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Abstract

In this paper, by using a fixed point theorem and the theory of calculus on time
scales, we obtain some sufficient conditions for the existence and exponential
stability of periodic solutions for a class of Hamiltonian systems on time scales. We
also present numerical examples to show the feasibility of our results. The results of
this paper are completely new and complementary to the previously known results
even if the time scale T =R or Z.
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1 Introduction

Hamiltonian system, which was introduced by the Irish mathematician SWR Hamilton,
is widely used in mathematical sciences, life sciences and so on. Many models in celestial
mechanics, plasma physics, space science and bio-engineering are in the form of a Hamil-
ton system. Therefore, the study of a Hamilton system is useful and meaningful in theory
and practice. Recently, various Hamiltonian systems have been extensively studied (see
[1-5] and references cited therein).

Most existing results on the study of Hamiltonian systems are for continuous systems.
However, both discrete and continuous systems are important in applications, and it is
troublesome to study the dynamical properties for continuous and discrete systems, re-
spectively. Therefore, it is meaningful to study dynamical systems on time scales (see [6—
13] and references cited therein), which helps avoid proving results twice, once for differ-
ential equations and once for difference equations. There have been some results devoted
to Hamiltonian systems on time scales [9, 10, 14—17]. For example, authors in [14] intro-
duced Hamiltonian systems on time scales and authors in [15, 16] studied the following

Hamiltonian system on time scales:

x2(t) = a(Ox(o (2) + BE)Y(D),

1.1
YA (8) =~y (O)x(0 (8) — alB)y(®), (1)

where ¢ € T. In [15], authors obtained inequalities of Lyapunov for (1.1), and authors in [16]
studied the stability of (1.1) by using Floquet theory. However, to the best of our knowl-
edge, up to now, there have been no papers published on the existence and exponential
stability of a periodic solution to (1.1).
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Motivated by the above mentioned works, in this paper, we study the existence and ex-
ponential stability of periodic solutions to (1.1), in which T is a periodic time scale. The
main aim of this paper is to study the existence of periodic solutions to (1.1) by using a
fixed point theorem. Moreover, we also study the exponential stability of the periodic so-
lution to (1.1). Our results are new and complementary to the previously known results
even if the time scale T =R or Z.

Remark 1.1 It is obvious that when T =R, (1.1) reduces to the following continuous time

Hamiltonian system:
®(t) = a(Ox(t) + B(O)y(e), ¥y (8) = —y(Ox(t) —a()y(t), teR.

When T = Z, (1.1) reduces to the following discrete time Hamiltonian system:
Ax(n) = a(m)x(n + 1) + B(n)y(n), Ay(n) = —y(mx(n +1) —a(n)y(n), neclZ.

For convenience, we denote [a, bl = {t|t € [a,b] N T} and ¥ = sup,.p pu(¢). For an w-
periodic function f : T — R, we denote f* = maxejo,wi; |f (£)], f~ = mingeo,0); [f (£)| and

S =maxee(o,n)y f(£).
Throughout this paper, we assume that
(Hy) B(®),y(t) € Cu(T,R), a(t) € Cy(T, (0, +00)) are all w-periodic functions and e_, (o,
0) #1, —a € R*, where R* = R*(T,R) = {r: 1+ u(t)r(¢) > 0,vt € T}.

2 Preliminaries

In this section, we introduce some definitions and state some preliminary results.

Definition 2.1 [6] Let T be a nonempty closed subset (time scale) of R. The forward
and backward jump operators o, p : T — T and the graininess @ : T — R* are defined,
respectively, by

o(t)=inf{seT:s>t}, pt)=sup{seT:s<t} and wu(t)=0(t)-t.
Definition 2.2 [6] A point ¢ € T is called left-dense if £ > inf T and p(¢) = ¢, left-scattered
if p(¢) < t, right-dense if t < sup T and o (¢) = ¢, and right-scattered if o(¢) > £. If T has a
left-scattered maximum 1, then T = T'\ {m}; otherwise T = T. If T has a right-scattered

minimum 1, then T* = T \ {m}; otherwise T* =T,

Definition 2.3 [6] A function r: T — R is called regressive if

1+ u(@)r(e) #0

for all t € TX. If r is a regressive function, then the generalized exponential function e, is
defined by

e.(t,s) = exp{/tsu(r)(r(f))AT} fors,t €T,
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with the cylinder transformation

Log(1+h .
Logehd) i jy 40,

5@=1, ifh=0.

Let p,q: T — R be two regressive functions, we define

pDqgi=p+q+upq, op:=— ) PO q:=pod(Sq).

Then the generalized exponential function has the following properties.

Lemma 2.1 [6] Assume that p,q:T — R are two regressive functions, then
(1) eolt,s) =1andey(t,t) =1;
(i) ep(0(),s) = (1 + w(Op(e))ey(t,5);
(iil) ey(t,s) = ﬁ =egp(s, t);

(iv) ep(t,8)ey(s,r) = e,(t, 7).

Lemma 2.2 [7] Assume that f,g: T — R are delta differentiable at t € T, then
(i) (vif +129)2 = vif® + vog? for any constants vy, va;

(ii) (f2)2(2) =f*()g(t) + £ (o (£)g™(t) = f()g™ (t) + f2(E)g(o (2)).
Lemma 2.3 [7] Assume that p(t) > 0 for t > s, then ey(t,s) > 1.

Definition 2.4 [7] A function f : T — R is positively regressive if 1 + p(¢)f(¢) > 0 for all
teT.

Lemma 2.4 [7] Suppose thatp € R”, then
(i) ep(t,s) >0 forallt,seT;
(ii) ifp(t) < q(t) then e,(t,s) < ey(t,s) fort,s e T.

Lemma 2.5 [18] Ifp € R* and p(t) < 0 for all t € T, then for all s € T with s < t, we have

0<ey(t,s) < exp(/tp(u)Au) <1

Lemma 2.6 [8] Let x € {x € C(T,R)|x(¢t + w) = x(¢)}. Then ||x°|| exists and ||x° || = ||x||,

where || x|| = maxee[o,w)y [*(E)].

Lemma 2.7 [7] Ifp e R and a,b,c € T, then
[epe0]” = =plepe, ]

and

b
/ p(t)ey(c,o(t)) At = e,(c,a) - ey(c, b).
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Definition 2.5 Let z*(t) = (x*(¢),y*(t)) be a solution of (1.1) and z(t) = (x(¢), y(t))” be an
arbitrary solution of (1.1). If there exist positive constants M > 1 and A with ©A € R* such
that for ty € T,

|2(t) - 2*(0)|, < M|z - 2*| |ecn(t,t0), teT,t>to,
where |2(£)]; = max{|x(£) — x*(£)], |y(£) = y* ()]}, 1z = 2* s = max{|z1 — 2,0, |22 — Z5 10}, |2 —
2|0 = MaXse (o] - |zi(s) - z;(s)|, i = 1,2, then the solution z*(¢) is said to be exponentially

stable.

3 Existence and uniqueness
Lemma 3.1 Let (H,) hold. Then every w-periodic solution (x(t), y(t)) of (1.1) is of the form:

x(£) = " B(s)y(s)e_q (s, t) As,
YO = o [ s Y (0 () As.

Proof Let (x(t),y(t))T be an w-periodic solution of (1.1). We can rewrite the first equation
of (1.1) as follows:

x(8) —a(O)x(o (1) = BE)(®).
Multiplying both sides of the above equation by e_, (¢, 0), we have
(e-a(6,00x(0)" = e (1, 0)B(EI(®).

Integrating both sides of this equation from ¢ to ¢ + w and noticing that x(¢ + ) = x(¢), we
have

x(0) = m / BE)y()ea(s OAS.

On the other hand, we rewrite the second equation of (1.1) as follows:
(1-a@®u@®)y* @) + a@)y(o (1) = -y (Ox(c @),

which is equivalent to

y(2)

A —_——
y2 () + o(-a(t)y(o (1) = alip (t)x(a(t)).

Multiplying both sides of the above equation by eg(_a)(Z, 0), we have

(eaa)(t,09(8) " = =y (B)x(0 (1)) eaa) (0 (2), 0).

Integrating both sides of this equation from ¢ to ¢ + @ and noticing that y(¢ + w) = y(¢), we
have

€o(-a) (s,t
y(t) = oot (w,())/ - 1)l (s)x(o(s))As,

which completes the proof. d
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Theorem 3.1 Assume that (H;) and

(HZ) minsE[O,w]THl - M(S)G(S)H #O and

{ Brweld Euw-atlaT yweld Eum-a@lar }
6 = max

le—a(@,0) =1 |1 = eg(a(@, 0)| Minefo,uy {11 - pe(s)ex(s)]}

hold. Then (1.1) has a unique periodic solution.

Proof Let X = {z(t) = (x(¢), y(t))T € C(T,R?)|x(t + ) = x(t), y(t + ) = y(¢)} with the norm
llzll = max{|x|o, |ylo}, where |x[o = max;c(o,u); [%(t)| and |ylo = maxe(o,w)y [¥()]. Then X is a

Banach space. For z € X, define the following operator:

d:X - X, z=(x,9)T = &z = (P12, dy2)7,

where
D12(t) = ﬁ/ B(s)y(s)e_u(s, t)As
and
_ 1 fre ee(—a)(s, t)
Dyz(t) = I eora(@0) /t = 6)a) y($)x(o(s)) As.

We will show that @ is a contraction. First we show that for any z € X, we have &z € X.
Note that

1 t+2w
O1z(t + w) = m / B(s)y(s)e_u (s, t + w)As

= W/ Bs + w)y(s + we_q(s + w, t + w)As

f BE)y()ea(s ) As

e_o(,0
and

es(-a)(S,t + )

t+2w
d>zz(t+a))— T (a),O)_/ 1 o)) (s)x(a(s))As

B (5 +w,t+w)
N 1-eg(-q) (w,O)/ 1- M(s+w)a(s+w)y(s+a))x(0(s+a)))As

/ T eorw)(st)
1- ee(_a>(w, 0/, 1- /L(S)a(S)

y (s)x(a (s)) As,

which means that ®z € X.

Next, we prove that ® is a contraction mapping. Together with

e_a(s, t) = ef;g:u(r a(t))At < e/Hw ‘su(r)(*a(f))‘Af — ef(;u ‘Eu(r)(*a(f))‘Af, t <s< t+ w,s € T’
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for any z; (¢) = (xl(t),yl(t))T,zz(t) = (xz(t),yz(t))T € X, we have

| D121 — P122]0 max

te[0,0]T

m / (BE()e—a(s,0) = Bs)yn(s)e_als ) As

1|/ e_y s,t)’,B s)||y1 - s)’As

< max

tel0,0ly |e_g(w,0

wﬁ+€f0 |§;L(r)(_a(f))|AT
le—a(w,0) 1]

ly1 =200
and

|Drz1 — Pazalo

€o(~ a)(sr )
1-eq( (a),O)/ 1- pu(s)a () y(©)(x1(0(5)) = x2(0 () As

te[O w]']r

1 eo(-a) (s,t
< max
tel0olr |1 —egrw)(@,0)] J; |1 = pu(s)a(

|7/(S)| [x1(0(s)) — 22 (0 (s)) | As

wy +ef0w &) (~a () AT

<
a |1 - 69(_a)(a), 0)| mlnsE[O,w]THl - M(S)Oé(S)H

le1 —%2]0.
Hence, we have
|®z1 — Pz2|| < Olz1 — 22l < |21 — 22l

It follows that @ is a contraction. Therefore ® has a fixed point in X, that is, (1.1) has a
unique periodic solution in X. This completes the proof. O

4 Exponential stability of periodic solution
In this section, we study the exponential stability of the periodic solution to (1.1).

Theorem 4.1 Assume that (Hy) and (Hy) hold. Suppose further that a~ > y*. Then the
periodic solution of (1.1) is exponentially stable.

Proof By Theorem 3.1, one can see that (1.1) has a unique w-periodic solution z*(¢) =
(x*(2),y* (). Suppose that z(t) = (x(t),y(¢))T is an arbitrary solution of (1.1). Denote
w(t) = (u(®), v(t))T, where u(t) = x(t) — x*(t), v(t) = y(t) — y*(t). Then it follows from (1.1)

that
ut(t) = a(Oulo (1) + E)V(t),
A (4.1)
va(t) = —y (Hulo (2)) — a(t)v(?).
For ¢y € T, by Theorem 2.74 and Theorem 2.77 in [8], we have
u(t) = eg(-a)(t, to)ulto) + / eo(-a)(t,8)B(s)v(s)As (4.2)

and

W(t) = e_o (L, to)V(to) — / e_o(t,0(5))y (s)u(o(s)) As. (4.3)

to
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Take a constant A > 0 with —A € R* such that A > 8*(1 + 1) and a"¢; > y*, where ¢, =

mingeqo,u)y €on(t, to). Let

{ X o }
M > max

A=BrA+9A) a e -yt
where €, = maxco,01; €.(t to). It is easy to verify that M > 1 and hence, we have
(w(6)] < lIwlly < Mega(t,t0) w1, VE€ (—00, 8] 7.
We claim that
(w(t)| < Megy. (6 60) w1, Yt € (f, +00)T, (4.4)
which means that
|u(t)| < Mega(t, to) w1, V2 € (to, +00)1 (4.5)
and
[v(®)| < Megy. (6, ) w1, Yt € (£, +00)r. (4.6)
By way of contradiction, assume that (4.4) does not hold, then we have the following three
cases.
Case one: (4.6) is true and (4.5) is not true. Then there exists t; € (£, +00)r such that
|u(tr)| = Megx (t1, to) w1, |u(2)| < Meg; (8, o) Wil € € (o, )1
Hence, there must be a constant p > 1 such that
|u(tr)| = pMegy. (t1, o) Il Wll1, |u(t)] < Megs(t,t0) Wi, t € (to, 1)

In view of (4.2), we have

5]

(t0)] = [eoiea(t to)ulto) + f et 9)BsV(s) As

to

5]
< ot f0)|lto)] + / et s)| BO)|[1(s)] As
to
5]
< eora(tn to)lwlh + B pMIWly / o) (t1,)e0n (5, o) As

to

5]
= eorcatn )Wl + B pM{Wlieon (8, o) / e aon(s 1) As
to
1 n
:PM||W||1€ex(t1,to)(—€aex(to,t1)+ﬁ+/ eaex(S,tl)AS)
pM to

1 !
< pM|wlecu(t1, to)<Meex(to, h)+p* / ec (s, tl)AS)
to
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1 + i
:PM||W||1€ex(t1,to)(]\—/[eex(to,h) + % /to ereA(S,tl)AS)
1 B*
< pM|w|ecx(t1, to) A—/Ieex(to,h) + 7(1 + ¥ A)egy(to, 1)

< pM|Iwlreci (b1, bo), (4.7)

which is a contradiction.

Case two: (4.5) is true and (4.6) is not true. Then there exists £, € (£, +00) such that
[v(t2)| = Meg (t2, t0) Wiz, [v(2)| < Megy (8, t0) [l ¢ € (o, £2)T-

In view of (4.3), we have

[v(t2)| =

a2 to)V(to) — / (2 0(5)) Y ()u(0 (5)) As

< oty t0)|V(t0)| + f (00 9) |y )] |ulo ) As

Lo
2]

< Iwlly +y* Miwil f o (£ 0(5)) As

to

+M 1)
= |wll + VT”_W”l/ (—a7)e_q(t2,0(s)) As

to

Yy M|wll
= [lwlly + f(&a(tzyto) - 1)

y Mlw||
< lwlh + ——

o
1 y*

= M| wl1e A(tz,t0)< + )

© Meg,.(t2,t0)  aegy(fa; to)

< Mllwllieca(t2, to),
which is also a contradiction.

Case three: Both (4.5) and (4.6) are untrue. By case one and case two, we can obtain a

contradiction. Therefore, (4.4) holds. Hence, we have that
|2(2) — 2*(1)|, < M|z —2*|| jeer(t,t0), teT,t>to,

which means that the periodic solution z*(¢) of (1.1) is exponentially stable. This completes
the proof. O

By Theorem 2.1 in [16], we have the following corollary.

Corollary 4.1 Assume that (Hy) and (Hy) hold. Suppose further that B(t) > 0, B(t) # 0,
w o2
t€[0,wlr and [’ (y(@) - S AL>0.If

/o ,B(t)At/O y+(t)At<4exp<—/O |§M(t)(—a(t))|At>
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or

® w 1/2 w 1/2
/ |oc(t)| At + (/ ,B(t)At) (/ y+(t)At) <2, y.(t)=max{0,y(®)}.
0 0 0

Then (1.1) has a stable w-periodic solution.

5 Examples
In this section, we present two examples to illustrate the feasibility of our results obtained

in previous sections.

Example 5.1 Consider the following Hamiltonian system on T = R:

®'(t) = a(t)x(2) + B(£)y(2),

V(0 ==y (Ox(0) —aly(®), teR, (1)

in which we take the coefficients as follows:
a(t) =2 +sint, B(t) = 0.03sint, y(t) = 0.05cos t.
Since T = R, then p(¢) = 0. By calculating, we have

at=a=3, a =1, B* =0.03, y*=0.05,

exp{ /0 " (cals) ds} e

and 6 ~ 0.134 < 1. All the conditions in Theorem 3.1 and Theorem 4.1 are satisfied. Hence,

(5.1) has an exponentially stable 27 -periodic solution.

Example 5.2 Consider the following Hamiltonian system on T = Z:

Ax(n) = a(m)x(n + 1) + B(n)y(n),
Ay(n) = -y (mx(n +1) —a(n)y(n), neZ,

in which we take the coefficients as follows:
a(n) =0.7 +0.2sin %, B(n) = 0.02cos %, y(t) = 0.04sin %

Since T = Z, then u(¢) = 1. By calculating, we have a* =@ = 0.9, = = 0.5, * = 0.02, y* =
0.04 and

11-T105 @ - ak) exp{>s ™ log [1 - a(k)]}

w-1 ~ 1'147, 0 ~0.1634<1.
T @ = (k)]

All the conditions in Theorem 3.1 and Theorem 4.1 are satisfied. Hence, (5.2) has an ex-
ponentially stable 6-periodic solution.
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Remark 5.1 Since in (5.1) and (5.2), B(t) or B(n) may be negative, Theorem 2.1 in [16] is
not suitable for our examples. But from our results, we can obtain that both (5.1) and (5.2)

have exponentially stable w-periodic solutions.
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