations
and computed the maximum computational efficiency of the method. In this study we present
the local convergence analysis of method (1.1) for approximating the solution of a nonlinear
equation
F(x) =0, (1.2)
where F : D C X — X is a continuously Fréchet-differentiable operator and D is a convex
subset of the Banach space X. Due to the wide applications, finding solution for the equation
(1.2) is an important problem in mathematics.
Our goal is to weaken the assumptions in [1], so that the applicability of the method (1.1)
can be extended. Notice that the same technique can be used to extend the applicability of other
iterative methods that have appeared in [3-5, 10, 11, 13-15].
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The rest of the paper is organized as follows. In Section 2 we present the local convergence
analysis. We also provide a radius of convergence, computable error bounds and a uniqueness
result. Numerical examples are given in the last section.

2. Local Convergence

The local convergence of method (1.1) is based on some scalar functions and parameters. Let
wy, W, Uy, U, w; be continuous, non-negative, non-decreasing functions defined on the interval
[0, +00), (0, +00), [0, +00), (0, +0), [0, +0)?, respectively with values in the interval [0, +o0)
with wy(0) = w(0) = w,(0,0) = 0. Define the parameters r,, r, and r, by

ry=sup{t >0 : wy®) <1},

ry =sup{t >0 : w,(t, (1 +vy())) <1}
and
ro = min{r,r,}. 2.1)
Define functions g, 4 and p on the interval [0, r,) by

1 1 (p(1) + wy())v (D)
=10 [ /0 w1 =0Ndo + ———"

and
h(t) = gt) -1,
where

p(®) = w;(t, (1 + vy()1).

We have that 2(0) = —1 < 0 and h(f) — +o0 ast — r;. It then follows from the intermediate
value theorem that function A has zeros in the interval (0, ry). Denote by r the smallest such
zero. Then, for each ¢t € [0, r)

0<g® <l 2.2)

Let U(a, p), U(a, p) stand respectively for the open and closed balls in X with center a € X
and of radius p > 0. Next, we present the local convergence analysis of method (1.1) using the
preceding notation.

Theorem 2.1. Let F : D C X — X be continuously Fréchet-differentiable operator with
divided differences of order one [.,.; F] : D*> — L(X). Suppose: there exist x* € D, and non-
decreasing continuous functions wy, vy, w, defined on the intervals [0, +00), [0, +0), [0, +oo)2,
respectively with values on the interval [0, +00) and wy(0) = w,(0,0) = O such that for each
x,y€ D

Fx) =0, F'&9!'eLX), (2.3)
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| F' ()" (F'(x) = F'(x*)| < wy(llx = x*|), (2.4)
IF/ ) 0, 33 FL = F GO < a0yl = 71 Dy = 571D, @.5)

and
[, x*; Fll| < v(llx = x*|]); (2.6)

there exist continuous, non decreasing functions w, v defined on the interval [0, ry) with values
on the interval [0, +o0) and w(0) = 0 such that for each x € Dy = D N U(x™, ry)

I F'(x*)" (F'(x) = F' )l < wllx = D), (2.7)
| F'(x*)"'[x, x*; FI|| < o(||x = ylD), (2.8)

and
U(x*,R) C D, (2.9)

where the r is defined by (2.1), R := (14+v,(r))r and r is defined previously. Then, the sequence
{x,} generated for x, € U(x",r) — {x"} by method (1.1) is well defined in U(x*, r), remains in
U(x*,r) for eachn =0, 1,2, ... and converges to x*. Moreover, the following estimates hold

13,01 = X[ = lIx5? = x*[| < (gCllxg — x* [N+ ]lxg — x*|| < re. (2.10)
Furthermore, if there exists Ry > r such that
w,(0,Ry) <1 or w;(Ry,0) <1, (2.11)
then the limit point x* is the only solution of equation F(x) = 0in D, = Dn U (x*, Ry).

Proof. We shall show using mathematical induction that sequence {x,} satisfies (2.10) and
converges to x*. By hypothesis x, € U(x*,r) — {x*}, (2.4) and the definition of r, we have that

1 F' ()™ (F' (x) = F' () < wylllxg — x*[1) < wo(rp) < 1. (2.12)
It follows from (2.12) and the Banach Lemma on invertible operators [1, 14] that F ') e
L(X) and
_ 1
I F(x)™ F'(x*)]| < . (2.13)
° 1= wo(llxg = x*I1)
We can write by (2.3) that
F(x,) = F(xy) — F(x™) =[x, x"; Fl(xq — x™). (2.14)
Then, we have by (2.6) that
I FGeo)ll < v(llxg — x*DIlxg — x| (2.15)

We also have that

lIx0 + Flxg) — x| < llxg = x™|| + [ F(x)

<r+uvy(r)r=~14+vy(r)r=R,
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s0 x, + F(x;) € U(x*, R). Next, we show that Aal € L(X). We get by (2.5) and (2.15) that
IF'(x*)™"(Ag = F' DI < wy(llxg = %", llxg = x* 1| + [1FGep) 1)

< wi(llxg = X715 lIxo = Xl + vo(llxo = X IDllxg — x*I1)

Swi(r,r+vy(rr) = p(r) < 1, (2.16)
S0,
Ay F' (x| < 1_1p(r). 2.17)

We also have by method (1.1) that xf)l), xéz), xg‘) = x, are well defined. Let j = 0. We can

write

0) « _ _(0) * 17 (0)\—1 0)
X=X = x0 =X —F(xo) F(xo)

+AG' [(Ag = F'(x") + (F'(x*) = F'(x")] (2.18)
LF’ (e )™ F ILE” ()™ ).
Using (2.2), (2.3), (2.7), (2.13), (2.17) and (2.18) we obtain, in turn that
Jy w(@ = 0)lIx — x*INagllx — x*||
1= wollxy” = x*))
+<p<||xg°> = x* )+ wo(llxy” = x*Dollxy” = < DIxS” = x*| - (2.19)

(1 = wollx” = x* 1A = p(l1xy” = x*]1)

g(llxl” = x DX — x| < 1x) = x*ll < r,

O _ L x
llx, ™ = X7

which shows (2.10) for n = 0,k = 0 and x(lo) € U(x", r), where we also used that xéo) = X;.
Similarly, we get that
] ES *
Jo w(@ = 0)]Ix}" = x*Ihdo]x” — x|
1= wy(llx)” = x*[)
+(p<||xg°> = x* D)+ wo(l1x” = x* Ioxd” = x*Dllxd” = x|l
(1 = wo(1x” = x* N = p(lIx}” = x*[1)

0 1
g(lIxS = x* Il = x|

0
[l = x|

(2.20)

< &lxg = x" Dlixy” = x* < llxg” = %"l < r,
which shows (2.10) for kK = 1 and n = 0. So, inductively, we obtain that for0 <m < j + 1

+1 0
[0 = x|l < g(lIxS” = X IDxS™ = x|

IA

g (IIx” = x*DIIxY — x| (2.21)

< lixp—x*ll <r,
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which shows (2.10) form = 0,1,2,...,j+ 1,n =0 and xg"“) € U(x", r). By simply replacing
x(O) x(l) x(k) b © M (k)
02X s Xy DY XX, X,

Then, from (2.13), we have the estimate

in the preceding estimates, we arrive at estimates (2.10).

%, — x|l <cllx, —x*|| <r, (2.22)

where ¢ = g(||x, — x* DD e [0, 1), so we deduce that lim x;, = x" and x,,; € UX",r).

k— o0

Finally to show the uniqueness part, let y* € D, with F(y*) = 0. Define Q = [x*, y*; F] (or
0 = [y, x"; F]). Then, using (2.5) and (2.11) we get that

I1F'(x*)™' 0 — F'(x*)I| < w0, [Ix* = y*)
(2.23)

IA

w; (0, Ry < 1,

so 07! € L(X). Then, from the identity 0 = F(y*) — F(x*) = Q(y* — x*), we conclude that
x* = y" O

Remark 2.2. The sufficient semilocal convergence conditions were given in non-affine invariant
form [1]. The local convergence analysis of method (1.1) was studied in [1] based on Taylor
expansions and hypotheses reaching up to the third Fréchet derivative of F. Moreover, no com-
putable error bounds were given nor the radius of convergence. We have addressed the problems
in Theorem 2.1. In order for us to compare the new results with the old ones in [1] we rewrite
the conditions in affine invariant form as:

I F' (")~ ([x, y; F1 = [w,v; F|| < K (lIx = yll + [ly = vl (2.24)

for each x, y,u,v € D with x # y,u # v. In view of (2.24), we also have that

I1F'(x*)"'(F'(x) = F' )l < 2K;Ix — yll, (2.25)
I F' () ([x, y; F1 = F'I < Ks(llx = x| + lly = x*|) (2.26)

and
| F/(x*) " (F'(x) = F' ()| < 2K4llx — x*]]. (2.27)

Clearly conditions (2.4, (2.5), (2.7) are weaker than (2.27), (2.26) and (2.25), respectively (see
also the numerical examples). Moreover, let w,(t) = 2Kyt, w,(s,t) = K,s + K5t and w(t) =
2K,t. Then, if Dy, = D and K, = K, = K5 = K, = K, then our conditions (2.4), (2.5) and
(2.7) reduce to (2.27), (2.26) and (2.25), respectively. Moreover, if D, is a strict subset of D,
then, we have that

and
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Hence, even in this special case the new results are better leading to a wider choice of initial
guesses ( the new radius of convergence will be at least as large); the error bounds on the
distances ||x,—x"|| atleast as tight (leading to fewer iterations to obtain a desired error tolerance)
and an at least as precise information on the location of the solution. Finally, it is also worth
noticing that conditions (2.4), (2.5) and (2.7) are weaker than (2.24) used in [1] (in non affine
invariant form).

3. Numerical Examples

We present two examples in this section. In the first one, we show that the claims at the end of
the Remark 2.2 are justified. In the second example, we show that the results in [1] cannot apply
to solve those equations. In both examples, we define for simplicity [x, y; F] = %(F "X+ F'(y))
for each x, y € D with x # y and [x, x; F] = F'(x) for each x € D.

Example 3.1. Let X = Y = R3, D = U(,1),x* = (0,0,0)". Define function F on D for
w=(x,y,2)" by

e—1

2

Fw) = (e — 1, vV +y.2)".

Then, the Fréchet-derivative is given by
e* 0 0

F'w=|0 (e=Dy+10

0 0 1
Using the approach in [1] (see also the Remark 2.2), we can choose iwy(t) = et,w(s,t) =
e(s+1),w() =et,0(t) = 0y(t) = % Then the radius of convergence is given by

F=10.0321

Under the new approach, we can choose wy(f) = (e — D)t, w,(s,t) = (e — )(s + 1), vy(t) =

%,w(r) =21 = e% rp=—2 = roand v(t) = _1+2‘3°‘

> U 2 = e Then, the radius of convergence
r is given by

r = 0.5003.

Hence, we have that

Moreover, we have

wy(t) < (1)
wi(s,t) < w,(s,1)

Uy(1) < Dy(®)
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and
u(t) < 0(1).
That is the rest of the advantages stated at the Remark 2.2 hold.

Example 3.2. Let X = CJ0, 1] and consider the nonlinear integral equation of the mixed
Hammerstein-type [1, 2, 6-9, 12] defined by

1 2
x(s) = / G(s, )(x()*? + %)d:,
0

where the kernel G is the Green’s function defined on the interval [0, 1] X [0, 1] by

(I—-s), t<s
G(s,t) =
s(1—-1), s<t.

The solution x*(s) = 0 is same as the solution of equation (1.2), where F : C[0.1] — C[0.1])
is defined by

! 2
Fx)(s) = x(s) = / G(s,1) <>c(t)3/2 + %) dr.
0

/ G(s, t)dt
0

F'(x)y(s) = y(s) — / G(s,1) (%X(t)”2 + X(t)) dt,
0

Notice that

<

oo | —

Then, we have that

so since F'(x*(s)) = I,
! k\— ! ! l 3
1F/ G F )= F DIl < g (Sl =™+l = 31
Therefore, we can choose

wy(t) = w(t) = % (%t“2 + t)

and

Uo(t) = v(t) = 1 4+ wy(1), w(s, 1) = %(wo(s) + wy(1)).

Then, result in [1] cannot be used to solve this problem, since F' is not Lipschitz. However, our
results can apply. Indeed, using the above choice of functions we get that

r = 0.3965.
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