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Abstract

In this paper, we consider the initial-boundary value problem of one-dimensional
compressible magnetohydrodynamics flows. The existence and continuous
dependence of global solutions in H' have been established in Chen and Wang (Z
Angew Math Phys 54, 608-632, 2003). We will obtain the regularity of global
solutions under certain assumptions on the initial data by deriving some new a priori
estimates.
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1 Introduction

Magnetohydrodynamics (MHD) is concerned with the flow of electrically conducting
fluids in the presence of magnetic fields, either externally applied or generated within
the fluid by inductive action. The application of magnetohydrodynamics covers a very
wide range of physical areas from liquid metals to cosmic plasmas, for example, the
intensely heated and ionized fluids in an electromagnetic field in astrophysics, geophy-
sics, high-speed aerodynamics, and plasma physics. There is a complex interaction
between the magnetic and fluid dynamic phenomena, and both hydrodynamic and
electrodynamic effects have to be considered. For convenience, we consider the follow-
ing plane magnetohydrodynamic equations in the Lagrangian coordinate system:

v —u, =0, (1.1)
1 AU
u+(pr |b|2)y=< vy)y, (1.2)
i = /'l’w}’
we— by = ( . )y, (1.3)
vb
(vb), — w, = < V) , (1.4)
v /y
1 A . b-b 0,
Et+<u(p+2|b|2)—w-b> =<uuy+uw wy +v y+Ky). (L.5)
Y v ¥
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Here, v, u, w, b, 0, and p are the specific volume, the longitudinal velocity, the trans-
verse velocity, the transverse magnetic filed, the absolute temperature, and the pres-
sure, respectively; A, i, v, and « are the bulk viscosity coefficient, the shear viscosity
coefficient, the magnetic diffusivity, and the heat conductivity, respectively.

We consider problem (1.1)-(1.5) in the region {y € Q: = (0, 1), t > 0} under the
initial-boundary conditions

(U/ u, w, b/ 9)|t=0 = (UOI Ug, Wo, bO/ 9)()’)/ )/ S Q/ (16)

(u, w, b, 6))lag = 0. (17)

In this paper, we focus on an initial-boundary problem for the magnetohydrody-
namic flows of a perfect gas with following equations of state:

R6
P = ’ e = CVHI
v
where R is the gas constant and ¢, is the heat capacity of the gas at constant volume.
For concreteness, we assume that A, 4, and v are constants, and x depends on the tem-
perature 0 with C; < k(0)/(1 + 0") < C, for some positive constants C;, C, and, r > 2.
The growth condition assumed on x is motivated by the physical fact: x « 8 > for
important physical regimes (see [1,2]). The total energy of the magnetohydrodynamics
flows is

1 1
E=e w2+ | w)? v| b2,
+2( + | |)+2 | bl

Before showing our main results, let us first recall the related results in the literature.
For the one-dimensional ideal gas, i.e.,

0.
e=¢bH, o= +u !, Q=—«"1, (1.8)
v v

with suitable positive constants c,, R. Kazhikhov and Shelukhin [3-5], Kawashima and
Nishida [6] established the existence of global smooth solutions. Zheng and Qin [7]
proved the existence of maximal attractors in H'(i = 1, 2). However, under very high
temperatures and densities, constitutive relations (1.8) become inadequate. Thus, a
more realistic model would be a linearly viscous gas (or Newtonian fluid)

o, 0, u) = —p(v, 0) + “(';’e)uy (1.9)

satisfying Fourier’s law of heat flux
k(v,0)
Q(v, 6, 6)) = — ) 6y (1.10)

whose internal energy e and pressure p are coupled by the standard thermodynami-
cal relation (1.8). In this case, Kawohl [8] obtained the existence of global solutions
with the exponents r € [0, 1], ¢ > 2r + 2. Jiang [9] also established the global existence
with basically same constitutive relations as those in [8] but with the exponents r € [0,
1], g = r + 1. When the exponents g, r satisfy the more general constitutive relations
than those in [8,9], Qin [10] established the regularity and asymptotic behavior of
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global solutions with arbitrary initial data for a one-dimensional viscous heat-conduc-
tive real gas.

For the radiative and reactive gas, Ducomet [11] established the global existence and
exponential decay in H' of smooth solutions, and Umehara and Tani [12] proved the
global existence of smooth solutions for a self-gravitating radiative and reactive gas.

For the radiative magnetohydrodynamic equations with self-gravitation, Ducomet and
Feireisl [13] proved the existence of global-in-time solutions of this problem with arbi-
trarily large initial data and conservative boundary conditions on a bounded spatial
domain in R>. Recently, under the technical condition that x(p, 6) satisfies

Ri(1+67) <k(p, 0) <ka(1+67), ki(1+67) < |k,(p, 0)] <ka(1+67),

for some ¢ > g, Zhang and Xie [14] investigated the existence of global smooth
solutions.

For the non-radiative and non self-gravitation magnetohydrodynamic flows, there
have been a number of studies under various conditions by several authors (see, e.g.,
[2,15-22]). The existence and uniqueness of local smooth solutions were first obtained
in [21]; moreover, the existence of global smooth solutions with small smooth initial
data was shown in [20]. Chen and Wang [15] investigated a free boundary problem
with general large initial data with exponents r € [0, 1], g = 2r + 2. Under the techni-
cal condition that k(p, 0) satisfies

C'1+67 <k(p, 0) <C(1+67

for g = 2, Chen and Wang [16] also proved the existence and continuous depen-
dence of global strong solutions with large initial data. Wang [22] established large
solutions to the initial-boundary value problem for planar magnetohydrodynamics.
Under the technical condition upon

K(p, 0) =r(p) > E

Fan et al. [18] investigated the uniqueness of the weak solutions of MHD with Lebes-
gue initial data. Fan et al. [19] also considered a one-dimensional plane compressible
MHD flows and proved that as the shear viscosity goes to zero, global weak solutions
converge to a solution of the original equations with zero shear viscosity. The unique-
ness and continuous dependence of weak solutions for the Cauchy problem have been
proved by Hoff and Tsyganov [17].

As mentioned above, the global existence in H' (i = 2,4) of global solutions has
never been studied for Equations (1.1)-(1.5) of the nonlinear one-dimensional compres-
sible magnetohydrodynamics flows with initial-boundary conditions (1.6)-(1.7). The
main aim of this paper is to prove the regularity of solutions in the subspace H' of (H'
[0, 1])7(i = 2, 4) for systems (1.1)-(1.7). In order to obtain higher regularity of global
solutions, there are many complicated estimates on higher derivations of solutions to
be involved, this is our main difficulty. To overcome this difficulty, we should use
some proper embedding theorems, the interpolation techniques as well as many deli-
cate estimates. This is the novelty of the paper.
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We define three spaces as follows:

H! - {(u, w w b, 0)e(H(Q) : vx)>0 0(x)>0 xe
u(0) = u(1) = 0, w(0) = w(1) = b(0) = b(1) =0},

Hi = {(v, u, w, b, 0) e (H(Q) :vx)>0, 0(x)>0 xeg
u(0) = u(1) = 0, w(0) = w(1) = b(0) = b(1) =0,
0'(0)=0'(1) =0}, i=24.

The notation in this paper will be stated as follows:

I?, 1 <p <+, W*? me N, H = W"?, H} = Wé'z denote the usual (Sobolev)
spaces on Q. In addition, ||-||p denotes the norm in the space B, we also put
- =1 ‘lli2(e). Constants Ci(i = 1, 2, 3, 4) depend on the H! norm of the initial data
(Vo» o, Wo, bo, Op) and T > 0.

Now we are in a position to state our main results.

Theorem 1.1 Assume that the initial data (v, uo, wo, bo, 6o) € H2and e, p, and k
are C° functions. Then, the problem (1.1) -(1.7) admits a unique global solution
(v(t), u(t), w(r), b(r), 6(t)) € Hsuch that for any T > 0,

[[(t) = Dl17 + ()7 + w1 + 1O +10() — 01172 + ()1 + lw, ()1
t
+||bt(t)|\2+||0z(t)||2+/(||v—m|,§z +[ullfp + w7 + 11bl17 + 116 — 61175 (1.11)
0
+Hlugl? + [[wyl1> + by |1 + 110y 117)(s)ds < Ca, Vi € [0,T],

where y = fol vdy = [, 01 vody, constant § » o is determined by

e(v,0) = / (;(ué + [wol? + vo|bol?) + e(vo, 90)) (y)dy.
0

Theorem 1.2 Assume that the initial data (vo, uo, wo, by, 6y) € Hiand e, p, and
are C° Sfunctions on 0 <v < +o0 and 0 < 6 < +oo. Then, the problem (1.1)-(1.7) admits a
unique global solution (v(t), u(t), w(t), b(t), 6(t)) € Hisuch that for any T > 0,

I o(e) =9 07 + 1 u(e) W + 1l w(e) U + 1050 N7 + 110(8) = 6 17 + I ua(e) 17+ 1 wa(e) 117
+ 1 b (0) 17+ 1 () 17 + 0 wee) D7 + 1 Be(0) 17 + 1 6:(0) 17 + 1 0ul) 1I?
t
+/(H V=D |t N u s + w2 + Wb U2 + 106 =0 13 + 1w 13 + 1 we 170+ 11 b 12
0
0, |I% 2 2 by |I? Oy II? ds < Cy4 Vte [0, T
+ 16 ””3 + | uy ””1 + |l wy ”111 + | by “”I + | 6y ”1[1) (5) = Gy, € [ i ]

(1.12)

2 Proof of Theorem 1.1
In this section, we study the global existence of problem (1.1)-(1.7) in H? by establish-
ing a series of priori estimates. Without loss of generality, we take ¢, = R = 1. We
begin with the following lemma.

Lemma 2.1 Assume that the initial data (vo, uo, wo, bo, 60) € Hland e, p, and
are C* functions on 0 <v < +c0 and 0 < 0 < +co and there exists a positive constant Cy
such that
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0<Cyl <wo(¥) <Co 0<Cyl <6o(y) < Co.

Then, for the initial data (v, ug, wo, by, 6o) € H., the problem (1.1) -(1.7) admits a
unique global solution (v(t), u(t), w(t), b(t), 6(t)) € Hlsuch that for any T > 0

0<C'<v(y, ) <Ci;, 0<C;/'<0(y,t)<Ci, Y t)elo1]x[0, T] (2.1)

and for any t € [0, T],

t
() =7 170 + 1l u(®) N7 + 1 w(e) I7 + 1b() 17 + 1 0(8) = 6 lI7n +[ (e R (2.2)
J .

2 2 o112 2 2 2 2
+lwlie + 10l + 10 =0 lip + [ wll™+ [ well+ | bell“+ || 6117) (s)ds < Cy.

Proof. See, e.g., [16].
Lemma 2.2 Under the assumptions in Theorem 1.1, the following estimate holds:

e () 117+ 1 we(2) 17+ 1 be(2) 12+ 1 6:(2) 117

t
(2.3)
+/ (I ugI® + 1 wylI>+ 1 by >+ 1| 6411 (s)ds < Cy, Ve € [0, TJ.
0

Proof. Differentiating (1.2) with respect to ¢, multiplying the resultant by u,;, and then
integrating the resulting equation over Q, : = Q x [0, t], we infer

t
I ue()N1? + f Il gy (5) 11> ds
0
t t
<e / I 1ty (5)Pds + C f (1 6) I 1+ 1D - be(s) P+ 1 y(s) 1%) ds
0 0
t t
<e / Il uy(s)12ds + Ca f (Il ty(s) 7o+ 1l Oc(s) 17+ [l be(s)1I%) ds
0 0
t
<Cr+s /|| uy(s))1%ds,
0
which implies
t
(o) 17 + / Ity (s) 17ds < Ca. (2.4)
0
Analogously, we have
t
I we(e) 17+ be(2) 117+ 1| 6:(0) 17 + / (Il wy I*+ 1| by ll*+ 1| 6y11%) (s)ds < Co. (2.5)
0

Thus, (2.3) follows from (2.4)-(2.5).

Page 5 of 17
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Lemma 2.3 Under the assumptions in Theorem 1.1, the following estimate holds:

I 1ty (£) 117+ 1 wyp(6) 17+ 1 Byy(£) 17+ 11 6 (6) 117 + [ (Il typy1?
0

(2.6)
+ || wyy 12+ 1| by [+ 1| 6y 11%) (s)ds < Cy, Ve € [0, T].
Proof. Equation (1.2) can be rewritten as
A0, MOV Ay, AU
U = — )’+ v YY+ )’J’_b.by. (27)

v v 12 v

Using equation (2.7), Lemmas 2.1-2.2, Sobolev’s embedding theorem and Young’s
inequality, we have

luyy (DI < Co(llue (D)1 + 116, ()] + 11D - by ()] + 18wy ()] + [vyuy ()11)
< Co(llu ()1 + 16, () 1+ 1 () oo [y (1] + [y ()11 + [ty (£) < 1wy ()11)
< elluy(Oll + Ca(llu (Il + 1),

which leads to
t t
Iy (D) < Ca, / Ity (s) [12ds < C / Ity (5) 17ds < Ca. 2.8)
0 0

Similarly, we derive

Il wyy () I+ 1 by () 1T + 1 Oy ()] < Co(ll we(0) 1T+ 1 be(2) 1T + 11 6:(2) 1 +1) < G2, (2.9)

t
/(II Wy 12+ 1 by 17+ 11 6y 1) (5)ds < Co. (2.10)
0

Thus, (2.6) follows from (2.8)-(2.10).
Lemma 2.4 Under the assumptions in Theorem 1.1, the following estimate holds:

Il vy (E)112 +f I vy(s) I°ds < Cy,  Vtelo, T). (2.11)
0

Proof. Differentiating (1.2) with respect to y, we obtain

)\d (UW

9
w7 ) + oty =y +EQ, 1), (2.12)

where

20, (huyy = 6y) 2026 — )

+b-b,+ | b2
12 3 " v

0
By )= "+

Multiplying (2.12) by ”Zy, integrating the resulting equation over Q,, and then using

the Young inequality and interpolation theorem, we can conclude

Page 6 of 17
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t t t
Vyy 2 1 Vyy 2 1 / Vyy 2 / 2 2
t C s)| ds < s)| ds+C u 0,
Morea [1T@Tass o [1T oS [ Quiero)
0 0 0
+ 1 vy 12+ 1wy s+ 1w 1P+ 1By s + 11 b 171 By l1?) (s)ds

t t
1 % 2
=5 /I 1iy(S) | dS+Cz/(|| vl 2+ 1 ug 1P+ 1 gy 7 + 1 Oyl 2+ 1| by l12) (s)ds,
1
0 0

which, together with Lemmas 2.1-2.3, yields (2.11).
Proof of Theorem 1.1. By Lemmas 2.1-2.4, we complete the proof of Theorem 1.1.

3 Proof of Theorem 1.2
In this section, we study the global existence of problem (1.1)-(1.7) in H% by establish-

ing a series of priori estimates. We begin with the following lemmas.
Lemma 3.1 Under the assumptions in Theorem 1.2, the following estimates hold:

Iug(y, O) Il + Il wy(y, O) I + I wyy(y, 0) Il + [l 65 (y, O)I < Cs5, (3.1)

I ug(y, O) I + Il wu(y, O) Il + Il bu(y, O) Il + 1l Ou(y, O) |l

3.2
+ 1wy (v, O) I + Il wyy (v, O) Il + 1 by (y, O) Il + Il Gy (v, O)II = Cs. (32

Proof. We easily infer from (1.2), Lemma 2.1 and Theorems 1.1 that

luc(e) < G0 vyp(@) I+ 10y () I+ 0y (0) 1+ 1 ay(2) Neee vy () I+ 1 BCE) Hlie Il by(2) 11)
< Gs(ll Vy(t) I+l 9}/(':) [+ uyy(t) I+ 1l by(t) -

Differentiating (1.2) with respect to y, and using Theorem 1.1, we get
Il ey (6) 1= Ca (Il vy (€) Mp+ 1 6y () N+ 1wy (2) Mlp+ 1| by (2) M), (3.3)
or

Ity (I < C3 (Il vy (€) e+ 1 6y () N+ 11 by(2) M+ 11 vy (2) 1) (3.4)

Differentiating (1.2) with respect to y twice, using the embedding theorem and Theo-
rem 1.1, we conclude

I ey (€) 11 < Cs (Il vy (2) 2+ 1 Op() N2+ 1wy (€) s+ 1l by(2) N12), (3.5)
or

Ity (€) 11 < Ca(ll vy (1) N2+ 11 Oy () Mrz+ 1| by () N2+ I gy () 1) (3.6)
Similarly, we have

Il wi(2) 1| < Cs(ll wy(2) [+ 11 by(e) I+ 1 oy (2) 1),

(3.7)
| wy(£) | < Cs(ll wy(t) 2+ I by(e) N+ N vy (8) e ),

or

I wyyy (€) Il < Ca (Il By(€) N+ 1 vy (6) N+ 1| by (2) 1), (3.8)

I wiyy(6) 1| < C3 (Il wy() i+ 11 by(e) N+ [ vy (2) Nl2), (3.9)
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or
I Wy (6) 1| < Cs(ll (1) Nzt 1l vy (1) 2+ | wigy(2) 1), (3.10)
b Il < Cs(Il byl + 1l wy [l + vy 1), 3.11)
I by (6) I < Cs(ll by(t) Ipz+ Il wy () len+ 1l vy(2) Nlen), '
or
I By (£) 1| < Cs (Il wy(8) len+ 1l vy(6) lin+ 1 By(2) 1), (3.12)
I Byy(6) || < C3 (I by(e) s+ | wy(6) e+ 1l vy (2) i), (3.13)
or
I By (1) 1 < C (Il wy(6) Nzt 1l vy(2) N2+ 1l by (2) 1), (3.14)
I6:(6) Il < C3(l uy(e) 11 + 1 vy (6) 1+ 11 Gy (2) 1|+ 11 2ty () Nlzoe Il sy (2)
w1 wy(6) Nl 1wy (6) I+ 11 by(e) i | By(6) I+ 11 6,(6) e 16,(6) 1), (3.15)
< Gs(ll ny(t) I+l uyy(t) I+l wyy(t) I+ byy(t) ),
0y (6) I < C3(I1 :(t) 1 + 11 By(€) Nzt Il vy (2) M+ 11wy (2) M+ 11wy (2) i
(3.16)
+ 1 by(0) i),
or
I Oy () 11 < Ca(ll vy (6) e+ 1 g (6) N+ 1wy (£) o+ 11 by(2) Nl
(3.17)
+ 11 6y (1) 1),
I 6y () 11 < Cs (1l By(8) lles+ 11 vy (€) Nez+ 1l wy(€) Nez+ 1l wy(2) N+ 1l By(0) ), (3.18)
or

I Oy () I = Cs(ll vy (€) Nero+ 1y (1) Nlp+ I wy () N2+ 1 by () e
+ 11 By (2) 11)-

Differentiating (1.2) with respect to ¢, and using Theorem 1.1, (3.3), (3.5), (3.11)-
(3.12) and (3.16), we derive

I ua(e) I < C(ll vy (€) e+ 1wy (2) llro+ 1 by(2) N2+ 11 6y(2) [l12)- (3.20)

(3.19)

Similarly, we can conclude

I we(e) | < Cs(ll vy (t) N+ 1 by(2) N+ N wy(2) Nlis), (3.21)
I b (0) | < Ca(ll vy (2) lre+ 1 by () N+ 11 wy () Nli2),s (3.22)

6 (2) 1| < Ca(Il vy (€) N2+ 1y (6 e+ 1By () Nprzt 1wy (6) N+ 1 Oy(2) Nl ). (3.23)

Thus, (3.1) follows from (3.3), (3.7), (3.11) and (3.16), and (3.2) from (3.5), (3.9),
(3.13), (3.18) and (3.20)-(3.23).

Page 8 of 17
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Lemma 3.2 Under the assumptions in Theorem 1.2, the following estimates hold, for
any te [0, T),

t t
Il ue () 1 + f Il tey(s) IPds < C5 + Cs f (Il ByylI>+ 1| Oyl (5)ds, (3.24)
0 0

| we(t) ||2+ | by (t) ||2 + / (I wyy(s) ||2+ | bey(s) ||2) ds
0

t (3.25)
<G+ Cs / (U by (5) 1%+ 1| wyy (5) 17) s,
0
t t
ol / 1 Buy(s) 17ds < Cs + Cos™! f I By (s) 112ds
0 0 (3.26)

t
2 2 2 2 2 2
+C18/ (I Uy 17+ || thegy |7+ 1| w17+ || wag |17+ | btyy” + | btty“ ) (s) ds.
0

Proof. Differentiating (1.2) with respect to ¢ twice, multiplying the resulting equation
by uy, performing an integration by parts, and using Lemma 2.1, we have

zjt / u2(y, Ody < =4 | () 17+ Ca(ll 6u(e) Il + 1l iy () I + 1| Bty (1) |
/ (3.27)
w10 -be(0) |+ B2 17+ 1 ug(6) 1) 1ty (0) 1
< —C7 gy () 17 + Calll 6u(6) 12+ 1 Beee) 12+ 1 gy (0) 17+ 11 uy()117+ 11 6:(0)112)

Thus, using Theorem 1.1 and Lemma 3.1, we get
t t
e (1) 117 + / | thy(s) 1°ds < Cs + Cs / (Il by 12+ 1| Oy l1*) (5)ds.
0 0
Analogously, we obtain

I we(£) 17+ 1| bu(2) 117 + / (l wtty”2+ l btty”2) (s)ds
0

t
<G +<33/(|| W12+ 1| byylI?) (5)ds.
0

Equation (1.5) can be rewritten as

(3.28)

v

K6, Auf + ulwyl? + v[by|?
+ )
y v

(cB)e + puy = (

Differentiating (3.28) with respect to ¢ twice, multiplying the resulting equation by 6,
in L? 0[1] and integrating by parts, we arrive at

Page 9 of 17
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1 1

1d K6,

2dt/c,,9n(y, )dy = —/( ; )netty()/r )dy
0

1

1
w vb
[ (=" ) unuty, 0y + [ (M s ") 6y, 0y
0 0

-2 | Pz—( ury%(y, t)dy +2 | (Mwy)wrﬁ(vby)bry Ou(y, 1)dy
J J v e

1

j( p+ ) uyBu (1, t)dy+/ [(M:Uy)ttw”(vfy)nby] 6uly, 1)dy
0 0

=Bl+Bz+B3 +B4 +BS +BG+B7.

+

By virtue of Theorem 1.1 and Lemmas 3.1-3.2, using the embedding theorem, we
deduce for any ¢ € (0, 1),

By < —C71 || Oy ()17 + Ca || Oy ()12 (1 iy ()117+ | 6:(0)117) I By (1) |
#Ca ()OI 16,0l 160y (0) |
< =2C7 [ Oy (D117 + Coll wy (DI + 1 6 ()17 + 1| gy (0)11
+ 1 By ()12 + 1| B (D11 + 1| Oy (D)117),
By <& | uy (D)1 + Coe™" || 8u(0)I1%,
Bs < e(ll wiy (O)117+ | by ()117) + Cae ™" || 6u(1)11?

and
By < Cy / (1601 + 1ty] + L] + 11612160 1| 2|y, )dy

1 1
< Co lug ()12 1 ugy (112 (11 6:(2) I+ T uy(2) I+ 11 ey (2) 1) 11 O (2) |l
which implies
1 1

t t 4 t 4
Byds < Cp sup || 6u(s) | ( [ ufy(s)nzds) ( [ ufyy(s)nzds)
[0 = s 1001 /

0
1

L 2
)| [ g+ 106017+ 1 wyl1?) (s)ds)
{

t
<e (sup I Glt(s)||2+/|| uw(s)llzds) +C3e3
0<s<t
0

1

Bs <G / [(wyl? + lwg D) lwy| + (lwyl? + [wiy ) [wey 11661 (v, £)dy
0
< Co [l wiy (D)l (I wy (1P + | wiy(£) 1) 1| Bu(€) | +Ca | wey(0)lae (I By(O) 112+ 1l by (1) 1) 1 Oue(£) |
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which implies

t

t
/B5ds <e (SUP Il 6ue(s)11? +/ (Il woy I+ | wtyy\lz(s)d5> +C3e™?,
0
0

0<s<t

Bs < Co [l up(6)1z 11 0 (0) 11 [(1 Ol e+ 1wy ()11 ) (I €)1 + 1wy (£) 1)+ 1 () |
+ 1 (6) 1+ 11y (6) 1+ 1wy (2) 1]
< Co [l 0u(0) 1 (I 0E) 1+ 1 () in+ 1l By (1) 1+ 1 Ouc(e) 1 + 1wy () 11 + 11 e (£) 1)
<& [l uay(O11> + Coe (I 017+ 1wy (1) 170 + 1| O (DI 11 B ()17 + 1] wy (0)117),
By < Co [l wy()ll 1l 0 () Il (Il way (6) 11 + 1wy (¢) 11 + 1l wy () 1) + Ca 11 by ()1l 1| Oue(£) |l
X (I buy (1) 1 + 1 by (£) | + 11 by (2) 1)
< Co [l 0u(0) I (I wey(e) 11+ 11wy (i + 1l wi () 11+ 1 By (6) 11+ 1 by(E) 1+ 1| by () 1)
< el way (D117 + 1| by (D117) + Cae™ (1l Bu(D11P+ 1 wy (1) 17
+ 1wy (117 11 by(6) 17 + 1l by (D))

Thus, for ¢ € (0, 1) small enough, we derive from above estimates

t

t
I 6 (2) 117 +/ I 6y (s) I7ds < Coe™" / (Il By (5) 17+ 11 6ue(s) %) ds + C&~
0

0
(3.29)

0<s<t

t
2 2 2 2
+Cie | sup || 6x(s)l| +/(|I Uy 17+ 1| tegy |17+ || wyy |
0

+ 1 w12+ 1| by 12+ 1| byll?) (s)ds] .

Thus, taking supremum in ¢ on the left-hand side of (3.29), picking ¢ € (0, 1) small
enough, and using (3.23), we can derive estimate (3.26).

Lemma 3.3 Under the assumptions in Theorem 1.2, the following estimates hold, for
any t € [0,7],

g () 12+ [ 1] ugy(s) 1°ds
/

¢ (3.30)
< Gy + Cye? / (U By 124 1 Oyl 1 ey I12) (s)dls,
0
t
1wy (6) 12+ 1 by (0) 112 + / (I w12+ 1 by 12)(s) ds
o (3.31)
< Cye 0 4 Gy / (U w1+ 1| Bayll?) (s) ds,
0
t
Il 6y (1) I + f Il Byy(s) [1Pds < Cse~°
0 (3.32)

t
+Cye? / (I By 12+ 11 w1+ 1 w12+ 11 O I+ 11 Oy 1 11 64y 1) (5)dls.
0
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Proof. Differentiating (1.2) with respect to y and ¢, multiplying the resulting equation
by u,,, and integrating by parts, we arrive at

1d
5 g () 12 = Do(y, t)+Di(t), (3.33)

where

1

- 1 AU
Do(y, t) = O'Wutyw:(l), Dy (1) = —/atyutyydy, o=— (p + 2|b|2 _ Uy) )
0

We use Theorem 1.1, Lemma 2.1, the interpolation inequality and Poincaré’s
inequality to obtain

Do < Cu [(Il uy(€) Nt 1 6:(6) Npse) (Il 0y (8) N+ 1l 6y(0) llpo)
+ 1 b(e) Nl 11 by () oo+ | By(€) i | BE) llzsot | Oy (1) Nzt I 1y (€) 7

1 0) le |ty (6) lt 1t (0) N 100 Nt 1 iy (0) T ] W () e 339
< C5(Dor + Don) Ity (1) 112 1 gy (6) 112,
where
Doy =l uy(t) 2+ 11 0:(2) I + 11 O (2) I + [ be(2) | + 1l by (2) I,
Doz =1 6/(6) 12 11 Oy (£) 12+ 1 1ty (£) 112 1 1ty (6) 12+ 1ty () |
w0y (6) 12 Wty () 12 1 Biy() 12 1 By (8) 12
Using the Young inequality several times, we derive
1 L
CaDor Il y(0) 12 111t (6) 12 = ) )ty () 17 535

+Cae‘§ (I gy (6) 17+ 1wy (0) 15 + 11 6:(6) 17+ 11 0 () 1P+ 1 Be(2) 17+ 1l By (1) 117)

and

CaDon 11y (0) 12 1y (012 = %, Wty 0) 1P 20 () 125 1 ip(0) 124 180y 1) (55

+Cae ([ ug (1) 17+ 1| 0y (1) 117+ 1| by (2) 17).
Thus, we infer from (3.34)-(3.36) that

Do < &2 (Il () 11+ 1| gy (1) 17+ 1| by (£) 17+ 11 Oy (1) 117)
+C3e (I ug(6) 17+ 1 O (1) 17+ 1l by (6) 17+ 11 0e(6) 1P+ 11 iy (6) 117 + 1l Be(2) 11%),

which, together with Theorem 1.1, Lemma 2.1, and Lemmas 3.1-3.2, yields

t

t
/ Dods < &2 f (I tyyy 1+ 11ty 12+ 1| By I+ 1l Oy 1*) (s)ds + C3e7. (3.37)
0 0

Similarly, by Theorem 1.1, Lemma 2.1, and Lemmas 3.1-3.2 and the embedding theo-

rem, we have

Dy < (2C3) 7" L ugy(6) 17 + Cs(Il ugy(£) 17+ 11 by (6) 17+ 11 6:(8) 7 + Il wy(£) 7)., (3.38)
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which, combined with (3.33), (3.37)-(3.38), Theorem 1.1, Lemma 2.1, and Lemmas
3.1-3.2, gives that for ¢ € (0, 1) small enough,

t t
Il (1) 11>+ f Il gy (s) 117ds < C3e™¢ + Cre? [ (I by [+ 1| Oyl >+ 1| ugyyll®) (s)ds.  (3.39)
0 0

On the other hand, differentiating (1.2) with respect to x and ¢, using Theorem 1.1
and Lemmas 3.1-3.2, we have

Ity (6) 1| < Cu |l they () 1 + Call () g + 11 6,0 1 + 11 0y (8) 17

3.40
1By B+ 160 120+ 1 bilt) I2). (340

Thus, inserting (3.40) into (3.39) implies estimate (3.30).

Analogously, we can obtain estimates (3.31)-(3.32). O

Lemma 3.4 Under the assumptions in Theorem 1.2, the following estimates hold for
any t € [0,T],

I (6) 17+ 1wy () 17+ 1w () 117+ 1wy () 17+ 1 b€ 17+ 11 by (2) 117+ 11 (1) 12

+ 1 Oy (1) 17 + / (I ey 1P+ 1 gy 17+ 1| wegy 12+ 1| wigy 1+ 1| gy |1 (3.41)
0
+ [ by 12+ 1| Oyl + 11 Oyyll*) (s) ds < Ca,

t

I vy () 7+ 1 v (0) 3 + f (U vy N+ 1 vy lynee) () ds < Ca, (3.42)
0

I ”yyy(t) ”12-11 + ”yy(t) sz/vloo + wyyy(t) H}qu + wyy(t) ”\zwoc + byyy(t) ||12-11 +1 byy(t) ”%/Vloc
+ 1 By (0) 1 + 1 O (1) I3y + I vy (8) 117+ 11 sy (6) 17+ 1 gy (1) 17+ 1 By (1) 1P

t
+ 1l Oy () 17 + f (1wl 1 weell+ 1 bl 1 Ol 1ty 3pame + 1l Wy 132 (3.43)
0

2 2 2 2 2 2
+ {1 by yzce + 11 Oy lygae + 11 Oy i + I gy N + 1wy N + 1l by Nl

2 2 2 2 2
+ 11 By e + [ tty Niroe + Il Wy lgioe + 11 bry e + 1l vy ) (8) ds < Cy,

t
/(II tyyy N+ I Wy I3+ 11 by 70 + 1 Oy 170 (5) ds < Cs. (3.44)
0

Proof. Adding up (3.30)-(3.32), picking ¢ € (0, 1) enough small, by Lemmas 3.1-3.3,
and Gronwall’s inequality, we get

I gy (6) 17+ 1w (6) 17+ 1 by (£) 17+ 11 6 () 11 + fo (I gyl + 1| wipy I

t
_ 3.45
+ 1 Byl P+ 1 OgyI?) (5)ds < Cse 6+C282/(|| iy 12+ 1| w2 (3.45)
0

+ 11 Byl 2+ 1| Oy 112+ 11 Oy lI? 1| ByyylI?) (5)ds.

Now multiplying (3.24)-(3.26) by ¢, ¢, and s;’ adding the resultant to (3.45), and

choosing ¢ € (0, 1) small enough, we obtain

Page 13 of 17
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I e (€) 17+ 1 ug(0) 17+ 1 wee(2) 17+ 1 wy(6) 17+ 1 bee(€) 17+ 1 by (2) 17+ 1 0ue(2) 11?

t
2 2 2 2 2 2
+ 11 65 (0) | +/(|I Uy |7+ 1 ey 1™+ 1| ey 17+ 1| wigy I°+ 1| bagy
0

t
+ 1| by I+ 1| Oyl + 1| Oyl (s)ds < Cae ™6 + Cre? f Il By () 11”1l Bypy(s) 117ds,
0

which, by Gronwall’s inequality, gives the estimate (3.41).

Differentiating (2.12) with respect to y, and using v, = u,,,, we obtain

0

9 [y
= 3.46
Am( ” )+ p2 v = By ), (3.46)

with

0 vyl
Ei(y, t) = E)(y, t) + gy + <U2>yvyy + A( ; )l.

Obviously, we can infer from Lemmas 3.1-3.3 that

IEL (N < Co(ll ugy(2) 1| + 11 0y (6) e+ | uy(8) e+ I by () 2+ Nl vy () e X3.47)

leading to
t
f I Ex(s) [I*ds < Cs. (3.48)
0

Multiplying (3.46) by vﬁv , we get

ol et ol <aneor (3.49)

which, combined with (3.48), gives

oy (®) 1+ [ 1y (9) 17 = G, (3.50)
0

By (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.17), (3.19), (3.41), (3.50), and Lemmas
3.1-3.3, and using the embedding theorem, we have

Ity () 124 11 2ty (6) 3+ 1wy (6) 124+ 1wy (6) 3 + 1 bypy () 12+ 11 By (2) 13
t
+ 1 Oy (6) 174 11 By (1) N7~ + / (I thyy I3yt [l Wy e + 1 By I3nee + 11 Oy I3 (3.51)
0

2 2 2 2
1 Opy i + 1ty e + T wyyy g + Ml byyy ”Hl) (s)ds < Cs.

Differentiating (1.2)-(1.5) with respect to ¢, using (3.41) and Lemmas 3.1-3.3, we get

gy (N < Cu Il ua(e) |+ Co(ll g (€) I + 1 by (6) 1| + 11 Oy (2) 1) < Ca, (3.52)

Wy (N < Co [l wee(t) 1| + Cr(ll wey(£) 1| + | by (2) 1) < Ca, (3.53)
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by, (D1 = Co 11 bue(2) | + Co(ll wey(2) 1| + 1| by (1) 1) < Ca, (3.54)

16y () < Co Il O () I + Crlll gy () 1| + [ wiy () 1T + 1l by (6) [l + 1] () II) = Cay (3.55)

which, combined with (3.6), (3.10), (3.14) and (3.19), yields
t

I thyyyy () 1+ 1 Wy (0) 11+ 1 By (1) 11 + 11 By (1) 1l + f (Il gy 17+ 1| wigy 17+ || By I
0
+ 1| Oy 17+ 1 112+ [ w2+ 11 By 12+ 1l Oyppyll?) (s)ds < Cs.

(3.56)

Therefore, it follows from (3.51), (3.56), and the embedding theorem, we obtain

Il tayyy () Nzoe+ I wyyy (6) Moo+ 1| By (£) N+ 1l Gy () Il

t
(3.57)
+/(|I Uypyll oo+ | Wypyllzoe+ [ Byl + 1| Opyliz=)(s)ds < Cs.
0
Differentiating (3.46) with respect to y, we obtain
0 (Vyyy 0
) o

where E;(y, t) = Eq,(y, t) + (fz ) Uy + )Lg[(vw"”).

12

Using the embedding theorem and Lemmas 3.1-3.3, we can conclude
IE2()Il < Cu [l ey () 1| +Ca(ll 6,(8) N+ Il uy(2) s+ 11 by (6) Mo+ Nl vy (2) ll12)- (3.59)

We infer from (3.20)-(3.23) that
t
/(H utt||2+ l th||2+ l btt||2+ l 9tt||2) (s)ds < Cy, (3.60)
0
which, together with Lemma 3.3, gives
t
/(II 12+ 11 Wiy 12+ 1| By 12+ 1| By lI?) (5)ds < Cs. (3.61)
0
Thus, it follows from (3.40), (3.59), (3.61), and Lemmas 3.1-3.3 that
t
[ 15 1Pas < (3.62)
0

Multiplying (3.58) by ", we get
ddt H VYZW (1) H2 +G H vyly,w (1) H2 <G Exo(9) II%, (3.63)

whence by (3.62),

I v (6) 12 + / I vy (s) 12ds < Cs. (3.64)
0
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Differentiating (1.2) with respect to y there times, using Lemmas 3.1-3.3 and Poin-
caré’s inequality, we have

gy ()1 = C3 11 thgyyy(£) |1 +C3 (Il vy (€) s+ W 4y (2) s+ 11 Oy (2) Nis+ 1 By () Nlrs). (3.65)

Thus, we conclude from (1.2), (3.56), (3.61), (3.64), and (3.65) that
t
[ il vy 1) (9 = €. (3.6
0
Similarly, we can deduce from (1.3)-(1.5) that
t
[ b4 01 ) 61 < o (.67)
0
which, along with (3.51) and (3.66), gives
t
/ (I tyy Dzt 1wy I + 1 by g2 + 1 6y [15y2) (s)ds < Cs. (3.68)
0

Finally, using (1.1), (3.50)-(3.56), (3.64), (3.66)-(3.68), and Sobolev’s interpolation
inequality, we can get the desired estimates (3.42)-(3.44).

Proof of Theorem 1.2. By Lemma 2.1, Lemmas 3.1-3.4, and Theorem 1.1, we com-
plete the proof of Theorem 1.2.
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