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Abstract: This paper concerns with the Cauchy problem for two classes of nonlinear hyperbolic
equations with double damping terms. Firstly, by virtue of the Fourier transform method, we prove
that the Cauchy problem of a class of high order nonlinear hyperbolic equation admits a global smooth
solution u(x,t) € C((0,T]; H*(R)) N C(0,T1]; H*(R)) N CY([0,T]; H'(R)) as long as initial value
uy € WHI(R) N H3*(R), u; € L'(R) N H'(R). Moreover, we give the sufficient conditions on the blow-
up of the solution of a nonlinear damped hyperbolic equation with the initial value conditions in finite
time and an example.
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1. Introduction

In 1997, Banks et al. [1] established a class of nonlinear damped hyperbolic equation

Wy + Ayw + Asw, + N g(Nw) = £(2), (1.1)
w(0) = @, wi(0) = ¢1. (1.2)

As a model it describes the motion of a neo-Hooken elastomer rod with internal damping, where A,w;,
is the exact form of the internal dynamic damping mechanisms in elastomers, A, A,, N and f satisfy
certain assumptions.

When A; = A, = & N = —(;—1, Equation (1.1) becomes

_aXZ’

Uy — Uyx — Uxxy = g(ux)x + f (13)
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The model is well known and it is been described the dynamical longitudinal vibrations of an neo-
Hooken material rod, and there have been many researches on the global existence and blow-up of
solutions for Equation (1.3) (see [2, 3]).

When A; = 644,A = —;—;,N = —%,f = 0, Equation (1.1) becomes

Upp — Uyt + Upyxx = g(ux)x- (14)

Equation (1.4) describes the propagation of the wave in the medium with the dispersion effect, and it
is connected with the equations in [4]-[10]. In [11], Yang et al. proved the well-posedness of Cauchy
problem for the nonlinear beam system (1.4). When g(s) = s",n > 2, they proved the global existence
of smooth solutions as long as initial data ¢ € L>(R) () H*(R), ¥ € L'(R) (N L*(R). In [12], Chen et al.
considered Equation (1.4) with different initial boundary conditions. They proved the existence and
uniqueness of the global generalized solutions and the global classical solutions with Galerkin method.

When A = A, = &N = Equation (1.1) becomes

{).XA, 62’

Up + Usxxx + Uxxxr = g(uxx)xx + f (15)

Equation (1.5) models the vibration of a nonlinear damped beam with fixed boundary, taking account
of the internal material damping. Banks et al. [13] established the existence and uniqueness of the
global weak solutions to the initial boundary value problem of Equation (1.5). Later, Ackleh et al. [14]
studied such system (1.5) to find the existence of weak solutions of the mixed problem in a bounded
domain. In [15], Chen et al. gived the sufficient conditions of blow-up result for a nonlinear damped
hyperbolic equation. Further generalizations are also given in [16]-[19] and the references therein.

When A = & Ay = N = f =0, Equation (1.1) becomes

64’ 8x2+6x4’ aZa

U — Uyxe + Uxxxx + Uxxxxt = g(uxx)xx’ X € Q’ > O (16)

Recently, Yu et al. [20] established the existence and nonexistence of the global weak solutions to the
initial boundary value problem of a nonlinear beam equation with double damping terms (1.6)
provded that

—Colé* - C3 < G(€) = fg(r)dT < %(l —elEP+C,0<e<1 (1.7)
0

1g(&)] < Cilél + Ca, g'(€) 2 0,Y€ €R. (1.8)

Obviously, conditions (1.7) and (1.8) imply that the growth order of the nonlinear term g(s) is not more
than 1. The reason for the strong assumptions (1.7) and (1.8) lie in that it is very difficult to dominate
the effect of the nonlinear term g(um)xx by standard a priori estimate technology.

When A = - 4,A = ax2 + 6x4’N = - f 0, Equation (1.1) becomes
Uy — kluxxt t Uyyxx T Ugxxxr = g(ux)x’ xeR, t>0, (19)
l/l(.x, O) = I/IO(X), M;(.X, 0) = l/ll(X), BAS Ra (110)
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where u(x, t) denotes the unknown function, k; is a positive constant. g(s) is a given nonlinear function,
Uy denotes the strong material damping and u,,, represents the internal dynamic damping.

As far as we know, there is little research on analysis of Equation (1.9) with material damping
and internal dynamic damping at the same time. In this case, what happens to the existence and
nonexistence of global solution to the problem (1.9)-(1.10) remain open.

Y i _ & 8 _ _ _ . .
Wl}en Al =g+ 3mA =32+t N=—35.f= 0. If g(s) = s", where n > 2 is an integer,
Equation (1.1) becomes
Uy — kluxxt + Usyxx T Ugxxxr + 61214)68 = (uZ)xa X € Ra r> O, (111)

where a’u,s is a “good” regular term. Obviously, g(s) is monotone if and only if n is an odd number.
For this kind of g, does problem (1.11), (1.10) have any global solutions for initial data belonging to
suitably chosen functional spaces? On the other hand, if g(s) is not monotone and g’(s) is not bounded
below, say g(s) = s*" (where m > 1 is an integer), does the initial value problem (1.11), (1.10) have
any global solutions? The question is interesting and open.

This paper is organized as follows. In Section 2, the main results are stated. In Section 3, we
prove the existence of global smooth solutions for the Cauchy problem (1.11), (1.10) by the Fourier
transform method. In Section 4, using the modified concavity method, the sufficient conditions of
blow-up of the solution for the Cauchy problem (1.9)—(1.10) will be given and we give an example to
examine Theorem 2.3.

2. Statement of main results

For problem (1.9)—(1.10), we have the following theorem.

Theorem 2.1. Suppose that g € C*(R), |g(s)| < K,|s|9, |g’(s)| < Ky|s|97! etc., where g > 2 is natural
number and K, K, are positive constants. If uy € H*(R) and u, € H*(R), then there is a T, > 0 and
the Cauchy problem (1.9)—(1.10) admits a local generalized solution u(x,t) in [0,T] X R.

This theorem can be proven by the method in [17], we can prove that the periodic boundary value
problem admits a local generalized solution by Galerkin method and the compactness theorem. Then
using the sequence of the periodic boundary value problem, we can obtain that the Cauchy problem
(1.9)-(1.10) has a local generalized solution. Now, we state our main results as follows
Theorem 2.2. Suppose that uy € WH'(R) N\ H>*(R),u; € L'R) YH'(R). If a # 0, then for any T > 0,
Cauchy problem (1.11), (1.10) admits a global smooth solution u(x,t) € C=((0,T]; H*(R))N
C([0,T]; H*(R) N C'([0, T]; H'(R)).

Remark 2.1. Theorem 2.2 shows that when excitations occur in the subspace (W*'(R)N
HR)X(L'R) N H'(R))c H*(R)xH ' (R), the orbits of the related dynamical system globally exist
in the phase space H*(R)xH '(R).
Theorem 2.3. Suppose that uy € H*(R), u; € L*(R), G(uo,) € L'(R) and there exists a constant y > 0
such that

sg(s) < 2(1 + 2y)G(s), s € R, (2.1)

where G(s) = fos g(n)dr.
Then the solution u(x,t) of the Cauchy problem (1.9)—(1.10) blows up in finite time if one of the
following conditions holds true:
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() E(0) <Oy
oo 2 2
(i) E(0) = 0, 2(ug, u1) > Lluoudl” + ki lttoulI");
1
(iii) E0) > 0, (ug, 1) > [E(O)(HMOH + Tokulluodll” + Tolluowl)],
where E(0) = luil" + luox:ll” + 2 f, G(uoy)dx.

3. Existence of the global smooth solutions for the Cauchy problem (1.11), (1.10)

In this section, we establish the existence result for the Cauchy problem (1.11), (1.10) under initial
value uy € WHR) N H*R), u; € L'R) H'(R).

We use the following abbreviations: || - ||, = || - [lx®)(1 < p < +00) denotes usual L” norm,
Il -1l = Il - |2y denotes the L?-inner product, and equip the Sobolev space H/(R) with the norm

Nl = ( f (1+1EP) 1/ @) Pdé)*,
R
for each real number /, where (&) = F[f(x)] = \/#27 fR f(x)e"**dx. And we equip the space

f

WHR) = {f € L(R)l -~ e L'®R),i=1,....4)

with the norm

il = Z H HU

Taking the sequences {u (’)} {u(l"-)};?‘;1 in C§’(R) such that

=1

(0))

)]
Ilot

)

— up||ya1 + ||u —upllgz = 0, [lu}” —wyllpr = 0 as j— oo. 3.1

Using the properties of Fourier transform derivative, we obtain

(1 + €M@ — )&l < Clluy” = ugllyss — 0 as j — oo, (3.2)
@) = )(E) < Cl” — gl — 0 as j— oo, (3.3)

uniformly on € € R, where C denotes positive constant. Hence
(1 + 1M @) < Co, 12O < Cré €R, (3.4)

where and in the sequel C;(i = 0, 1, - - - ) denotes positive constants independent of j and &.
Let u©(x, 1) € C*((0, T]; C*(R)) be the solution of the following linear problem

Lu® =4 - ki@ + 0+ u® 4+ azu(o) +b0*u® =0, xeR, t>0, (3.5)

Xxt XXxxt

u(x,0) = u"(x), u”(x,0) = " (x), x€eR, (3.6)
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where u(x), u”(x) € C(R), u(x,1)(j = 1,2,...) be the solution of the following nonlinear problem
Lu? = [y, + DPu™D, xeR, >0, (3.7)
uP(x,0) = ul(x), " (x,0) = u(x), x€eR, (3.8)

where a*(4 — k?) = 1 and ky < 2, um = £,

Taking the Fourier transform of (3.7)-(3.8), it follows that
A& D + (e + ENPE D + (@ + & + V&, 1)
= iEF[W)'1E 0 + bPalvVE, ), (3.9)
2,0) = @), 2V (€,0) = aY(¢), xeR.

Therefore,
i, 1) :e%“lfz*f“)’[(cosw(f)rf %(klé + Y™ @) sinw@nag €) .10
+ W™ @) sinw@)t - 1 (€)| + &, 1) + BE D),
where w(©) = [(4a> - DE¥ - 2k &8 + (4 — ket +4b%] ", and
a(é, 1) = iEw (&) f e 2 REENDE (DY (€, 7Y sinw(€)(t — T)dT, (3.11)
0
B 1) = b (¢) f 29D, T)e 1 hEHENT i@t — T)d T (3.12)
0
In order to prove Theorem 2.2, we can prove the following lemma.
Lemma 3.1. Forany T > 0,
109, 1) < CH(j)(s;)e—k%\flt,O <t<T,j=0,1,..., (3.13)

where HV(¢) = |ﬁéj)(§)| +(1+ 52)‘2|ﬁ(1j)(§)| + (1 + [EY7!, C denotes positive constant depending only
onT.
Proof. From (3.4), it follows that

A+&H T <HY@O <1 +&eH L eeR. (3.14)

Now, we prove (3.13) by induction method on j. When j = 0, a(¢, 1) = B(¢,1) = 0, and

e 3REHEN S k—0) o o Tl (3.15)

%(klfz +EHTIE) < C, C5(1 + &Y < w(E) < Cu(1 + &Y. (3.16)

From (3.14)—(3.16), it follows that (3.13) is valid.
Assume that (3.13) is valid for 0 < j < j;. In order to prove that (3.13) holds true for j = j; + 1, we
first prove
F LYY D] < Ce ¥ 1 e [0, T, (3.17)

AIMS Mathematics Volume 3, Issue 2, 322-342



327

In fact, when n = 2, noting that |£ — 77| + || > |£|, we have
j— A(j— — 62 %
1@ ol = 1@ ol < ClERY @)l < € f—d <C, (3.18)
VN < O | i)
together with (3.13)(j < j;) and Holder inequality, implies that

IF L) 1E
1 ) .
= =@y« a0
Var (3.19)
4 i— i—
< Ce ¥ =mH0E = | [nH V@)
< Ce ¥ 1 e0,T],
where and in the sequel * denotes convolution. Assume that (3.17) holds true for n < n;, which implies
@y 0| = |F 1@y ¢, )| < oo, € [0, T1. When n = ny + 1, noting that

f [nHY (p)|dn < € f I —dn < C, (3.20)
R r1+7
from (3.13)(j < j1), (3.17)(n < ny) and (3.20), we obtain

71w ~D)"1(E, 1)l

: \% @D+ FIS Y1)
T

< ce e f lnHY"D(ldn
R

Ky
< Ce 2¥ te10,T].

(3.21)

Therefore, (3.17) holds true.
By (3.11), (3.12), (3.13)(j < j1), (3.14) and (3.17), we see that

(€, 1) < [Elw™ (&) f e 2 MEHENDIE (=D& 1) de
0
< Clelw™ (€I (&, 1).

BE DI < PP (O + Y IE ), (3.23)

(3.22)

where

L sant S G L))
J(f, [) = f e_§§4(f—7)—7\§|7d7_ < { — aE |§:| > fO
’ L, €1 < &o

Taking &, large enough such that

2
. e <G K=&
e (1 +latg, 0l < { k
1
eOTET < C, [l < &
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2
kl weewm < ¢ k260
2l + EHBE | < { .
eOT(1+£)7'T < C, El < &

Thus, we obtain ’
(&, 1) < Ce™HEHD @), 1 € [0, T], (3.24)
BE, D] < Ce TEHI@E), 1 € [0, T). (3.25)

Applying (3.16), (3.24)—(3.25) to estimate (3.10) yields (3.13). This completes the proof.
Differentiating (3.10) with respect to ¢, it follows that

" 1 |
Gt ED =[50 + 0™ o) + 80| ©)
+ W™ (O D ()

+iéw™ (&) fo 6,1 — DTG OYIE e (3.26)
+Pw™(@) fo et~ D E DT+ Ry(ED),
where
ha(€,1) = 2720 sinw(é)r) = lﬁl CL-1[La& + 9] e e
W"(@)sin|w@)(t - 5],

gu(€.1) = Z(e 30 Encosuw(En),

Ri(&,1) = 0, Ra(&, 1) = 0™ @M€, 0)(ieF 1w ™"Y"1(&, 1) + 20V, 1),

Ru(€.1) = W™ (hyt (6. 0)(iF (VY 1E 1) + DA D(E, 1) + ’;’zf LRy 1(E,1)).
Lemma 3.2. Forany§:0<6 < T,
‘37’:@0)(5, t)‘ < A1 + &Y' HO@e e 1 e [5,T,m=0,1, ..., (3.27)

where and in the sequel A denotes positive constants depending only on 6,m and T.
Proof. when m = 0, (3.13) implies (3.27). Assume that (3.27) holds true for m < m;. In the following
we prove that (3.27) holds true for m = m; + 1. Now, we need the facts

[ i
%T[(u;f—“)"](g, z)‘ <Al +&He ¥ te[6,T],1=0,1,....,m—-2. (3.28)
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In fact, when n = 2, by (3.27)(m < m;) we obtain

O PIE | < ch f L T N s T

< Z C/A fR I€ = nl(1 + (& - n)4)se—k71|§—nltH(j—1)(§ — ) (3.29)
s=0

k .
pl(L+ 7Y T HI D ().
Noting that

(i) When || < 2|£|, we have |£ — n| < 3|£|, and
L+ E-nHA+nH <C1+&Y.

(i1)) When |n| > 2|¢|, we have |¢€ — n| > |£], and

e (L + (€ =)L+
< Ce ML+ (1 + £
< Cri(1 + &Y
<Al +&Y, telsT).

Substituting above inequalities into (3.29) and using Holder inequality, we obtain

& ,
|5 P L 16|

! 2% .
sy [o [ Jemnae-piye e
5=0 -2/¢] R-[-21¢1,21¢1]

HUD(E =) - Inl(1 -+ )~ $ W HO™ Gy

! (3.30)
< DA+ e ¥ [l H e - H

s=0

l

IA

CIAQ + &Y 24 ig i ¢ = ) lmE )

s=0

AL+ EYe 38 1 e[6,T1=0,1,... . m—2.

IA

Assume that (3.28) holds true for n < n;, when n = n; + 1, from (3.28)(n < ny), (3.27)(m < my), it
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follows that

b4 :
i (-
| L

al
- ‘_¢ (uu—l)) - (uGDy!

mj o 6D S E |

<|% Z €=t Ve - mn- 16y

<Zc~‘ [[ee - - nn- 26y ol

<ZCSA [le-n+ @-mtyetemae -y

(1 + e iy
<A+ e P e (6T, 1=0,1,...,m—2.
Therefore, (3.28) holds true.
From (3.27)(m < m;) and (3.28), it follows that

|hi(€, D] + |gi(€, 1)
< C(1 + &g e e
<C(+&e o 1e10,T),i=0,1,...,m=2.
m—2

8 m—2
<C(1+ ™ @) if ST +

< Ae” (1 + £l @)1 + HU V(@)
< Ae" (1 4 Y HOE), 1€ [6,T).

m—2
‘ orm=2 A, t)')

Similarly,

R (&, z)' < Ae"HE( £ Y HO@), 1€ [6,T], s=1,2,...,m=3,

Ru(€,0] < €L+ Y 0™ @(EF 10y 1E D] + 297 1)
m=2 al
+ Y| Rui€0)
=1

< Ce (1 1+ £y @) (el + HI V(@)
+ Ce (1 + £y )
< Ae"HE(1 1 Y HO(E), 1 € [6,T].
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Therefore, (3.27) holds true.
Proof of Theorem 2.2.
For any ¢ : 0 < § < T, we can extract a subsequence from {1}, still denoted by {u}, such that

U = win C™([6,T]; H(R)) as j — oo, (3.36)

where j and / are positive integers. Moreover, u satisfies Equation (1.11) for # > 0.
In fact, from Lemma 3.1 and Lemma 3.2, it deduce that

[P0, = f (1 + &1V )P dé
R
<C f (1 + &)le ™Mbl (g (&)Y de (3.37)
R
<cr? f (HY(&)dé < My, t€[6,T),
R
9" o alP NIt YN
|5mucn),, = fRu &g 0| d
<A f (1 -+ + &Hme ¥ (HD £))dg (3.38)
R

< Ap20m) f(H(j)(f))zdf <M, telo,T],
R

where M, and M, are positive constants depending on 9, 7,/ and 6, T, [, m, respectively. Using Arzela
theorem, from (3.37)—(3.38) we arrive at (3.36) holds true.

Letting j — oo in Equation (3.7), by the arbitrariness of 6, we obtain that u satisfies Equation (1.11)
fort > 0.

Now we will prove

u? = uin C([0,T]; H*(R)) N C'([0, T]; H'(R)) as j — oo, (3.39)
namely,
u(x, 0) = up(x) in H(R), u,(x,0) = u;(x) in H'(R).
In fact, we extract two subsequences from {ugj)} and {u(lj)}, respectively, we can still denote {ugj)} and
('}, from (3.1), it follows that
" = ug ™| e + [t = 16" < 27 Mt = P < 27 (3.40)

Furthermore, we obtain

sup [, 1) — 2" "€, 0| < C2"I(HV© + H (@) + V@), (3.41)
0<t<T
where . _ ' ' _
G(¢) = [a @) - o " ©) + (1 + 2P - 2y V@)
2-J 2-J
ST+& " U+oy (3.42)
< 12:;4 <2 THOE).
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Now, we will prove (3.41) holds true by induction method. Indeed, when j = 1, by (3.13) we see that

sup [, 1) - 2l (&, 0| < C(HDE) + HO©)),

0<t<T

that is , (3.41) holds true.
Assume that (3.41) holds true for j < j;. When j = j; + 1, we deduce from (3.10) that

a(j)(g’ f) — ﬁ(j—l)(é;, t)|
f
< Ce—%(k|§2+§4)lG(j)(é:) + |é:|w—1(é:)f0v e—%(k1§2+§4)(l—T)Pj(§’ )dt

f
1
R [t
0

a0 - 19 Dldr,

where

P&, 1) = |FL@{™")"] = Flw )]

We claim that

sup P;(&,1) <2'7IC.

0<t<T

In fact, when n = 2, we have

1 2 1
212 G-D ()2 70 ) 2 1-j n 2 1-j
IGYD(m)Pdn)’ <2 f—d < 2'-ic.
(fR” i) (. )

From (3.41)(j < j1), (3.13) and Holder inequality , it deduce that

sup P;(&,1)

0<t<T

= sup (é:a(j—l) * fft(j_l) _ fft(j_z) * fﬁ(j_z))(f, 1)
0<t<T
= sup f n@"™Y = 22w, ) - (€ = )@YV + 2P E -, 1)dn
0<t<T R
< f 22 (HI + HO2) ) + GIDGp] - I — nl(HI™ + B2 — nydn
R
<2'5ic.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Assume that (3.46) holds true for n < n;. When n = n; + 1, we deduce from (3.41)(j < j;), (3.13),
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(3.17) and (3.46)(n < n;) that

sup P;(&,1)

0<t<T

= sup |(€a07 + FIYY ™ - €92« FIWY )T DE )|
0<t<T

< sup [E@YD = au Py FL@Vy
0<t<T

+ €092 (F WUV = F@d 2y D )|
R

+ G Vaplan +277C [ g~ e - iy
R
<27,

that is, (3.46) holds true.
It follows from (3.41)(j < ji), (3.44)-(3.46) that

a9(.0) - a9V 1)
< Gj(f) + Ca)_l(f)[zl_jm + b2(22_j(H(j_l)(§)
+ HI™2(©) + GY(&)] - &, 1),

where

t s
Q.1 = f e 0 gr < { 2(15—4)’ €] > &
’ f, € < &

By (3.42)—(3.50), we have
Elw™ (O0E 1 < C(1+ &N < CHV(@),

Vo (OHVO0E N < CA+ &Y < CHY (),
w ' EGCUO0E ) < 2'VHVE),1 € [0,T].
Substituting (3.51)—(3.53) into (3.50) yields (3.41).
It follows from (3.41)—(3.42) and (3.14) that

D 1y — 4D
B

= sup [|(1+&)2 @ - 2y, 0)

0<t<T

<279C]|a + HHVE) + HIV@) + |1+ )26 @)|

<25ic.

Hence, we can write {#'} is a Cauchy sequence in C([0, T]; H*(R)) and this implies that

u? = uin C([0,T); H}(R)) as j — .

AIMS Mathematics

(3.49)

(3.50)

(3.51)

(3.52)
(3.53)

(3.54)

Volume 3, Issue 2, 322-342



334

Similarly, by (3.51)—(3.53), we obtain
&0 -~ )

!
sca+é$wﬁwﬂwﬁﬂ+mm%a£eﬂ“%W”E@ﬂw

!
+ R0 f e 1hEHENTD 0 & 1) — fUD(E T dr
0 ] (3.55)

< C1+&H[6V@) + ™ @)(2'Iel
+ X(QTHIDE) + HI2(€) + GI@)) 0 1)
< C(1+EH[GVE) + 21 /(HYV () + HUD(é)].1 € [0, T

Furthermore " D)
sup [ C.0) = u "),
0<t<T

= sup [|(1+&)72@) - a7 ")

0<t<T

< Clla+&yP6P@)| + 27 + &7 HVE + HUV @)
S CICL+EYPA +EHT+ 21 + €A +EH7|
<2-ic.

(3.56)

Hence, we can write {uﬁj)} is a Cauchy sequence in C([0, T']; H"'(R)) and this implies that
u” = u, in C([0,T]; H'(R)) as j — co.

Thus, u is a solution of problem (1.11), (1.10). This completes the proof of Theorem 2.2.
4. Nonexistence of the solution for the Cauchy problem (1.9)-(1.10)

To obtain the blow-up result of the solution to the Cauchy problem (1.9)—(1.10), we introduce the
following lemma.
Lemma 4.1. ([8])Suppose that a positive, twice-differentiable function 6(t) satisfies the inequality

0" (H0(t) — (1 + )8 (1) > =2C,0' (1)8(t) — C,6%(1), t > 0,

where y > 0 and Cy, C, > 0 are constants.

(HIfC, =C, =0,6(0) > 0 and 8 (0) > O, then there exists t; € (0, f;('—?)m] such that 6(t) tends to infinity
ast — 1.

Q) IfC; + C, > 0,0(0) > 0 and '(0) > —y,y~'0(0), then there exists t; > 0 such that 6(t) tends to
infinity as t — t;, where t, is bounded above by

1 60 &' (0
1 21600) +76/(0)

6(0 0’0
2 Je2+yc, 72O O)
with y; = =Cy + {/CT +yCs and y, = =Cy — |C} +yC..

Proof of Theorem 2.3.
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Suppose that the maximal time of existence of the solution of the Cauchy problem (1.9)—(1.10) is
infinite. The energy functional for the problem (1.9) can be defined as

E@®) =l I + llun O + 2k f llu (D dr
0 4.1)

!
+2 f (DI PdT + 2 f G(u,)dx.
0 R

From (4.1) and (1.9), it follows that
d d !
EEU) = E[Iluz(t)ll2 + (DI + 2K, fo (DI PdT

2 t xxt 2 2f X
+ fo lu(@IPdr+2 | G )dx| 42)

=2 f(uttut t Uyyxxly — kl UpxtUy + Uxxxlly — g(ux)xut)dx
R

=0.

Integration of (4.2) from O to ¢ leads to
E(t) = E(0). 4.3)

We now define
! !
¢(0) = [l + ky f llux(DlPdT + f i (7)|*dT
0 0
+ ki (To = Dllutoxl* + (To = Dlluoull® + Bt + 10)%,
where 8 > 0, T and 1, are positive real numbers to be given later. Hence,

¢'(1) =2 fR u(@u(0)dx + ky lu (DI + N OIF = kllueon (1)1

= letoxx (DI + 2B(t + 19)
' (4.4)
:2[fu(t)ut(t)dx+k1f fux(r)ux,(r)dxdr
R 0 R
+ f f (Dl (D)dxdT + Bt + 10) .
0 R

Then we have

¢ (1)
= 2[llu(r)I* + f w(u(D)dx + ki f (Dt (1)dx + f (Dt (1) x + B (4.5)
R R R

= 2[ DI = e DI = (gut,), 1) + B]-
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From (4.4), we can write

c/’)'(t)2 :4[ j;& u(Hu,(t)dx + k; j; j}; U (Du(t)dxdr + j(; L U (D (T)dxdT

2
+ B(t + to)]
< 4[llu@ Il )| + (&, fo ey (DIPd7)” (Ko fo e ()| Pd7)* (4.6)
+( fo o (DIPd)” fo lute(PYIP)" + BB+ 10)]
< 40|l I + Ky fo e ()] PdT + fo ()P + B
Now, from (4.4)—(4.6), we can obtain that
¢ (1) — (1 +7)¢' (1)
= 26(0)[ Il (D) = e (DI - fR e ()uy(t)dx +B| = (1 + )¢/ (1)
> 20(0)| s (DI = eI - f u)u(D)dx + B 4.7)
R

=21+ V) (|l OIP + Ky fo (D) PdT + fo it (DIPdT + )|
> 26(0 (1),

where

Y(t) = =l (DI - ng(ux(t))ux(t)dx — Qy + Dl +B)

; 4.8)
-2(1+7y) f kil (O + e (DI)d.
0
From (4.8) and (1.9), it deduces that
d
W(f) =-2 f uxx(t)uxxt(t)dx - fg(ux(t))ux(t)dx
R dr Jx
=2(1 +2y) f (Dt (Odx = 2(1 + Y) kil O + (DI
R (4.9)

-2 gux(D)u(Ndx +2(1 + 2y) fg(ux(t))uxt(t)dx
dr Jg R

+ 4y f Ut (D1t ()X + 29t (DI + 2kl (DI
R
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Integrating (4.9) from O to # and making use of the assumption (2.1),

Y(n) = ¢(0) + f 8(uox)uoxdx — f gux(O)u(r)dx

R R
+2(1 +2y) f Gu,())dx —2(1 + Zy)fG(u()x)dx
R R

+ 27/||uxx(t)||2 - 27||u0xx”2

(4.10)
> w0+ [ stuuods = 201+2y) [ Gl = 2yl
R R
> ~(1 +29)(ltosal® + llar P + 2 f Gluo)dx + )
R
> —(1+2y)(E0) + ).
Combining this inequality with (4.7), we obtain
¢"(P(1) — (1 + )¢’ (1) = =2(1 + 2y)(E(0) + B)p(0). (4.11)
We consider three different cases on the sign of the initial energy E(0):
(1) If E(0) < 0, we choose 8 = —E(0)(> 0). Then it follows from (4.11) that
¢" (P = (1 + )¢ (1)* = 0. (4.12)
We take t; in a such way that
1
2(uo, uy) + 2P1o > ;(”MOMH2 + kyllutox ),
then ¢(0) > 0, ¢’(0) > 0. We choose T, such that
2, B2
lluoll™ + B, <7,
27[ fR uo(X)uy (x)dx +,3f0] = N0l * = K lluao, 12
. . #(0) _ lluol*+ki Tolluo | +Tolluoxl*+B13
According to Lemma 4.1 (1), there exists #;, where 0 < #; < ok e % such that

¢(t) > 0ast—t]

1.e.
! !
lu@)I* + ky f llu (DIPdr + f e (D)PdT — 0 ast — 1.
0 0

This is a contradiction with the fact that the maximal time of the existence of the solution is infinite.
(2) If E(0) = 0, we choose 8 = 0 Then (4.11) becomes

¢"(Np(1) = (1 +7)¢'(1)* 2 0. (4.13)
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We take T, such that

o .
2y] [, oo (0] = el P = ki llutol

By considering the assumption (ii), we obtain ¢(0) > 0, ¢’(0) > 0. Then according to Lemma 4.1 (1),

: #0)  _ |lugll+ky Tollugxl*+Tolluo.ll®
<
there exists t, where 0 < 153 ) o & 200ty ()] , such that

H(t) > c0ast —t,

i.e.
! !
lu@)|* + k f lu (DIPdr + f U (DIPdr —> o ast — 1.
0 0

This is a contradiction with the fact that the maximal time of the existence of the solution is infinite.
(3) If E(0) > 0, we choose 8 = 0, then (4.11) becomes

¢" (1) = (1 + )¢ (1) = =2(1 + 2)E(0)¢(1). (4.14)

We now define the auxiliary function J(¢) as follows:

J(@) = =977 (1). (4.15)

Now, we compute
J (1) =y ()¢ (0). (4.16)

and

J'(1) = =y(y + D@72 0)F' (1) + y¢ 7 (04" (1)
= 77206 (1) = (1 +7)¢ (1] (4.17)
> =2y(1 + 2)E0)¢ 7' (1)
By considering the assumption (iii), we deduce
J(0) = y¢77'(0)¢'(0) > 0.
It follows the continuity of J’(7) that

J() >0 (4.18)

for some interval near t = 0. Let t* > 0 be a maximal time (possibly #* = 7)) when (4.18) holds on
[0, 7*). Multiplying (4.17) by 2J’(t), we obtain

d 2
—[70] 2 ~4y@y + DEO$™ 07 ()
= —4y’2y + DEQ0)¢ 7> ()¢ (1) (4.19)

= 4y2E(0)dit[¢—27—1(t)], Vi e [0,1)

AIMS Mathematics Volume 3, Issue 2, 322-342



339

Integrating (4.19) over [0, #), we obtain

J@P 2 JO) +47°EO)¢™ (1) = 47 E0)¢ 7 (0)

> J'(0)* = 4y*E(0)¢™71(0). (420
From the assumption (iii), we obtain
J'(0)* — 4¥*E0)¢>71(0) > 0.
Hence, making use of the continuity of J'(¢), we obtain
J(6)2 70y - 4)/2E(0)¢_27_1(O)]%, Vi € [0, ). (4.21)
By repeating the procedure, ¢* is extended to 7', hence (4.21) holds for all # > 0. Thus
J(t) 2 J(0) + [J'(0)* - 472E(0)¢‘27‘1(0)]%t, vt > 0. (4.22)

We choose T such that
-J(0)

- < T.
|70 = 42 E0)¢>-1(0)|°

Then there exists a finite positive number 3, such that J(13) = 0and0 < t; < T* = =) -.
[J7(0)2—4y2 E(0)¢=2-1(0)] 2

Thus, ¢() — oo as t — t;. This is a contradiction with the fact that the maximal time of the existence
of the solution is infinite. The theorem is proved.

Example 4.1. For the Cauchy problem (1.9)—(1.10), we take specific functions g(s), uy(x) and u;(x)
satisfying the conditions of Theorem 2.3. We first discuss:

(I) The case E(0) < 0. To this end, We take up(x) = u;(x) = e and g(s) = kys, obviously,
up(x) € H*R), u;(x) € L*(R), g(0) = 0, G(upy) € L'(R), sg(s) = kos* and (1 + 2y)G(s) =
%(1 + 2y)ks*. Thus when y = %, g(s) satisfies assumption (2.1) of the Theorem 2.3. After some
simple calculation, it implies |luol® = uil* = /Z. lluoul?® = 35, [ Gluo)dx = 3% v/, we
choose k, = —100, then

600
E0) = urll” + lluosell” +2 f Glup,)dx = 4 \ﬁ - — . (4.23)
R 2 32
Hence, we see from (4.23) that E(0) < 0, then the conditions of Theorem 2.3 are satisfied. Hence
there exists a #; < % such that ¢(f) —> coast — 1].

(II) The case E(0) = 0. We take uo(x) = e, uy(x) = 5¢ and g(s) = kas’, then ug(x) € HX(R),
ui(x) € L*(R), G(up,) € L'(R), when y = 3, g(s) satisfies assumption (2.1) of the Theorem
2.3, and from above relations that [luol* = /5. luill* = 25/, o> = /5. luondl* = 34/5,

fR G(uoy)dx = % vmand when k; = 1,k; = —%85, we obtain

EQO0) = || + ltonl[ +2 f Gluo,)dx = 25 \/g +3 \/g _ 08 \/g —0, (424
R
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1 m
2(ug, uy) — ;(||M0xx||2 + k1||M0x||2) =2 \/; > 0. (4.25)

Then the conditions of Theorem 2.3 are satisfied. Hence there exists a 1, < 2O gych that

y¢'(0)
¢(t) > 0ast— 1.
(III) The case E(0) > 0. Now we take uo(x) = e—xz, uy(x) = e and g(s) = 52, then uy(x) € HAR),
ui(x) € L*A(R), G(uopy) € L'(R), when y = g(s) satisfies assumption (2.1) of the Theorem 2.3.
We can obtain |luoll* = [l |I* = /3, ||u0xx||2 33, | uoudx =

ﬂm—wﬁ+wmm+{famwx

4 T 2.2 | ¥e¥ax=4 /T 0.
\[ f dx = \ﬁ>o

Taking T, small enough such that

(4.26)

1
(o, ur) > [ EQO)Iluoll” + Tollutoull” + Tollutouall )]

Then the conditions of Theorem 2.3 are satisfied. Hence there exists a finite positive number 3,

such that J(13) = 0and 0 <13 < T* = /O r. Thus, ¢(1) > ccast — 1.
[J7(0)>~4y2 E(0)¢=2-1(0)]2 i

5. Discussion

It is well known that Equation (1.11) describes the motion of the elastomer rod with internal
damping. In the process of high speed movement, by the impact on damping characteristic and
external excitation, the state of the elastomer rod is complicated and unpredictable at the initial
velocity. Considering this situation, we choose initial data belonging to more general functional space
uy € WH(R) N H3*(R), u; € L'(R) N H~'(R). By using the L;—based spaces instead of L,—based ones,
which are completely different from those used in [11], [18], we can still obtain the global smooth
solution in the generalized space. In this paper, we just consider the problems in 1-dimensional space,
but in high-dimensional space, do both Equation (1.9) and Equation (1.11) have and global solutions
to the Cauchy problem or the initial boundary value problem? The question is interesting and opening.
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