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1 Introduction
In this paper, we consider the global existence of non-negative classical solutions to the

following diffusion predator-prey system with Holling type II functional response:

ur = A(dyu + o u?) + au(l - %) - ﬁ’;’r”n‘;, xeQ,t>0,

Ve = Adov + ag uv + agpV?) —rv + ff;”y:;, xeQ,t>0, w1
ulx,t) =9, v(x,t) =0, x€dQ,t>0,

Lt(x, 0) = uo(x) > 0, V(x7 0) = Vo(x) = 0, xe€ Q:

where 2 is a bounded region in R” (# > 1) with a smooth boundary 9€2; » is the outward
normal on 92, 9, = 3/9n; uo(x) and vo(x) are non-negative smooth functions and are not
identically zero; u and v denote the population densities of predator and prey, respectively;
«, B, r, a, K, m and c are positive constants, and m € (0,1]; d; and d, are the diffusion
rates of the two species; oy (i,j = 1,2) are given non-negative constants, oy; and oy, are
self-diffusion rates; a9 is the cross-diffusion rate. It means that the diffusion is from one
species of high-density areas to the other species of low-density areas. See [1, 2] for more
details on the ecological backgrounds of this system.

Obviously, the non-negative equilibrium solutions of system (1.1) are (K, 0) and (u-, v+) =
( r acKm(cf—ar)—acr
m(cB—ar)’ ~ Km?(cp—ar)?
1,2), the global attraction, persistence and stability of non-negative equilibrium solutions

). For the reaction-diffusion problem of system (1.1), i.e., ot;; = 0 (i =

are studied in [3]. The main result can be summarized as follows:

(1) Ifm< m, a semi-trivial solution (K, 0) is globally asymptotically stable;
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2) If o 2F—<m< + =

K(cB-ar) — K(cﬁr—ar) Ka
(u+,v-) is globally asymptotically stable;

cp
(3) If K(c/;—ar) <m< I((c;f;—ar) + Ka(cB-ar,

locally asymptotically stable.

and ¢f > ar, a unique positive constant solution

) and ¢ > ar, a positive constant solution(u-, v+) is

In view of the study of dynamic behavior of a predator-prey reaction-diffusion system
with Holling type II functional response, a natural problem is what the global behavior for
a predator-prey cross-diffusion system (1.1) is. To the best of our knowledge, the existing
results are very few. In this paper, we consider the space dimension to be less than six, and
initial function u,(x) and vo(x) under some smooth conditions, using the energy estimate,
Sobolev embedding theorem and bootstrap arguments, we consider the global existence
of non-negative classical solutions for system (1.1).

We denote Q7 = Q2 x (0,T). u € W;'I(QT) means that u, iy, tyy (4,j =1,...,1) and u;

. T 1 1
are in LY(Qr). lullrar) = [fy (Jq lulx, )P dx)? de4. ||ullvyop) = Supo<i<7 lu(, E)ll120) +
IVull 2o

2 Auxiliary results
Lemma 2.1 Let (u,v) be the solution of (1.1). There exists a positive constant My(> 1) such
that

0 <u<M,, 0<v, Vt>0. (2.1)

Proof Firstly, the existence of local solutions for system (1.1) is given in [4—6]. Roughly
speaking, if ug,vp € WI}(Q), p > 1, there exists the maximum T < +oo such that system
(1.1) admits a unique non-negative solution

u,ve C([0,T), W, () N C((0, T), C¥()). (2.2)

If

sup{ Hu(-,t) ”w}j(sz)’ v(-, 1) ”W}?(Q) :0<t< T} < 00,

then T = +o0.

Choose My = max{K, ||ugllz=(q)}. By use of the maximum principle, the non-negative
solution of system (1.1) can be derived from the maximum principle, i.e., u#,v > 0 for all
t > 0. This completes the proof of Lemma 2.1. O

Lemma 2.2 Let X = (d; + onu)u, u € L*°(Qr) for the solution to the following equation:

, (1) e x(0,T),

u Bmuv
K

Uy = A[(d1 + oznu)u] + ozu<1 - —
1+ amu

u=0, (x1t)edx(0,7T),

u(x,0)=uo(x) >0, xeQ,

where d,, a1y are positive constants and 0 < u € L*>(Qr). Then there exists a positive con-
stant C(T), depending on ||uo|| wi() and ||ug|| oo (), such that

IXIly210,) = C(T). (2.3)
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Furthermore,

2(n+2)

VX e VQ(QT), Vuel = (QT) (24)

Proof From X = (d; + an1u)u, it is easy to find that

Xt = (dl + 2auu)AX + C1 — CQV, (25)

where C; = dijau + 2o — d‘%)uz - 2“1%“143 and C, = lerZu (dy + 20q11). C; and C, are

bounded in Q7 from (2.1). Multiplying (2.5) by —AX and integrating by parts over Q;
yields

1 1
_/|VX(x,t)|2dx——/|VX(x,O)|2dx+d1/ |AX|? dx de
2 Q 2 Q Q

5/ |C1 + Cov||AX | dx dt. (2.6)
Qr

Using the Holder inequality and Young inequality to estimate the right-hand side of (2.6),

we have

1C1+ Covll2op 1 AX NI 2(qp < ma(L+ IVl 12¢00) 1 AX | 12¢07)

2 2
< niy (1 +M3) dl

L T ax)?
<=7 S IAXI,

Qr)

with some #1; > 0. Substituting (2.7) into (2.6), we obtain

0<t<T

sup /|VX(x,t)|2dx+d1/ |AX|? dxdt < my,
Q Qt

where m, depends on ||u0||W21(Q) and |ug Lo (q). So, we know VX € V5(Qr). Since X €

L*(Qr), it follows from the elliptic regularity estimate [7, Lemma 2.3] that
/ Xy |* drdt <m,  ij=1,...,m.
Qr

From (2.5), we have X, € L2(Q7). Hence, || X|| W2 (Qr) < C(T). Moreover, (2.4) can be ob-
tained by use of the Sobolev embedding theorem. O

Lemma 2.3 Assume that w € Wlf’l(QT) N C*Y(Q x [0, T)) is a bounded function satisfying
wy <a(x,t,w)Aw +f(x,t) inQr

with the boundary condition 3* < 0 on dq,, where f € L*(Qr). Then VW is in L*?(Qr).

The proof of the above lemma can be found in [8, Proposition 2.1].

The following result can be derived from Lemma 2.3 and Lemma 2.4 of [9].
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Lemma2.4 Letp>1,p=2+ n(p+1 f

sup ||W|| 2 + IVl 2qp < 00,
0<t<T “1(Q)

and there exist positive constants B € (0,1) and Cr such that fQ [w(-,8)|? dx < Cr (VE < T),
there exists a positive constant M', independent of w but possibly depending on n, Q, p, B
and Cr, such that

n(p+1
Wl » §M/[1 + ( sup |w(@)| ) ||Vw|| }
LP(Qr) OSé’T” ||er1 @ 12(Qr

Finally, one proposes some standard embedding results which are important to obtain

the L and C***!*% (Q;) normal estimates of the solution for (1.1).
Lemma 2.5 There exists a constant C3(T) such that ||Vu| ;4(Qr) < C3(T).

Proof Let § = ou1/dy, X = (1 + Su)u. By Lemma 2.1, 4 is bounded. Therefore, X is also
bounded. By Lemma 2.2, we have X € W;"'(Qr). Moreover, X satisfies

Xy <di(1+28u)AX + au(l + 28u)

= /@ + 48 X AX + au(l + 28u).

By Lemma 2.3 with p = 2, a(x, t,£) = \/di + 48d1&, f (x, t) = au(x, £)(1 + 28u(x, ), we obtain
the desired result. O

Lemma 2.6 Let Q@ C R" be a fixed bounded domain and 9Q C C?. Then for all u €
W;’I(QT) with q > 1, one has

1) ||Vu||Lp(QT) < C”u”W;’l(QT)’ Vi<p< ;VI:ZZ 4, qg<n+2;

(2) IVullrop) < Clletlly2i1(qpy VI <p <00, g =1 +2;

B) 1Vl w3 ) = Clltll g2y V1 = lSa<lg>n+2,

where C is a positive constant dependent on q, n, 2, T.

3 The existence of classical solutions
The main result about the global existence of non-negative classical solutions for the cross-

diffusion system (1.1) is given as follows.

Theorem 3.1 Assume that uy > 0 and vy > 0 satisfy homogeneous Neumann boundary
conditions and belong to C***(Q) for some « € (0,1). Then system (1.1) has a unique non-

negative solution (u,v) € CHol* 5 (Q x [0, 00)) if the space dimension is n < 5.

Proof When n =1, the proofis similar to the methods of [10-12]. So, we just give the proof
of Theorem 3.1 for n = 2,3,4,5. The proof is divided into three parts.

(i) L'-, L?*-estimate and L7-estimate for v.
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Firstly, integrating the first equation of (1.1) over 2, we have

d
—/udx:/u a—ﬂ— prmv dxf/audx—g/uzdx
dt Q Q K 1+ amu Q K Q
o 2
§a/udx——<f udx) .
Q K|\ Ja

Thus, for all £ > 0, we can obtain

/ udx < Mj,
Q

where M} = max{K ||, [, uo dx}.
Furthermore,

T
Nl < / M de 2 M. (3.1)
0

Secondly, linear combination of the second and first equations of (1.1) and integrating

over £ yields

d
—/(cu+v)dx=c/ audx—ﬂ/uzdx—rf vdx

2
5c(r+a)/udx— o </ udx) —r/(cu+v)dx
Q K2 \Ja Q

<cr+oa)M;—r | (cu+v)dx.

Q
So, we get
M.
/ (cu+v)dx < max{ %,/ (cuo(x) + vo(x)) dx} £ M,, Vt>0. (3.2)
Q r Q
Further,
T
Wlian = [ M;de 2. (33)
0

Then multiplying both sides of the second equation of system (1.1) by v and integrating
over €2, we obtain

1d uv?
——/ vdx = —/ VvV[d2V+a21uv+a22v2]dx—r/ Vzdx+cm,3/ dx
2 dt Q Q Q Q 1+ amu

c
5—012/ |Vv|2dx—ot21/ VVvVudx—2a22/ vIVv|2dx+—'B/ V2 dx.
Q Q Q a Jo

Integrating the above expression in [0,1] yields

/ V2 (x, £) dx — / v%(x) de+2 | (do +omu + 2000v) | V]2 dxde + r/ v dxdt
Q Q Q:

t

< —20(21/ Vu-v -Vvdxdt + @/ v dxdt. (3.4)
t a t
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Estimating the first term on the right-hand side of (3.4),

‘/ Vu-v~Vvdxdt‘ = ’ Vu-v% -Vv-v% dxdt|
Qt Qt

1
< 81/ vIVu|? dxdt + — v |Vy|2dxdt
Q: 4e, Q:

1
< 82/ Vdedt + — |Vu|* dx dt
Q dey Q

1
+— [ v-|Vv|?dxdt. (3.5)
481 Q;

Substituting (3.5) into (3.4) yields

fvz(x,t)dx—/ V%(x)dx+2f(d2+a21u+2a22v)|Vv|2dxdt+r/ v dxde
Q Q Q Q

C
< <20[2182 + —ﬂ) / v dxdt + ﬂ/ |Vu|* dedt + il v|Vv|2 dxde. (3.6)
a Qt 289 Qt 26, Q:

Select &1 > 8“21 and denote Cy = 4y, — “A . Notice the positive equilibrium point of (1.1)

exists under condition ¢ > ar, then

f Vi(x, t) dx + 2d V2 dedt + 2001 || 4] oo |Vv|? dxdt+C4/ v|Vy2dade
Q Qt

Qt Qt

/Vo(x)dx+ (2a2182—r+—'3)/ Vdadt + [Vu|* dxdt. (3.7)
Q Q 2 Q

By Lemma 2.5, ||Vu|;4(Qr) < C5(T). Integrating the above inequality and using the

Gronwall inequality, we get

sup/vzdx§C(T).
Q

0<t<T

Hence, there exists a positive constant M} such that [, v* dx < Mj. Furthermore, we

have

T
IVllz2op) 5/ My de £ Ms. (3.8)
0

Secondly, multiplying both sides of the second equation of system (1.1) by gv?™ (g > 1)

and integrating over 2, we have

_/qu < q 1)d2/|v % | da _8q(Z+i))2Ole/‘|v q+1 i de

cBmu
—q(q—l)ot21/ vq_IVu~Vvdx+q/ vq<—r+ P )dx
Q Q 1+amu
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Integrating the above equation over [0,¢] (¢ < T), it is clear that

/vq(x,t)dmM V() [* daede + “22/ V()| dede
Q q Q

S/Vg(x)dx—q(q—l)am/ vIIVy - Vydeds + iq/ vidxdt. (3.9)
Q t

t

By Lemma 2.2, it can be found that Vu € L% (QT) According to the Holder inequality

and Young inequality, we get

—-q(q - 1)0621/ VIIVy - Vydxde
t

< 2g(g - Daxn
- qg+1

/ v%__lV(v%ﬂ) -Vudxdt
Qt

2q(q - e e z
<y v ||Ln+2<QT>HV( Ve iz @)

+1 | MHLM(QT)
1 -1
=G ”V( T ”L2 Qr) ”VqT L+2(Qr)
C & 1 C. q-1
V) i * 5 1V Livany (3.10)

Ge  Sqlq-Dozy . Substituting (3.10) into (3.9)

Choose an approprlate number ¢ satisfying == < @7

and taking v=v &3 , we have

2
/ Pl (x,O)de + | |V dede
Q Qt

1 ch q 1
5/%w+ wnmmz Pyt
Q ST (@ @ LT (Qp)

2q 11 2_q1
+ -1 g+

<c4<1+||v|| A 7 L ) (3.11)
Lol Qp  Lit@n)

Let

2
E= sup/w—fl(x,t)dm/ V|2 dx dt.
Q

0<t<T Qr

From (3.11), we know

2(q-1

2q
E<C(141Fl $hpey  +I7175, ).

(g=1)(n+2) 29
L q“ (Qr) L1 (Qr)

(g-1)(n+2) _ 4q
d7<q_2+n(—.80,

When g < 2% it s easy to find that L <2<qan Py

n2-a’

_ 2(q+11) 2+q
E=Cs(L+ 17,00+ 171/a, ). (312)

Page 7 of 11
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Set B = = €(0,1). It follows from the L'(§2)-estimate for v that

,1
17015 = ( / v, t)|‘“dx) —||v||m <M}, Vt<T.

By Lemma 2.4 and (3.12), we know

2 2(q—11)
+l -1 q q+
[1+ (M M sup ESES ||Vv||L"2(QT))
Lq* ()
4q 2q1
+ (M/ + M sup (., q*”‘f v || )q* ]
L7 )
2 4g-1) 2g-1)
+ n(g+1) - R L
= Go 1+ (sup [5,0] ™ )T IV g,) @
0<t<T (Q)
T\ -
RERU I T
0<t<T La+l Q)
M) 2g-)  _4g
< Co(1+E™aDi E@D7 + En G £ 7). (3.13)
Obv1ously, q+1 + (2q(+1 €(0,1) and —L— q+1 7+ (q+1)q € (0,1). It is easy to know that E is
bounded by use of reductlon to absurdity. Since g < "(”*A‘), (q+21)q €, "”)) So, 171l 1aqp)
is bounded, i.e., ver" (QT) Denote (q” 4 still as g. So,
2(m+1
veLi(Qr), Vqce <1, ( 2)>. (3.14)
n f—

Finally, when # = 2,3,4,5, (n? — 4)q < n? + 4n with g = 2. For n < 5, taking ¢ = 2 in (3.9), it
follows from (3.8) that there exists a positive constant M, such that

IVilva(Qp) < M. (3.15)
By embedding theorem, we get

<M,.

VIl 26s2)
L7 Q)
(ii) L°°-estimate for v.

The second equation of system (1.1) can be written as the following divergence form:

n

W 0 av ad cBmu
v a ij )t - a\“i )t - ) 3'16
ot ;8&'(“’@ )Bx,>+28xi(a @ )V)+V< r+1+amu> (316)

i=1

where a;;(x, t) = (da + a1 + 2022V)8y, a;(x, t) = 01 lhy and §;; is the Kronecker sign.
In order to apply the maximum principle [13] to (3.16), we need to prove the following
conditions:

(1) IVllvy(qp) is bounded;
(2) X ayle 8ig = v 3, 2
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3) 120, a0, v(=r + L2 || (o) < 1,
where v, u; are positive constants and

1 =n n 1
-+—=1-%, O<x<lLpe|——,+00),re|——,+00),n>2. (3.17)
2(1-x) 1-x

r 2p
Next, we will show that the above conditions (1) to (3) are satisfied for (3.16). When n < 5,
it is easy to find that the condition (1) is satisfied by use of (3.15). Since szzl ay(x,0)Ei& >
ds|£)? for all £ € R”, the condition (2) is verified. In view of the condition (3), we take

appropriate g and r. Rewrite the first equation of system (1.1) as

u> B Bmuv (3.18)

=V |(d+2 Vul+ 1-— .
e [(1 o) u] ozu< K 1+amu

When #n =2,3,4,5, "Zﬁ < 25,”_+21), it is clear that d) + 2a1;u has an upper bound over Q; by

Lemma 2.1. Set
c n+2 2(n+1)
2 n=-2 )

From (3.14), we have au(l — %) - B 14(Qr). Therefore, all conditions of the Holder

l+amu

continuity theorem [5, Theorem 10.1] hold for (3.18). Hence,

ueC5(Qp), Be(0) (3.19)

We will discuss (2.5) which is the corresponding form of (3.18). It follows from (2.1)
and (3.14) that C; — Cyv € L1(Q7), Vq € (’%2, 251”_21)). From (3.19), we obtain d; + aqju €
Cﬁ’g(aT). Thus, according to the parabolic regularity result of [5, pp.341-342, Theo-

rem 9.1], we can conclude that

n+2 2(n+1)) (3.20)

X e w?! , Vge ,
(Qr), Vg ( 5 a2

which implies that VX € L% (Qr) by Lemma 2.6.

Since X = (d; + 20114)u, we have Vu = (dy + 2a11u) ' VX, ie, Vu e L% (Qr). It means
that |Vul?, |Vv|* € L%(QT). So, Y I, at(xt) € LZE%%(QT). From (2.1) and (3.14),
v(-r+ L8 € L1(Qr).

(n+2)p
2(n+2-p)*

the maximum principle [13, p.181, Theorem 7.1], we can conclude that v € L*(Qr). From

Then the condition (3) and (3.17) are satisfied by choosing p = r = According to

(2.1), there exists a positive constant Ms such that
lletllzoop)s IVIlLoe (@) < Ms, YT > 0. (3.21)

Therefore, the global solution to the problem (1.1) exists.

(iii) The existence of classical solutions.

Under the conditions of Theorem 3.1, we consider above global solutions (u,v) to be
classical. By (3.20) and Lemma 2.6, we know VX € C*2(Qy), Y € (0,1). It follows from

+a — —dyA/d?
Lemma 3.3 in [13] that X € clrats® (Qr)- Since X = (dy + onyu)u, we have u = “hdien X

2011
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So,
l+a

ueC**2 (Qg), Vae(0,1). (3.22)

Rewrite the second equation of system (1.1) as

v, =V [(dz + o+ 20000V)VV + omVuv] + v(—r + cpmu )
1+ amu

Therefore, we can conclude that v(-r + ff;:’nfd) € L>®(Q7), u, v, Vu and Vv are all

bounded. By the Schauder estimate [13], there exists o € (0,1) such that

Ve (). (3.23)
Furthermore, by the Schauder estimate, we obtain

ue CHoltsy (Qp), o= min{a,a*}. (3.24)
Next, the regularity of v will be discussed. Set v = (d + a1 + av)v. So, v satisfies

Vy = (dy + a1 + 2000V) AV + f(x, £), (3.25)

where f(x, t) = (da + a1 + 20000V)V(—1 + ffa’%{) + g usv. According to (3.22) to (3.24), we

have dy + agu + 2a9v, f(x,t) € C"’%(aT). Applying the Schauder estimate to (3.25), we

know

ve CZH’,H%(GT)

—(d3+ag1u)+A/ (do +anu)2 +4ano v
2009

Fromv = , We can see

ve CZ“”“%(GT), o= min{a,a*}. (3.26)
Combining (3.24) and (3.26), we get
u,ve crolty (GT)-

Therefore, the result of Theorem 3.1 can be obtained for o < «’, namely o = o. When
o >, namely o < &, we have C2*1*%(Q;) < C*%(Qy). (3.24) and (3.26) are obtained
by repeating the above bootstrap argument and the Schauder estimate. This completes
the proof of Theorem 3.1. d
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