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Abstract
In this study, the sinc collocation method is used to find an approximate solution of a
system of differential equations of fractional order described in the Caputo sense.
Some theorems are presented to prove the applicability of the proposed method to
the system of fractional order differential equations. Some numerical examples are
given to test the performance of the method. Approximate solutions are compared
with exact solutions by examples. Some graphs and tables are presented to show the
performance of the proposed method.
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1 Introduction
The last few decades, fractional differential equations systems are widely used for mod-
elling the complex real world problems occurring in science and engineering applications
[–]. Fractional differential equation systems involve non-integer order differential op-
erators. There are some different definitions of a fractional derivative in the literature.
Some of them are defined as follows. For  < α < , the Caputo fractional derivative of f is
[]

D(α)f (t) =


�( – α)

∫ t

a
(t – x)αf ′(x) dx. (.)

The Riemann-Liouville derivative of f is []

D(α)f (t) =


�( – α)

(
d
dt

)∫ t

a
(t – x)αf (x) dx. (.)

The Caputo-Fabrizio derivative of f is []

D(α)f (t) =
M(α)

( – α)

∫ t

a
f (x) exp

[
–

α(t – x)
( – α)

]
dx. (.)
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The Atangana-Baleanu derivative of f is []

D(α)f (t) =
B(α)

( – α)

∫ t

a
f ′(x)Eα

[
–

α(t – x)α

( – α)

]
dx. (.)

The conformable derivative also called alpha derivative of f is []

Dα
x
(
f (x)

)
= lim

ε→

f (x + εx–α) – f (x)
ε

.

Its extension, the beta derivative of f is []

Dβ
x
(
f (x)

)
= lim

ε→

f (x + ε(x + 
�(β) )–β) – f (x)
ε

.

In this study, the Caputo definition of fractional order derivative is considered. Unfortu-
nately, most of the fractional differential equations systems do not have exact analytic so-
lutions, therefore approximation and numerical techniques must be applied for obtaining
the solution of such systems. For this purpose, different numerical techniques are applied
to fractional differential equations systems. For instance we have the Adomian decompo-
sition method [, ], the variational iteration method [, ], the differential transform
method [], the homotopy perturbation method [–], the homotopy analysis method
[], and the fractional natural decomposition method [].

It is revealed by [] that sinc methods give a much better rate of convergence and more
efficient results than classical polynomial methods in the presence of singularities. In the
present paper, a sinc collocation method is proposed to find the approximate solution of
the following system:

⎧⎪⎪⎨
⎪⎪⎩

∑
i= μi(x)u(i)(x) + μα (x)u(α)(x) +

∑
i= ξi(x)v(i)(x) + ξβ (x)v(β)(x) = f(x),∑

i= γi(x)u(i)(x) + γα (x)u(α)(x) +
∑

i= ηi(x)v(i)(x) + ηβ (x)v(β)(x) = f(x),

u(a) = u(b) = , v(a) = v(b) = ,

(.)

where ·(α) is the Caputo fractional derivative and  < αi,βi <  for i = , . In the next sec-
tion we give some background on fractional calculus and the sinc collocation method. In
Section  we give some theorems to show the approximation of the proposed method.
Then, in Section , we illustrate the findings with two numerical examples. Finally in the
last section the paper is concluded.

2 Preliminaries
In this section, some preliminaries and notations related to fractional calculus and sinc
basis functions are given. For more details we refer the reader to monographs [–, –
].

Definition  Let f : [a, b] → R be a function, α a positive real number, n the integer sat-
isfying n –  ≤ α < n, and � the Euler gamma function. Then the left Caputo fractional
derivative of order α of f (x) is given as

f (α)(x) =


�(n – α)

∫ x

a
(x – t)n–α–f (n)(t) dt. (.)
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Theorem  Let be α >  and n ∈N such that n –  < α ≤ n and f (x) ∈ Cn[a, b] then

f (α)(x) = I(n–α)f (n)(x).

Theorem  Let be α >  and D(α) is Riemann-Liouville fractional derivative. If f is contin-
uous, then

D(α)I(α)f (x) = f (x).

Definition  The sinc function is defined on the whole real line –∞ < x < ∞ by

sinc(x) =

⎧⎨
⎩

sin(πx)
πx , x �= ,

, x = .

Definition  For h >  and k = ,±,±, . . . the translated sinc function with space node
is given by

S(k, h)(x) = sinc

(
x – kh

h

)
=

⎧⎨
⎩

sin(π x–kh
h )

π x–kh
h

, x �= kh,

, x = kh.

Definition  If f (x) is defined on the real line, then for h >  the series

C(f , h)(x) =
∞∑

k=–∞
f (kh) sinc

(
x – kh

h

)

is called the Whittaker cardinal expansion of f whenever this series converges.

In general, approximations can be constructed for infinite, semi-infinite and finite inter-
vals. To construct an approximation on the interval (a, b) the conformal map

φ(z) = ln

(
z – a
b – z

)
(.)

is employed. This map carries DE the eye-shaped domain in the z-plane

DE =
{

z = x + iy :
∣∣∣∣arg

(
z – a
b – z

)∣∣∣∣ < d ≤ π



}

onto the infinite strip DS

DS ≡
{

w = u + iv : |v| < d ≤ π



}
.

The basis functions on the interval (a, b) are derived from the composite translated sinc
functions

Sk(z) = S(k, h)(z) ◦ φ(z) = sinc

(
φ(z) – kh

h

)
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for z ∈ DE . The inverse map of w = φ(z) is

z = φ–(w) =
a + bew

 + ew .

The sinc grid points zk ∈ (a, b) in DE will be denoted by xk because they are real. For the
evenly spaced nodes {kh}∞k=–∞ on the real line, the image which corresponds to these nodes
is denoted by

xk = φ–(kh) =
a + bekh

 + ekh , k = ,±,±, . . . .

Definition  Let DE be a simply connected domain in the complex plane C, and let ∂DE

denote the boundary of DE . Let a, b be points on ∂DE and φ be a conformal map DE onto
DS such that φ(a) = –∞ and φ(b) = ∞. If the inverse map of φ is denoted by ϕ, define

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

and zk = ϕ(kh), k = ,±,±, . . . .

Definition  Let B(DE) be the class of functions F that are analytic in DE and satisfy

∫
ψ(L+u)

∣∣F(z)
∣∣dz → , as u = ∓∞,

where

L =
{

iy : |y| < d ≤ π



}
,

and those on the boundary of DE satisfy

T(F) =
∫

∂DE

∣∣F(z) dz
∣∣ < ∞.

Theorem  Let � be (, ), F ∈ B(DE), then, for h >  sufficiently small,

∫
�

F(z) dz – h
∞∑

j=–∞

F(zj)
φ′(zj)

=
i


∫
∂D

F(z)k(φ, h)(z)
sin(πφ(z)/h)

dz ≡ IF , (.)

where

∣∣k(φ, h)
∣∣
z∈∂D =

∣∣e[ iπφ(z)
h sgn(Imφ(z))]∣∣

z∈∂D = e
–πd

h .

Proof See []. �

For the term of fractional in (.), the infinite quadrature rule must be truncated to a
finite sum. The following theorem indicates the conditions under which an exponential
convergence results.
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Theorem  If there exist positive constants α, β and C such that

∣∣∣∣ F(x)
φ′(x)

∣∣∣∣ ≤ C

⎧⎨
⎩

e–α|φ(x)|, x ∈ ψ((–∞,∞)),

e–β|φ(x)|, x ∈ ψ((,∞)),
(.)

then the error bound for the quadrature rule (.) is

∣∣∣∣∣
∫

�

F(x) dx – h
N∑

j=–M

F(xj)
φ′(xj)

∣∣∣∣∣ ≤ C
(

e–αMh

α
+

e–βNh

β

)
+ |IF |. (.)

Proof See []. �

The infinite sum in (.) is truncated with the use of (.) to arrive at the inequality (.).
Making the selections

h =
√

πd
αM

and

N ≡
[⌊

αM
β

+ 
⌋]

where [�·�] is an integer part of the statement and M is the integer value which specifies
the grid size, then

∫
�

F(x) dx = h
N∑

j=–M

F(xj)
φ′(xj)

+ O
(
e–(πα dM)/)

. (.)

We used these theorems to approximate the arising integral in the formulation of the term
fractional in (.).

Lemma  Let φ be the conformal one-to-one mapping of the simply connected domain DE

onto DS , given by (.). Then

δ
()
jk =

[
S(j, h) ◦ φ(x)

]∣∣
x=xk

⎧⎨
⎩

, j = k,

, j �= k,

δ
()
jk = h

d
dφ

[
S(j, h) ◦ φ(x)

]∣∣∣∣
x=xk

⎧⎨
⎩

, j = k,
(–)k–j

k–j , j �= k,

δ
()
jk = h d

dφ

[
S(j, h) ◦ φ(x)

]∣∣∣∣
x=xk

⎧⎨
⎩

– π

 , j = k,
–(–)k–j

(k–j) , j �= k.

Proof See []. �
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3 The sinc-collocation method
We assume approximate solutions for problem (.) by the finite expansion of the sinc
basis functions

⎧⎨
⎩

un(x) =
∑N

k=–M ckSk(x), n = M + N + ,

vn(x) =
∑N

k=–M dkSk(x), n = M + N + ,
(.)

where Sk(x) is the function S(k, h) ◦ φ(x). Here, the unknown coefficients are determined
by the sinc-collocation method via the following theorems.

Theorem  Let be a function f (x) =
∑N

k=–M ckSk(x) defined as the finite expansion of sinc
basis functions, then the first and second derivatives of f (x) are given by

d
dx

f (x) =
N∑

k=–M

ckφ
′(x)

d
dφ

Sk(x), (.)

d

dx f (x) =
N∑

k=–M

ck

(
φ′′(x)

d
dφ

Sk(x) +
(
φ′) d

dφ Sk(x)
)

, (.)

respectively.

Similarly, the order α derivative of f (x) for  < α <  is given by the following theorem.

Theorem  If ψ is a conformal map for the interval [a, x], then the order α Caputo deriva-
tive of f (x) for  < α <  is given by

f (α)(x) =
N∑

k=–M

ckS(α)
k (x), (.)

where

S(α)
k (x) ≈ hL

�( – α)

L∑
r=–L

(x – xr)S′
k(xr)

ψ ′(xr)
.

Proof We use the definition of the Caputo fractional derivative given in (.), writing

f (α)(x) =
N∑

k=–M

ckS(α)
k (x),

where

S(α)
k (x) =


�( – α)

∫ x

a
(x – t)–αS′

k(t) dt.

Now we use the quadrature rule given in (.) to compute the above integral, which is
divergent on the interval [a, x]. For this purpose, a conformal map and its inverse image
that denotes the sinc grid points are given by

ψ(t) = ln

(
t – a
x – t

)
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and

xr = ψ–(rhL) =
a + xerhL

 + erhL
,

where hL = π/
√

L. Then, according to equality (.), we write

S(α)
k (x) ≈ hL

�( – α)

L∑
r=–L

(x – xr)S′
k(xr)

ψ ′(xr)
.

This completes the proof. �

Using in terms of (.) the approximations given in (.)-(.), multiplying the resulting
equation by {(/φ′)}, we obtain the following linear system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑N
k=–M[ck{∑

i= gi(x) di

dφi Sk + g(x)S(α)
k } + dk{∑

i= pi(x) di

dφi Sk + p(x)S(β)
k }]

= (f(x)( 
φ′(x) )),∑N

k=–M[ck{∑
i= ri(x) di

dφi Sk + r(x)S(α)
k } + dk{∑

i= qi(x) di

dφi Sk + q(x)S(β)
k }]

= (f(x)( 
φ′(x) )),

where

g(x) = μ(x)
(


φ′(x)

)

,

g(x) =
[
μ(x)

(


φ′(x)

)
– μ(x)

(


φ′(x)

)′]
,

g(x) = μ(x),

g(x) = μα (x)
(


φ′(x)

)

,

p(x) = ξ(x)
(


φ′(x)

)

,

p(x) =
[
ξ(x)

(


φ′(x)

)
– ξ(x)

(


φ′(x)

)′]
,

p(x) = ξ(x),

p(x) = ξβ (x)
(


φ′(x)

)

,

r(x) = γ(x)
(


φ′(x)

)

,

r(x) =
[
γ(x)

(


φ′(x)

)
– γ(x)

(


φ′(x)

)′]
,

r(x) = γ(x),

r(x) = γα (x)
(


φ′(x)

)

,
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and

q(x) = η(x)
(


φ′(x)

)

,

q(x) =
[
η(x)

(


φ′(x)

)
– η(x)

(


φ′(x)

)′]
,

q(x) = η(x),

q(x) = ηβ (x)
(


φ′(x)

)

.

By using Lemma , we know that

δ
()
jk = δ

()
kj , δ

()
jk = –δ

()
kj , δ

()
jk = δ

()
kj ,

then we obtain the following theorem setting x = xj in the above systems.

Theorem  If the assumed approximate solution of boundary value problem (.) is (.),
then the discrete sinc-collocation system for the determination of the unknown coefficients
is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=–M[ck{∑

i=
gi(xj)(–)i

hi δ
(i)
jk + g(xj)S(α)

k (xj)}
+ dk{∑

i=
pi(xj)(–)i

hi δ
(i)
jk + p(xj)S(β)

k (xj)}] = (f(xj)( 
φ′(xj)

)),
∑N

k=–M[ck{∑
i=

ri(xj)(–)i

hi δ
(i)
jk + r(xj)S(α)

k (xj)}
+ dk{∑

i=
qi(xj)(–)i

hi δ
(i)
jk + q(xj)S(β)

k (xj)}] = (f(xj)( 
φ′(xj)

)),

for j = –M, –M + , . . . , N .

(.)

Now we define some notations to represent in the matrix-vector form for system (.). Let
D(y) denote a diagonal matrix whose diagonal elements are y(x–M), y(x–M+), . . ., y(xN ) and
non-diagonal elements are zero, let Gα = S(α)

k (xj) denote a matrix and also let I(i) denote
the matrices

I(i) =
[
δ

(i)
jk

]
, i = , , ,

where D, Gα , I(), I() and I() are square matrices of order n × n. In order to calculate the
unknown coefficients ck in linear system (.), we rewrite this system by using the above
notations in matrix-vector form as

Ac = B (.)

where

A =

⎡
⎢⎢⎢⎣

A
... A

. . . . . . . . . . . . .

A
... A

⎤
⎥⎥⎥⎦ ,



Hatipoglu et al. Advances in Difference Equations  (2017) 2017:204 Page 9 of 13

A =
∑

i=


hi I(i)D(gi) + D(g)Gα ,

A =
∑

i=


hi I(i)D(pi) + D(p)Gβ ,

A =
∑

i=


hi I(i)D(ri) + D(r)Gα ,

A =
∑

i=


hi I(i)D(qi) + D(q)Gβ ,

B =
(
f(x–M), f(x–M+), . . . , f(xN ), f(x–M), f(x–M+), . . . , f(xN )

)
D

((


φ′(xj)

))
,

c = (c–M, c–M+, . . . , cN , d–M, d–M+, . . . , dN )T .

Now we have a linear system of n equations in the n unknown coefficients given by (.).
When it is solved, we can obtain the unknown coefficients that are necessary for an ap-
proximate solution in (.).

4 Computational examples
In this section, two problems that have homogeneous boundary conditions will be tested
by using the present method via Mathematica on a personal computer. In all the exam-
ples, we take d = π/, L = M = N .

Example  Consider system of fractional boundary value problem in the following form:

⎧⎨
⎩

u′′(x) – v′(x) + v(.)(x) + v(x) = f(x),

v′′(x) – u′(x) + u(.)(x) + u(x) = f(x),

subject to the homogeneous boundary conditions

u() = u() = , v() = v() = ,

where

f(x) = x + x –  –
x.

�(.)
+

x.

�(.)
,

f(x) = x – x – x –  +
x.

�(.)
–

x.

�(.)
,

whose exact solutions are

u(x) = x
(
x – 

)
, v(x) = x( – x).

The numerical solutions which are obtained by using the sinc-collocation method (SCM)
for this problem are presented in Table  and Table . In addition to, the graphics of the
exact and approximate solutions for different values of N are given in Figure  and Figure .
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Table 1 Maximum absolute error for Example 1

N Max. absolute
error in u

Max. absolute
error in v

5 9.642× 10–3 3.145× 10–3

10 9.843× 10–4 4.176× 10–4

20 5.077× 10–5 8.190× 10–5

Table 2 Numerical results for Example 1 when N = 40

x Exact sol. in u Exact sol. in v Absolute error in u Absolute error in v

0 0 0 0 0
0.1 –0.0999 0.09 7.02× 10–7 1.27× 10–5

0.2 –0.1984 0.16 2.10× 10–6 2.07× 10–5

0.3 –0.2919 0.21 3.15× 10–6 1.58× 10–5

0.4 –0.3744 0.24 3.71× 10–6 1.28× 10–5

0.5 –0.4375 0.25 3.62× 10–6 1.14× 10–5

0.6 –0.4704 0.24 3.30× 10–6 1.11× 10–5

0.7 –0.4599 0.21 3.06× 10–6 1.14× 10–5

0.8 –0.3904 0.16 2.22× 10–6 1.01× 10–5

0.9 –0.2409 0.09 1.24× 10–6 8.14× 10–6

1 0 0 0 0

Figure 1 Graphs of exact and approximate solutions for u in Example 1.

Figure 2 Graphs of exact and approximate solutions for v in Example 1.
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Example  Consider the system of the fractional boundary value problem in the following
form:

⎧⎨
⎩

u′′(x) + (x – )u′(x) + u(.)(x) + cos(πx)v(x) = f(x),

v′′(x) + v(.)(x) + xu(x) = f(x),

subject to the homogeneous boundary conditions

u() = u() = , v() = v() = ,

where

f(x) = x – x + x –  + ( – x) cos(πx) +
x.

�(.)
–

x.

�(.)
,

f(x) = x – x –  +
x.

�(.)
–

x.

�(.)
,

whose exact solutions are

u(x) = x(x – ), v(x) = x( – x)

The numerical solutions which are obtained by using the sinc-collocation method (SCM)
for this problem are presented in Table  and Table . In addition, the graphics of the
exact and approximate solutions for different values of N are given in Figure  and Fig-
ure .

Table 3 Maximum absolute error for Example 2

N Max. absolute
error in u

Max. absolute
error in v

5 4.274× 10–3 3.387× 10–3

10 3.737× 10–4 9.082× 10–4

20 2.282× 10–5 2.793× 10–4

Table 4 Numerical results for Example 2 when N = 40

x Exact sol. in u Exact sol. in v Absolute error in u Absolute error in v

0 0 0 0 0
0.1 –0.009 0.09 7.43× 10–6 8.46× 10–5

0.2 –0.032 0.16 8.57× 10–6 1.37× 10–4

0.3 –0.063 0.21 8.29× 10–6 1.23× 10–4

0.4 –0.096 0.24 8.64× 10–6 1.15× 10–4

0.5 –0.125 0.25 9.17× 10–6 1.09× 10–4

0.6 –0.144 0.24 9.58× 10–6 1.03× 10–4

0.7 –0.147 0.21 9.58× 10–6 9.36× 10–5

0.8 –0.128 0.16 8.70× 10–6 7.32× 10–5

0.9 –0.081 0.09 5.90× 10–6 4.53× 10–5

1 0 0 0 0
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Figure 3 Graphs of exact and approximate solutions for u in Example 2.

Figure 4 Graphs of exact and approximate solutions for v in Example 2.

5 Conclusion
This study focuses on the application of the sinc-collocation method to obtain the approx-
imate solutions of the system of fractional order differential equations (.). The proposed
method is applied to some special examples in order to illustrate the applicability and ac-
curacy of the proposed method for equation (.). Obtained numerical solutions are com-
pared with exact solutions and results are presented in tables and by graphics. Regarding
the findings, it can be concluded that the sinc-collocation method is an effective and con-
venient method for obtaining the approximate solution of a system differential equations
of fractional order.
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