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Abstract
In this note we study the value distribution of solutions of certain difference
equations analogous to differential equations, the finite order solutions of which do
not have wandering domains. Meanwhile, the nonexistence of wandering domains of
solutions with finite order of these difference equations is proved. Thus the
nonexistence of wandering domains of solutions of these difference and differential
equations is similar in some extent.
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1 Introduction and main results
Let f be a nonlinear meromorphic function, the Fatou set F(f ) is the set of points z ∈ C

such that iterates of f , (f n)n∈N, form a normal family in some neighborhood of z. The
complement of F(f ) is called the Julia set J(f ) of f . The Fatou set is open and completely
invariant. If U is a component of F(f ), then f n(U) lies in some component Un of F(f ). If
Un �= Um for all n �= m, then U is called a wandering domain of f . Otherwise U is called
pre-periodic and Un = U for some n ∈ N, then U is called periodic. An introduction to
iteration theory can be found in [].

Sullivan [] proved that rational functions do not have wandering domains. However,
transcendental meromorphic functions may have wandering domains (for example, see
[–]), while many classes of meromorphic functions do not have wandering domains
(for example, see [, –]). In [], the nonexistence of wandering domains is proved by
Wang for a meromorphic function f of finite order satisfying some first order nonlinear
differential equations, see the following two theorems.

Theorem A Let q(z) be a rational function, p(z) be a polynomial and m, n ∈N, t ∈N∪{},
a ∈C\{}. Suppose that f is a meromorphic solution of the differential equation

(
f ′)n = q(z)p(f )

(
f ′ – a

)t(f – z)m. ()

Then f does not have wandering domains.

Theorem B Let q(z) be a rational function, p(z), Q(z) be two polynomials and m, n ∈ N.
Suppose that f is a meromorphic function of finite order satisfying the differential equa-
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tion

(
f ′)n = q(z)p(f )eQ(z)(f – z)m. ()

Then f does not have wandering domains.

We also assume that the readers are familiar with basic Nevanlinna’s value distribution
theory and its standard notations such as m(r, f ), N(r, f ), T(r, f ). S(r, f ) denotes any term
satisfying S(r, f ) = o(T(r, f )) as r → ∞ outside some exceptional set of finite measure; see
[, ] as references for Nevanlinna theory. Also, we use the notations σ (f ), λ(f ) to denote
the order of f , exponent of convergence of zeros of f , respectively, as usual. Halburd and
Korhonen [, ], Chiang and Feng [] established a version of Nevanlinna theory based
on difference operators independently. After that many difference equations analogous to
differential equations have been studied.

In this note, we study the value distribution and dynamical properties of the solutions
of difference equations which are analogous to differential equations () and (). We use
fc to denote the shift f (z + c) of f (z), where c is a nonzero constant.

A general form difference equations analogue of differential equation () is as follows:

(fc)n = P(z, f )(fc – a)t , ()

where a is a nonzero constant, P(z, f ) is a polynomial in f with degree p, the coefficients
of P(z, f ) are small functions of f .

We obtain the following results with regard to equation ().

Theorem  Let f (z) be a finite order meromorphic solution of (), then max{t, n} ≥ p ≥
n – t.

Theorem  If equation () admits a finite order meromorphic solution f , then f is rational.

The following example shows that there are rational solutions satisfying equation ().

Example Suppose that n = t, c = , then f = a + 
z satisfying equation (), where P(z, f ) =

( az+(a+)z
az+ )nf n.

By Sullivan’s no existence of wandering domains for rational function, we obtain the
following dynamical property for the finite order solutions of (), which is similar to the
dynamical property of solutions of equation ().

Corollary  The finite order meromorphic solutions of () do not have wandering domains.

We also consider the difference equation analogous to differential equation (). Its gen-
eral form is as follows:

f (z + c)n = q(z)eQ(z)P(z, f ), ()

where q(z), Q(z) are nonconstant polynomials and P(z, f ) is a polynomial in f with poly-
nomials as coefficients. Replace f (z + c) by f (z) in (), the equation can be written as

f (z)n = q(z)eQ(z)P
(
z, f (z – c)

)
. ()
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Without loss of generality, we only consider that () below is enough. Firstly, we study the
growth of the finite order solutions of it.

Theorem  Let q(z), Q(z) be nonconstant polynomials and P(z, f ) be a polynomial in f
with degree p, the coefficients of P(z, f ) are also polynomials. If n > p and f is a finite order
entire solution of the difference equation

f (z)n = q(z)eQ(z)P
(
z, f (z + c)

)
, ()

then σ (f ) = deg Q(z).

In the following, we shall show the properties of the solutions of the following difference
equation (), which is a special case of ().

Theorem  Let m, n ≥  be integers and n > m, m|n, let c ∈ C\{}, and let q(z), Q(z) be
polynomials such that Q(z) is not a constant and q(z) �≡ . If f is a finite order entire solution
of the difference equation

f (z)n = q(z)eQ(z)f (z + c)m, ()

then the solution f is of the form f = eα(z), where α(z) is a nonconstant polynomial.

Some ideas of this theorem are from []. Recall the following theorem about the nonex-
istence of wandering domains for a class of entire functions, which is due to Baker [].

Theorem C Let P and Q be polynomials with Q nonconstant, then

f (z) =
∫ z


P(t)eQ(t) dt ()

has no wandering domains. Particularly, the form f = PeQ for polynomials P, Q is a
special case of ().

Combining Theorem  and Theorem C, obviously, we have the corollary below.

Corollary  Under the hypothesis of Theorem , every finite order entire solution of ()
has no wandering domains.

2 Preliminary lemmas
The following lemma introduced by Laine and Yang [] is an analogue of findings of
Mohonko and Mohonko [] on differential equations.

Lemma  ([]) Let w(z) be a transcendental meromorphic solution of finite order of the
difference equation

P(z, w) = ,
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where P(z, w) is a difference polynomial in w(z) and its shift. If P(z, a) �=  for a slowly moving
target function a, that is, T(r, a) = S(r, w), then

m
(

r,


w – a

)
= S(r, w).

Lemma  ([]) Let f (z) be a meromorphic function with order σ = σ (f ), σ < +∞, and let
c be a fixed nonzero complex number, then for each ε > , we have

T
(
r, f (z + c)

)
= T(r, f ) + O

(
rσ–+ε

)
+ O(log r).

The following result is due to Valiron and Mohonko, one can find the proof in Laine’s
book [, p.].

Lemma  Let f be a meromorphic function. Then, for all irreducible rational functions in
f ,

R
(
z, f (z)

)
=

∑p
j= aj(z)f (z)j

∑q
j= bj(z)f (z)j

()

with meromorphic coefficients aj(z), bj(z), the characteristic function of R(z, f (z)) satisfies

T
(
r, R

(
z, f (z)

))
= dT(r, f ) + O

(
�(r)

)
, ()

where d = max{p, q} and

�(r) = max
i,j

{
T(r, aj), T(r, bj)

}
.

In the particular case when

T(r, aj) = S(r, f ), j = , , . . . , p,

T(r, bj) = S(r, f ), j = , , . . . , q,

we have T(r, R(z, f (z))) = dT(r, f ) + S(r, f ).

3 Proof of theorems
Proof of Theorem  By the assumption of σ (f ) < ∞, Lemma  and (), we have

T
(
r, P(z, f )

) ≤ T
(

r,
f n
c

(fc – a)t

)
= max{t, n}T(r, fc) + S(r, fc). ()

Then, by Lemma  and Lemma , we get that

pT(r, f ) ≤ max{t, n}T(r, f ) + S(r, f ). ()

Thus, we obtain max{t, n} ≥ p.
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On the other hand, by (), Lemma  and Lemma , we have

nT(r, fc) = T
(
r, (fc – a)tP(z, f )

)

≤ tT(r, fc) + pT(r, f ) + S(r, f )

= (t + p)T(r, f ) + S(r, f ). ()

Then we have p ≥ n – t. �

Proof of Theorem  Suppose that f is a transcendental meromorphic function of () with
finite order. Set Q(z, fc) = f n

c – P(z, f )(fc – a)t . Since Q(z, a) = an �≡ , by Lemmas ,  and
(), we obtain that

m
(

r,


fc – a

)
= S(r, fc) = S(r, f ). ()

Additionally, it follows from () that a is a Picard value of fc. By the first main theorem of
Nevanlinna theory, this implies that

T(r, fc) = T(r, fc – a) + O() = T
(

r,


fc – a

)
+ O() = S(r, fc), ()

which is a contradiction. Thus, every finite order meromorphic solution of () is ratio-
nal. �

Proof of Theorem  Suppose that f is an entire solution of () with σ (f ) = σ < ∞. By
Lemma  and (), we deduce that

nT(r, f ) = T
(
r, q(z)eQ(z)P

(
z, f (z + c)

))

≤ T
(
r, eQ(z)) + T

(
r, P

(
z, f (z + c)

))
+ O(log r)

≤ T
(
r, eQ(z)) + pT

(
r, f (z + c)

)
+ O(log r)

≤ T
(
r, eQ(z)) + pT(r, f ) + O

(
rσ–+ε

)
+ O(log r) ()

that is,

(n – p)T(r, f ) ≤ T
(
r, eQ(z)) + O

(
rσ–+ε

)
+ O(log r).

Since n > p, this shows σ (f ) ≤ deg(Q). On the other hand, by equation (), Lemma  and
the first main theorem of Nevanlinna theory, we obtain

T
(
r, eQ(z)) ≤ T

(
r,

f n

q(z)P(z, f (z + c))

)

≤ T
(
r, f n) + T

(
r, q(z)P

(
z, f (z + c)

))
+ O()

≤ nT(r, f ) + pT
(
r, f (z + c)

)
+ O(log r)

≤ (n + p)T(r, f ) + O
(
rσ–+ε

)
+ O(log r), ()

which shows that deg(Q) ≤ σ (f ). Hence σ (f ) = deg(Q). �
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Proof of Theorem  By the Hadamard factorization theorem, f (z) can be written as

f (z) = T(z)eα(z), ()

where T(z) and f (z) have the same zeros, if any, and α(z) is a polynomial.
Substituting () into (), we obtain

Tn(z)
q(z)T(z + c)m = eQ(z)+mα(z+c)–nα(z). ()

If T(z) has infinitely many zeros, then there exists a zero z of T(z) such that none of the
points zl = z + lc, l ∈ N ∪ {}, is a zero of q(z). If z is of multiplicity k ≥ , then by (),
z + c is a zero of T(z) of multiplicity of nk/m. Continuing inductively, we deduce that zl

is a zero of T(z) of multiplicity (n/m)lk. Since n/m ≥ , the sequence of zeros (counting
multiplicities) is of infinite convergence exponent. This is a contradiction. Hence T(z) has
finite zeros, that is, is a polynomial. So, λ(f ) =  < σ (f ) = deg Q(z).

Since T(z) is a polynomial, observing the both sides of (), we know that Tn(z)
q(z)T(z+c)m

must be a constant. Without loss of generality, we set Tn(z) = q(z)T(z + c)m. If T(z + c) has
a zero that is not a zero of T(z), we get a contradiction immediately. Hence every zero of
T(z + c) must be a zero of T(z), but maybe with different multiplicity. In other words, every
distinct zero of T(z) must be a zero of T(z – c). Since c �=  and n > m, m|n, by continuing
inductively, T(z) has infinitely many zeros, this is a contradiction. Hence T(z) cannot have
any zeros, in which case T(z) and q(z) are constants. By (), f is of the form f = eα(z), where
α(z) is a nonconstant polynomial. �
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