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Abstract

In this paper, we study the averaging principle for neutral stochastic functional
differential equations (SFDEs) with Poisson random measure. By stochastic inequality,
Burkholder-Davis-Gundy's inequality and Kunita's inequality, we prove that the
solution of the averaged neutral SFDEs with Poisson random measure converges to
that of the standard one in [P sense and also in probability. Some illustrative examples
are presented to demonstrate this theory.
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1 Introduction

Since Krylov and Bogolyubov [1] put forward the averaging principles for dynamical sys-
tems in 1937, the averaging principles have received great attention and many people have
devoted their efforts to the study of averaging principles of nonlinear dynamical systems.
For example, the averaging principles for nonlinear ordinary differential equations (ODEs)
can be found in [2, 3]. For the averaging principles of nonlinear partial differential equa-
tions (PDEs), we refer to [4, 5].

With the developing of stochastic analysis theory, many authors began to study the aver-
aging principle for stochastic differential equations (SDEs). Khasminskii [6] first extended
the averaging theory for ODEs to the case of stochastic differential equations (SDEs) and
studied the averaging principle of SDEs driven by Brownian motion. After that, there grew
an extensive literature on averaging principles for SDEs. Freidlin and Wentzell [7] pro-
vided a mathematically rigorous overview of fundamental stochastic averaging method.
Golec and Ladde [8], Veretennikov [9], Khasminskii and Yin [10], Givon et al. [11] stud-
ied the averaging principle to stochastic differential systems in the sense of mean square
and probability. On the other hand, Stoyanov and Bainov [12], Kolomiets and Melnikov
[13], Givon [14], Xu et al. [15] established the averaging principle for stochastic differential
equations with Lévy jumps. They proved that the solutions of averaged systems converge
to the solutions of original systems in mean square under the Lipschitz conditions.

On the other hand, Yin and Ramachandran [16] studied the asymptotic properties of
stochastic differential delay equation (SDDEs) with wideband noise perturbations. By
adopting the martingale averaging techniques and the method of weak convergence, they
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showed that the underlying process y°(t) converges weakly to a random process x°(t) of
SDDEs as ¢ — 0. Tan and Lei [17] investigated the averaging method for a class of SDDEs
with constant delay. Under non-Lipschitz conditions, they showed the convergence be-
tween the standard form and the averaged form of SDDEs. Furthermore, Xu et al. [18] and
Mao et al. [19] also extended the convergence results [9, 12, 13, 15] to the case of stochastic
functional differential equations (SFDEs) and SDDEs with variable delays, respectively.

SDDEs and SFDEs are well known to model problems from many areas of science and
engineering, the future state of which is determined by the present and past states. In
fact, many stochastic systems not only depend on the present and past states but also in-
volve the derivatives with delays as well as the function itself. In this case, neutral SDDEs
(SFDEs) has been used to described such systems. In the past few years, the theory of neu-
tral SDDEs (SFDEs) has attracted more and more attention (see e.g. [20-25]). However,
to the best of our knowledge, there is no research about using the averaging methods to
obtain the approximate solutions to neutral SDDEs (SFDEs). In order to fill the gap, we
will study the averaging principle of neutral SFDEs with Poisson random measure. By us-
ing the averaging method, we give the averaged form of neutral SFDEs (1) and show that
the pth moment of solution to equation (7) is bounded. Then, applying the stochastic in-
equality, Burkholder-Davis-Gundy’s inequality and Kunita’s inequality, we prove that the
solution of the averaged neutral SFDEs with Poisson random measure (7) converges to
that of the standard one (6) in L? sense and also in probability under the Lipschitz con-
ditions. Meantime, we relax the Lipschitz condition and obtain the averaging principle
for neutral SFDEs with Poisson random measure (1) under non-Lipschitz conditions. It
should be pointed out that the previous works [6, 9, 12-15, 17, 18] on averaging principle
mainly discussed L? strong convergence for stochastic differential equations and they do
not imply L? (p > 2) strong convergence. Moreover, since the neutral term is involved, the
proof of the main results are much more technical. The results obtained of this paper are
a generalization and improvement of some results in [6, 9, 12, 13, 15, 17, 18].

The rest of this paper is organized as follows. In Section 2, we introduce some prelimi-
naries and establish our main results. In Section 3, some lemmas will be given which will
be crucial in the proof of the main results, Theorems 2.2 and 2.4. Section 4 is devoted to

the proof of the main results. Finally, two illustrative examples will be given in Section 5.

2 Averaging principle and main results
Throughout this paper, let (€2, F, P) be a complete probability space equipped with some
filtration (F;);>o satisfying the usual conditions. Here w(t) is an m-dimensional Brow-
nian motion defined on the probability space (2, F, P) adapted to the filtration (F);>o.
Let t > 0, and D([-7,0]; R") denote the family of all right-continuous functions with left-
hand limits ¢ from [-t,0] — R". The space D([-7,0]; R") is assumed to be equipped with
the norm ||@|| = sup_, ., l@(t)|. Dbfo([—t, 0]; R") denotes the family of all almost surely
bounded, Fy-measurable, D([-7,0]; R”) valued random variable & = {£(0) : -7 <6 < 0}.
For any p > 2, let EI}O([—‘E, 0]; R") denote the family of all 7y, measurable, D([-7,0]; R")-
valued random variables ¢ = {¢(0) : -t <6 < 0} such that Esup___,_( [¢(6)IF < co.

Let {p = p(t),t > 0} be a stationary F;-adapted and R"-valued Poisson point process.
Then, for A € B(R" — {0}), 0 ¢ the closure of A, we define the Poisson counting measure
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N associated with p by

N((0, 6] x A) =#{0<s<t,pls) €A} = D La(p(s)),

to<s<t

where # denotes the cardinality of the set {-}. For simplicity, we denote N (¢, A) := N((0, £] x
A). It is well known that there exists a o -finite measure 7 such that

ENGA] =7, P(N(A) = n) = SEETAN@ADT

n!

This measure 7 is called the Lévy measure. Moreover, by Doob-Meyer’s decomposition
theorem, there exists a unique {F;}-adapted martingale N (¢, A) and a unique {F;}-adapted
natural increasing process N(¢,A) such that

N(t,A) =N(t,A) + N, A), ¢>0.

Here N(,A) is called the compensated Poisson random measure and Nt A) = 7 (A)t is
called the compensator. For more details on Poisson point process and Lévy jumps, see
[26-28].

Consider the following neutral SEDEs with Poisson random measure

d[x(t) - D(xt)] =f(t,x,) dt + g(t, %) dw(t) + / h(t,x;, v)N(dt,dv), (1)
z

where x; = {x(t + 6) : —t <0 < 0} is regarded as a D([-7,0]; R")-valued stochastic pro-
cess. f: [0, T] x D([-7,0};R") — R", g: [0, T] x D([-7,0;R") - R™™ and h: [0, T] x
D([-7,0];R") x Z — R"™ are both Borel-measurable functions. The initial condition xy is
defined by

xo=§={£@): -1 <t <0} e L% ([-7,0};R"),

that is, £ is an Fy-measurable D([-7, 0]; R")-valued random variable and E||£|? < oo.
To study the averaging method of equation (1), we need the following assumptions.

Assumption 2.1 Let D(0) = 0 and for all ¢, ¢ € D([-7,0]; R"), there exists a constant k; €
(0,1) such that

|D(¢) = D(¥)| < kollg = ¥I. ()

Assumption 2.2 For all ¢, € D([-7,0];R") and t € [0, T], there exist two positive con-
stants ki, ky such that

lf(t>(p) _f(t> 1;[f)|2 Vv |g(t,¢) —g(t,lﬁ)|2 = k1||90 - ¢||2

and

/Z (6 0,v) = h(t,0,0) [Pr(@v) < kallo =W P, p=2. 3)
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Assumption 2.3 Forall ¢ € D([-7,0]; R") and ¢ € [0, T, there exist two positive constants
k3, k4 such that

IF&, o) Vgt o) <ks(1+ll0]?)

and
/Z (o) (@) < ka(L+ 0l?), p=2. @)

Let C*!([-7, T] x R";R,) denote the family of all nonnegative functions V (¢, x) defined
on [-7,T] x R" which are continuously twice differentiable in x and once differentiable
in ¢. For each V € C?}([-7, T] x R";R,), define an operator LV by

LV (t,x,y) = Vt(t,x - D(y)) + Vi (t,x - D(y))f(t,y)

+ % trace[g" (t,9) Vax (t,x — D())g(t,y)]

+ /Z[V(t,x —D(y) + h(t,3,v)) = V(t,x - D)) |7 (dv), ®)
where
S I L <3V(t,x)m, 3V(t,x)),
ot 0x1 Xy,
Vxx(t,x) = (M) .
dx; 8961‘ nxn

Similar to the proof of [29], we have the following existence result.

Theorem 2.1 If Assumptions 2.1-2.3 hold, equation (1) has a unique solution in the sense
of L?.

Now, we study the averaging principle for neutral SFDEs with Poisson random measure.
Let us consider the standard form of equation (1)

xe(t) = %(0) + D(xe,c) — D(x0) + & / tf (8, %e,5) dis
0

+4/¢ fo g(s,%e,5) dw(s) + /& /0 /Z h(s, x5, V)N (ds, dv), (6)

where the coefficients f, g, and / have the same assumptions as in (3), (4), and ¢ € [0, &]
is a positive small parameter with &y is a fixed number.

Letf(x) :D([-7,0];R") — R", g(x) : D([-7,0]; R") — R and h(x,v) : D([-1,0]; R") x
Z — R" be measurable functions, satisfying Assumptions 2.2 and 2.3. We also assume that
the following condition is satisfied.

Assumption 2.4 For any ¢ € D([-7,0]; R") and p > 2, there exist three positive bounded
functions ¥;(T1), i = 1,2, 3, such that

1 0 -
= /0 F(t,0) ~F@F dt < (T (L + Iol?),
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1 (h
71/0 lg(t, @) —g(e)|” dt < Yo (T (L + llel?),

and
1 rh -
1 / (6, 9, v) — o) [P (dv) it < (T (L + ),
TiJo Jz

where lim7, . ¥:(T1) = 0.
Then we have the averaging form of the standard neutral SFDEs with Poisson random

measure

2(8) = $(0) + D(yo) — Dlyo) + & / T ds + Ve / 30es) dw(s)
0 0
+\/E/0‘ /Zh(y&s,v)N(ds,dv), (7)

where y(0) = x(0), yo = xo.
Obviously, under Assumptions 2.1-2.3, the standard neutral SFDEs with Poisson ran-

dom measure (6) and the averaged one (7) have a unique solutions in L?, respectively.

Now, we present our main results which are used for revealing the relationship between
the processes x.(¢t) and y,(¢).

Theorem 2.2 Let Assumptions 2.1-2.4 hold. For a given arbitrary small number 8, > 0 and
p > 2, thereexist L >0, &1 € (0,e0], and B € (0,1) such that

Elx:(t) -y.@)] <81, Vte[o,Le™], (8)
foralle €(0,e1].
The proof of this theorem will be shown in Section 4.
Remark 2.1 In particular, when p = 2, we see that the solution of the averaged neutral
SFDEs with Poisson random measure converges to that of the standard one in second

moment.

With Theorem 2.2, it is easy to show the convergence in probability between the pro-

cesses x,(t) and y(z).

Corollary 2.1 Let Assumptions 2.1-2.4 hold. For a given arbitrary small number §; > 0,
there exists €5 € [0, &¢] such that for all ¢ € (0, &3], we have

lim P( sup |x8(t) —ys(t)| > 52) =0,
e>0 0<t§Ls‘ﬂ

where L and B are defined by Theorem 2.2.
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Proof By Theorem 2.2 and the Chebyshev inequality, for any given number &, > 0, we can

obtain
1 cLe™#
P swp [x@® -] >5) = E( s |x-y0) <=5
0<t<Le=P & NocrsLe s &
Let ¢ — 0, and the required result follows. O

Next, we extend the averaging principle for neutral SFDEs with Poisson random measure
to the case of non-Lipschitz condition.

Assumption 2.5 Let k(-), p(-) be two concave nondecreasing functions from R, to R,
-1

such that k(0) = p(0) = 0 and f0+ W du = oco. For all ¢, ¥ € D([-7,0];R"), t € [0, T],

and p > 2, then

[f(t,o) —f(& )| V gt 0) — gt v)| <k(lle - vlI),

1 9)
|:/Z|h(t,(/),l/)—h(t,lﬂ,V)|p7T(dV)i| Sp(||</’—1/f||)

Remark 2.2 As we know, the existence and uniqueness of solution for NSFDEs under the
above assumptions were proved by Bao and Hou [30], Ren and Xia [31] and Wei and Cai
[32]. If k(u) = p(u) = Lu, then Assumption 2.5 reduces to the Lipschitz conditions (3). In
other words, Assumption 2.5 is much weaker than Assumption 2.2.

Theorem 2.3 If Assumptions 2.1 and 2.5 hold, then there exists a unique solution to equa-
tion (1) in the sense of L?.

Proof The proof is similar to Ren and Xia [31] and Wei and Cai [32], and we thus omit
here. O

Theorem 2.4 Let Assumptions 2.1, 2.4, and 2.5 hold. For a given arbitrary small number
83 > 0, there exist L > 0, e3 € (0,&9], and B € (0,1) such that

Elx.(®) -y <85, Vee[o,Le7], (10)
forall e €(0,¢&5].
Proof The proof of this theorem will be shown in Section 4. d

Similarly, with Theorem 2.4, we can show that the convergence in probability of the
standard solution of equation (6) and averaged solution of equation (7).

Corollary 2.2 Let Assumptions 2.1, 2.4, and 2.5 hold. For a given arbitrary small number
84 > 0, there exists g4 € [0, 0] such that for all € € (0, 4], we have

lim P( sup  |x: () — y:(8)| > 54) =0,
£20 Nogr<re-B

where L and B are defined by Theorem 2.4.
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Remark 2.3 Ifjump term /1 = h = 0, then equation (1) and (36) will become neutral SFDEs
(SDDEs) which have been investigated by [21-25]. Under our assumptions, we can show
that the solution of the averaged neutral SFDEs (SDDEs) converges to that of the standard
one in pth moment and in probability.

Remark 2.4 If the neutral term D(-) = 0 and D() = 0, then equation (1) and (36) will
reduce to SFDEs (SDDEs) with jumps which have been studied by [18, 19]. Hence, the
corresponding results in [18, 19] are generalized and improved.

3 Some useful lemmas
In order to prove our main results, we need to introduce the following lemmas.

Lemma 3.1 Letp >1and a,b € R". Then, for € >0,
1y bl?
la + bl < [1 +eprd ]p 1<|zz|p + u)
€

Lemma 3.2 Letp >2anda,b>0. Then, fore >0,

ep-1 1 ep-2 1
b < w )a” + -1, a2h? < @ )a” +—
p per” p pe' T

Lemma 3.3 Letp>2anda,be R". Then, forany é € (0,1),

|d|p |b|}7
2
|ﬂ+b| —< (1_8)p—1 + 8}7—1.

Lemma 3.4 Let ¢ : R, X Z — R" and assume that

t
/f‘¢(S,V)‘pn(dv)ds<w, p>2.
0 Jz

Then there exists D, > 0 such that

t
(][ oo

p
2

19) < Dp{E(/OM/Z|¢(S,V)|2JT(dv)ds)

¢ »
+E/O /;|¢(s,v)| n(dv)ds}.

The proof of Lemma 3.1 and Lemma 3.2 can be found in [33], the proof of Lemma 3.4
can be found in [26, 28] and the proof of Lemma 3.3 can be obtained from Lemma 3.1 by
%. The following lemma shows that if the initial data are in L” (p > 2) then
the solution of averaged neutral SFDEs with Poisson random measure will be in L?.

putting € =

Lemma 3.5 Let Assumptions 2.1 and 2.3 hold. If the initial data & € EI}O([—I, 0]; R") for
some p > 2, then for any t > 0, the unique solution y.(t) of equation (7) has the property
that

E sup |y:(9)]" <C, (11)

—T<s<t

~ = LT
where C = [(1+ C)E||€|1? + ﬁﬂe(”@)’? .
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Proof By the Ito formula to V (¢, y.(t) — D(ye,)) = |ye(t) — D(ye,¢)|P, we obtain
’ye(t) _D(ys,t)‘p
= [y:(0) - D(yo)|" + /0 LV (ye(8), YerrS) ds
+ P«/E/ }ya (S) - D(,)’S,s) |p—2 [ys (S) - D(,YS,S)]TE()/S,S) dW(S)
0

t 2 p
+ /0 A{ |y8(5) _D(ys,s) + \/Eh()/gys, V)’

— [7(8) = D(ye) [P }N (ds, du), (12)
where

LV(x,9,0) = pe|x— D) " *[x - D»)] )
plp-1
2

+ /Z[‘x—D(y) +eh(y,v)[" - |x - D)[" ] (dv).

+

) elx— DO

Taking the expectation on both sides of (12), one gets

E Sup |96 () = D(ye)[”

=s=t

S
< E sup |y:(0) - D(yo)|” + Eosupt / pelye(0) = Dy, [~
<s<tJO

0<s<t

% [7:(0) = Do) ] fe) do

+E sup/p(p_l)s|y£(o)—D(y5,0)|p_2|g(yw)|2do
0

0<s<t 2

+E sup /0 PV (@) = Do) [1e(0) = D)) 20 dlo)

0<s<t

+E sup /0 /Z {(19:(0) = DOes) + VEhe0r )

0<s<t

~ |ye(0) = Dye,o) | |N(do, du)

4
= E sup [y:(0) - Do) + > I (13)
¢ i=1

0=<s<

By Lemma 3.1 and Assumption 2.1, we get

£ sup - 06w’ <1+ 1 (Ino + 22

0<s<t €1

1 143 p
<[1+e) 1<|y5(0)|" + 70”310” >
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Letting €; = 1071,

E sup |y:(0) - D(yo)|” = A + ko E|&]IP. (14)

0<s<t

Recalling Lemma 3.2, there exists a €5 > 0 such that

L < pSEL [62(1;_ D b’s(s) - D(ys,s)’p + pja—l b?(ym)‘p:| ds
2
Teyp-1) 1 -
< peE /0 [ 2 p (1 + ko) [[yes 1P + e lf(ys,s)!"} ds. (15)

By Assumption 2.3 and the basic inequality, we get

F e P < (2k3) % (1 + [1ye,117). (16)

Letting €; = ‘/%, it follows from (15) and (16) that

1+ko

t
I < pey/Zhy (L + ko) 'E f (L+ llyesl1?) . 1)
0

By Lemma 3.2 and Assumption 2.3, we obtain

<D t[#mw O |g(ys,s)|”] ds

2 G
-1 . [Tel-2) (2k3)%
< 1}9(1!02 {.;E/ [ 3(p (1Lt ko) yesll? + o (1+ 1y 17) | ds.
0 p £
bpes
Letting €3 = (132)2,
t
L= (p-1D’ek+ ko) E f (L+ llyesl?) ds. 18)
0

For the estimation of I5: by the Burkholder-Davis-Gundy’s inequality, there exists a posi-

tive constant C, such that

1
t o b
I < ﬁcpE[ / [ye(5) = DO (20| ds} :
0
Further, by the Young inequality and Assumption 2.3, we deduce that

1
I; < iE sup [y (s) = D(es)|”
0

<s<t

t
+eCoks(1+ ko)’ °E /0 (1 + 11yes?) ds. (19)



Mao and Mao Advances in Difference Equations (2016) 2016:77 Page 10 of 18

Finally, we will estimate 1. Note N(dt,dv) = N(dt,dv) + 7(dv) dt and N(dt,dv) is a mar-
tingale, one has

L<E /0 fz [[9:(5) = DOes) + a0 VI = |ye(s) = Dlyos)|P ] (dv) ds.

By the mean value theorem, we obtain

Iy < pE /0 fz [[5:(5) = DOes) + Ox/eh (e s )" | ER(ess V)| ] (dv) dis,

where || < 1. This, together with the basic inequality |a + b[P™* < 2772(|a|P™! + |b|PY),
implies that

Iy <pCE /0 /Z [ye(s) = Do) |~ [Vehyesv)| + [ Veh(ye o v)| |7 (dv) ds.

By Lemma 3.2, Assumptions 2.1 and 2.3, it follows that

L < pCl(ka +7(2) (1 + ko) VE + kan/E"]E /0 (1 el ds. (20)

Combining (14), (17)-(20), we obtain

t
E sup |e(s) = Dlye) |/ <201 + koVEIE I +2C / E(L+ lyesll?”) ds,

0<s<t to

where

C=[(p-1)*+ Clleks(1 + ko)’ + pe/2ks (1 + ko)™
+ pC[ (ks + (2)) (1 + ko) Ve + ka/E"].

On the other hand, by Lemma 3.1, we have

» ko » ) )
EoiiEJ”“)' = o ElEl + (l_ko)pEtos;ls};ﬂyg(s) D(ye) )

Zerpep s ¢ 7, 2 /tEn 1°d
S,
= Ak -kt "

where C = o 20k

Tho t Tk Consequently,

. 2C 2C t
E su ()7 < (1+ CE|E|” + T+ /E su (0)[F) ds.
—rSsp§t|y G < EIE (I-koy  (L—ko)¥ Jy <—r§£§s|y ©)| )

Therefore, we apply the Gronwall inequality to get

E sup |y.(0) < [(1+C)E||sn”+

—T<s<t

(1 k )p T] e(liz‘kco)p T'
— Ko

The proof is complete. d



Mao and Mao Advances in Difference Equations (2016) 2016:77 Page 11 of 18

4 Proof of main results

Proof of Theorem 2.2 By Lemma 3.3, it follows that

|x8(t) _ys(t)|p = |xs(t) —ye(t) - [D(xa,t) - D(yg,t)] + [D(xa,t) - D(ya,t)] |p
_ 1xe(®) =96 (®) = [Dlxe.r) = DOe)]1”

- (1-38)1
+ [D(xc,c) — D(ye,e) I ) (1)
sp-1
Letting 8 = ko and taking the expectation on both sides of (21), we have
Esupg;<,, [%:(8) = ye(£) = [D(xe,.) = D(ye, )11
E £) - y:(t))P < == ' '
Sup e () = y: (O < 1 kopl
+ koE sup |x€(t) —9:(t) ’p.
0<t<u
Consequently,
Esu <<uxst_£t—ng, -D e, I3
E sup [x.(6) -y, ()] < Po<<u %6 (£) = ye(£) = [D(%e,) = D(ye, )] , 22)

0<t<u (1 - k())p

where kg € (0,1). Next, we will estimate E sup,,, % (£) — y¢(£) = [D(x¢ 1) — D(ye )] ¥ . From
(6) and (7), we have

xe(2) — ye(£) - [D(xa,t) - D(yg,t)]

= y e —f £,8 d.
s[o[f(sx,) SFes)] ds
- / (805, %e.) — 2(ye)] dwls)
0

+\/5/(; /;[h(s,xm, V) = h(ye,s, v) [N (ds, dv).

Using the elementary inequality |a + b + c|? < 377 !(|a|? + |b|? + |c|P), it follows that for any
uecl0,T],

E sup ixé‘(t) —ye(t) — [D(xe,t) _D(ye,t)] |p
0<t<u
»
< 3P71ePE sup
0<t<u

fo [F(5,%00) — F )] ds

»
e
+3771¢2E sup

0<t<u

/(; [g(s, xa,s) - E()/g,s)] dW(S)

»
e
+377'2E sup

0<t<u

=h+)+/s (23)

‘/t/[h(s,xs,s, V)—it(yw,v)]N(ds,dv)
0 Jz
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By the Holder inequality, we get

]1 S 3p718pup*1E/‘ V(S’xs,s) _]?(ys,s)|p dS.
0

By Lemma 3.1 and Assumption 2.2, it follows that for any €4 > 0
R 3w E [ |65, ~f(6300 +£6.900 - F 0. ds
0

=t — “ kp £,8 — J&Ss » -
< 3p—18pup—l[l + ef—l ]P IE/ (\/_1 ”x 5 Je, ” + V(Syys,s) _f(ye,s)|p) ds.
0

€4
. p—1
Letting €4 = Vki~

u
i <3P el (1 + \/k_l)p/ E sup |x8(a)—y5(0)|pds
0

0<o<s
1 [* -
+ 3p718pup(1 + \/E)pE; / [f(s,y.g,s) _f(ys,s)|p ds.
0

Then Assumption 2.4 implies that

L=< 3p’18pup’1(1+\/k_1)p/ E sup |x8(0)—y5(a)|pds
0

0<o<s

#3706 (Lo k)P (14 E sup [y,4]17)- 24)

0<t<u

For the second term J, of (23): by the Burkholder-Davis-Gundy inequality, there exists a
C, > 0 such that

: :
b < SP'lsgcpE</ |g(s%e.) — 30| dS)
0
< SP’lsngug’lEf |g(s,xgvs) —g(ym)\" ds.
0
Similar to J;, we get

R =3 Gu e VY [ E sup (o) - o) ds
0

0<o<s

+ 3165 Gt (L4 VI Y20 (14 E sup [yedl?)- (25)
0<t<u
Since N(dt, dv) = N(dt,dv) + 7 (dv) dt and using the basic inequality |a + b|? < 2771(|al? +
|b|?), we have
P

3 < 6P 15 E sup

0<t<u

/t / [h(S, Xe s V) - /jl()/g,s, V)]N(ds, dV)
0 JZ

» »
+6/1e2E sup

0<t<u

/ t / [1(5,%e,5 V) = B(Ye,5 V) |70 (dv) dis
0 JZ

6P e (L + Ly). (26)
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By Lemma 3.4, there exists a D), such that

L SDP{E( / ’ / Vz(s,x&s,v)—iz(ye,s,v)|2n(dv)ds>7
0 VA
“ I p
+E/0 /;|h(s,x8,s,v) h(ys’s,v)i n(dv)ds}. (27)

By Assumptions 2.2 and 2.4, we have

u o ;
([ [ s 200

< E(Zkz / e = osI2dis
0

P

1 [ - p

+2u— / / |h(s,ym,v)-h(yg,s,v)|2n(dv)ds)
UJo Jz

u 2
< E[2kz/ 1%e,s = 551> ds + 2uipa(u) (1 + ||ys,s||2)] . (28)
0

Using the basic inequality and the Holder inequality, we obtain

" o :
E(/O _/Z|h(s’ Keusr V) - h(ys,s; V)| ﬂ(dV) ds)

P

u p)
53151{15[2/@ / ||xE,s_ys,s|2ds] + [2u3(u) ]
0

(S
[SS]

+ [ZMWB(M)] E“ys,snp}

<3t ekt [ s [0 o]
0

0<o<s

oS
(SIS

+ [2uv3()]? + [2unfrs(u)] E||yg,s||"}. (29)

Similar to the estimation of J;, we derive that
E / / |h(s, %e,5, V) = By, V)| 70 (dV) dis
0 Jz
u u _
<+ k)E / Ve — Yo P ds + (1+ ko) E / f 14, Yo V) — o) [P ) di
0 0 Jz

< (1+k2)/uE sup |x5(o)—ys(g)|1’ds
0

0<o<s

+ 1+ ky)urs(u) <1 +E sup ||y€,t||”). (30)

0<t<u

On the other hand, using the Holder inequality, it follows that

t p-1 t
ngEsup{(f ds) (/
0<t<u 0 0

< [un(Z)]p_lEAu/Z|h(s,xg,s, V) = h(Yesr v)|" 7 (dv) ds

f [1(s, %5, v) = B(ye,5v) e (dv)
Z

)}
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<1+ k)[ur (@) [ / ‘E sup |x.(0) - y:(o)|" ds
0

0<o<s

+ utrs () (1 +E sup ||y5,t||l’)}. 31)

0<t=<u

Hence, substituting (29)-(31) into (26), we get

i+ kz)(Dp + (un(Z))pil)]

[SaS]

p
url

X /ME sup |xg(o) —ys(o)|pds+ 6"_16177[Dp3!21_1(2uw3(u))
0

0<o<s

+ (1 + k) (Dy + (urr (2)) s ()] (1 +E sup ||y€,t||1”>, 32)

0<t=<u

Combining with (24), (25), and (32),

E sup |x(t) - ye(£) - [D(xe.r) = D]

0<t<u

< CISE/ sup |x8(o)—y£(a)|p dt+C28M(1 +E sup |y8(t)|p), (33)
0

0<o<t —T<t<u

where C; = 37711 + k)P (e? P! + elzl‘leu%"l) + 6p’18§‘1[Dp3121‘1(2k2)§u12’7'1 + 1+
ka)(Dy + (urr (Z)P)], Cy = 37711+ VR (62 1y () + €57 Gty () + 6716571 x
[D,,S%’1(2141//3(u))%ul%’2 + (1 + ko)(Dp + (um(Z))P)3(u)]. Hence Assumption 2.4 and
Lemma 3.5 imply that

E sup ixs(t) _ys(t) - [D(xs,t) _D(YS,t)] |p

0<t<u

<G [ £ sup |nlo)-y.(o) de
0

O0<o<t

+ Creu(l + C). (34)

Inserting (34) into (22),

C18 “
E ) —y. O < E (o) —ye (o) dt
Jup [+ (®) -3 (0) —(1—/(0)17/0 p [5:(2) =5.(0)]

Creu(1+C)
(1 -ko)?

Finally, by the Gronwall inequality, we have

Creu(l +C) Qe
- e

E sup ‘xf(t) _ys(t)|p < (ko)

0<t<u (1 - ko)”

Choose 8 € (0,1) and L > 0 such that for every ¢ € [0,Le™#] C [0, T},

E sup |x.(t)-y.)| <cLe'?,
tel0,Le~F]
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191 1-p
_ G0 Tiople .
where ¢ = We“ 0 . Consequently, given any number §;, we can choose ¢; €

[0, &0] such that for each ¢ € [0,¢;] and for ¢ € [0, Le7#],

E sup |x5(t)—y£(t)|p§81.
te[0,Le~F]

The proof is complete. d

Proof of Theorem 2.4 The key technique to prove this theorem is already presented in the
proof of Theorem 2.2, so we here only highlight some parts which need to be modified.
By Assumption 2.5, J; of (23) should become

]1 f 3p718pup*12p*1E/ (kp(”xa,s _ys,s”) + V(S:ys,s) __/;(ys,s)}p) dS.
0

In fact, since the function k(-) is concave and increasing, there must exist a positive number
¢, such that

k”(|x|) < cp(l + |x|"), forall p > 2.

Hence,

< cng,/ (1 +E sup |x8(s)—y8(s)|p) ds +c,Csu
0

0<t<u

+uCs ) (1+E sup [yedl?), (35)

0<t<u

where C3 = 371ePyP~127, Similarly, J, and /5 can be estimated as J;. Finally, all of required
assertions can be obtained in the same way as the proof of Theorem 2.2. The proof is
therefore completed. O

5 Examples
Example 5.1 Consider the following neutral stochastic differential delay equations:

d[x(t) - D(x(t - t))] =]~’(t,x(t),x(t - ‘L’)) dt +§(t,x(t),x(t - r)) dw(t)

+ / h(t,x(8),%(t - 7), v)N(dt, dv), (36)
Z

where 7 > 0 is a constant delay and the coefficients of equation (36) satisfy Assump-
tions 2.1-2.3. Obviously, if we define

Dig)=D(p(-0)),  f(t.9) =] (t:¢(0),(-7),
and
g(tr §0) =§(t,(/)(0), (p(_f))) h(t) QO,V) = il(tr 90(0): w(_f)’ V)r

then equation (36) will become equation (1). It is naturally seen that equation (36) has
a unique solution in the sense of L. Meanwhile, similar to (6) and (7), we can get the
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standard form of equation (36)
%2(6) = x(0) + Dt - 7)) - D(x(=1)) + /0 5,0 (5) 505 - 7)) ds
- /0 o(5.2:(6) (s — 7)) dwls)
v e fo /Z (s, x.(5), %o (5 — 7), V) N(ds, dv), (37)

and the averaging form of equation (36)
70)=3(0) + Dy (e 0) = DO-0) + [ FOr6yels- ) ds
+E / F(e(),3(s = 7)) dw(s)
0

+\/§A /Zh(yg(s),yg(s—r),v)N(ds,dv). (38)

Similar to the proof of Theorem 2.2 and Corollary 2.1, we can show the convergence of the
standard solution of equation (37) and the averaged one of equation (38) in pth moment
and in probability.

Example 5.2 Let N(¢) be a scalar Poisson processes. Consider neutral SFDEs with Poisson
processes of the form

d[x:(t) = D(%e,0)]| = &f (&, %) dt + \/eh(t, %.,0) AN (), (39)
with initial data x. 9 = xg = £(£), when —t <t < 0. Here
D(x) = 0.1x, f(t,x) = cos® tx,

and

0, ifx=0,
h(t,x) = p(x) = § cx(loga™)%, if0<x<3§,
cS(logs™b)*, ifx>4,

where a < %, ¢>0,and § € (0,1) is sufficiently small. Let

- 1 T 1
Fonr) =~ / Pty de = Sy,
T Jo 2
and
_ 1 /7
e = f (e, ye) dt = p(ye).
0

Hence, we have the corresponding averaged equation

dlye() = 0.1e.] = Seyesds + VER(ye) AN, (40)
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Clearly, the coefficient p(-) does not satisfy the Lipschitz condition. It is a concave nonde-
creasing continuous function on [0, co] with p(0) = 0 and

1 1 1 1
/ Zde:——z —dx:——Z/ ——d(logx)
o+ p2(x) c Jo+ xlogx c? Jo+ logx

1 1
=——l 1 ‘ = ) f =
2 og |logx| o =00 e 5

dve gy [ e [
/(;+ p*(x) e ,/0+ x(~log x)2 tTa /0+ (—logx)2 (~logx)

1 1 1
=———(~logx
2 2a+1 £

)—2a+1

=00, ifa<-.
+ 2

Therefore, it follows that Assumption 2.5 is satisfied. Consequently, by Theorem 2.4 and
Corollary 2.2, we see that the solutions of averaged equation (40) will converge to that of
the standard equation (39) in the sense of L? and probability.
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