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Abstract

In this paper, we study the existence of periodic solutions of Rayleigh equations with
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1 Introduction
In this paper, we are concerned with the existence of periodic solutions of singular Rayleigh
equations

x" +f(t, x’) +g(x) = p(t), (1.1)

where g : (0,+00) — R is continuous and has a singularity at the origin, f : R — R? is
continuous and 27 periodic with respect to the first variable ¢, p : R — R is continuous
and 27 periodic.

Equation (1.1) can be used to model the oscillations of a clarinet reed [1]. The dynamic
behaviors of (1.1) have been widely investigated due to their applications in many fields
such as physics, mechanics, and the engineering technique fields (see [2—8] and the ref-
erences therein). Recently, the periodic problem of equations with singularities has been
studied widely because of their background in applied sciences (see [9-13] and the refer-
ences therein).

When f =0, (1.1) is a conservation system

¥+ (%) = pld). (1.2)

Assume that g satisfies
(hy)  lim g(x) = o0,

and
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moreover, the primitive function G of g satisfies
(hy) lim G(x) = +o00,
x—0*

where G(x) = flx g(u) du. It was proved in [10] that (1.2) has at least one 27 periodic solu-
tion.

It is well known that time maps play an important role in studying the existence and
multiplicity of periodic solutions of (1.2) [14, 15]. Assume that g satisfies

(hs) lim g(x) = +o0.
x—>+00

Condition (h3) implies that there exists a constant d > 0 such that

g(x) > sup{V(t,0)| + |p(t)| ‘te [0,271]}, forx >d. (1.3)
Let us consider the autonomous system

x"+g(x)=0,
or its equivalent system

K=y y=-gh). (1.4)

The first integral of (1.4) is the curve

1
r,: 53/2 + G(x) = G(c),

where c is an arbitrary constant. From conditions (h;) (i = 1,2, 3) we know that, for ¢ > 0
sufficiently large, I'; is a closed curve. Let (x(£), y(¢)) be any solution of (1.4) whose orbit
is I'c. Clearly, this solution is periodic. Let T'(c) denote the least positive period of this
solution. It is not hard to calculate

¢ dx
r0-Vi [, Jeoew

where 0 < d(c) < ¢, G(d(c)) = G(c), lim,_, ;o0 d(c) = 0. From [10] we know that, if conditions

(h;) (i =1,2,3) hold, then

lim =0.

/ 1 dx
e=+00 J 4 +/G(c) — G(x)

Now, let us set

¢ dx

In this paper, we deal with the existence of periodic solutions of (1.1) by using the asymp-
totic properties of the time map 7. Assume that the limit
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(hy) lim

x| —>+00 X

holds uniformly for ¢ € [0,27]. We obtain the following result.

Theorem 1.1 Assume that conditions (h;) (i =1,2,3,4) hold. Then (1.1) possesses at least
one 27 periodic solution provided that the inequality

limsup t(c) > 27
c—>+0Q

holds.
Using Theorem 1.1, we can obtain the following corollary.

Corollary 1.2 Assume that conditions (h;) (i =1,2,3,4) hold. Then (1.1) possesses at least
one 27 periodic solution provided that the inequality

.. .2G) 1
liminf <=
x—>+00 X 4

holds.
Throughout this paper, we always use the notations:

2
Il = max{fx(0] e € 0,271}, heli= [ |s(0]ae,

2 %
s = ( / 2(0) dt)
0

for any continuous 27 periodic function x(¢). For a function I(c, -), the notation I = o(1)

means that, for ¢ - +00, I — 0 holds uniformly with respect to the other variables.

2 A continuation lemma

It is well known that the continuation theorem plays a key role in studying the existence
of periodic solutions of ordinary differential equations. Now we shall introduce a contin-
uation lemma for (1.1). To this end, we consider the equivalent system of (1.1),

x =y, Y =—(gx) +f(ty) —p(t)). (2.1)
Now, we embed system (2.1) into a family of equations with one parameter A € [0,1],

K =xy, ¥ =-Ag) +f (1) - p(t)). (2:2)
Lemma 2.1 Assume that conditions (h;) (i = 1,2,3,4) hold. Suppose that there exists a
constant { > d (d is given in (1.3)) such that, if (x(t), y(t)) is a 27 -periodic solution of system
(2.2) for some A € (0,1), then

max{x(t) (te [0,271]} #¢, tel0,2x].

Then system (2.1) has at least one 21 -periodic solution.



Wang and Ma Boundary Value Problems (2015) 2015:154 Page 4 of 14

We shall use a classical consequence of Mawhin’s continuation theorem [16], Theo-

rem 7.2 to prove Lemma 2.1. For the reader’s convenience, we restate it here.
Lemma 2.2 Let W = W(t,z; 1) : [0,27] x R” x [0,1] — R™ be a continuous function and
let Q@ C R be a (non-empty) open bounded set (with boundary dQ and closure Q). Assume
the following conditions:
Q) for any 21 -periodic solution z(t) of ' = AW(t, z; 1) with A € (0,1), such that z(t) € L,
forall t € [0,27], it follows that z(t) € 2, for all t € [0,27];
(2) Wo(2) #0, for each z € dQ and dg(Vo, R2,0) # 0, where

1 2
Wo(z) = 7 / W(t,z;0)dt, forzeR™.
0

Then the equation z = V(t,z;1) has at least one 27 -periodic solution and z(t) € Q, for all
te[0,2x].

Proof of Lemma 2.1 We shall use Lemma 2.2 to prove this continuation lemma. Set

_ 1 2w B 1 2
f=gfo f(t,0)dt, p:E/O p(t)dt.

Then there exists € [0, 27] such that

2

-1 ~ ~
f-p= v (f(£,0) - p(t)) dt = £ (£,0) - p(?).
T Jo
From condition (h;) we know that there exists a constant 0 < d < d such that
gx) < —sup{V(t,0)| + |p(t)| (te R}, 0<x<d,.
Therefore, we have
@) <—=([f@0)| + [p®]) < -|fE0)-p®| = -If =pl, 0<x<d.
Meanwhile, we have
g@) > [fE0)| + |p@®| = |[fE0) - p®| = If -pl, x>d.

We claim that there exist constants 0 < & < dy and ¢ > 0 such that, if (x(¢), y(¢)) is a 27
periodic solution of (2.2) with x(¢) < ¢, ¢ € [0,27], then

e<x(t)<¢, —-c<y(t)<c¢, tel0,2n].

Integrating the second equality of (2.2) on [0,2x] and applying the first equality of (2.2),

we get

2 2 2
dt = — X' (8)) d dt.
/0 g(x(2)) dt /0 F6x(0)dt + /0 p(t)dt
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Then we obtain

2w 2w
_/Ilg(x(t)) dt:flzg(x(t)) dt+f0 f(64 @) dt—/o p(t)dt,

where I = {t € [0,27] : 0 <x(£) < dp}, I, = {t € [0,27] : dy < x(¢) < ¢}. Hence, we have

2w
./o ‘g(x(t))|dt=—/Ilg(x(t))dt+/Iz{g(x(t))|dt
2
0

2
2 d i d d
<2 [ leteto)ldes [ Irex@)ars [ pio]ae
2
§2M1+/(; [f(t,x/(t))|dt+||p||1, (2.3)

where M; =27 - max{|g(x)| : dop <x < ¢}.
T

Let us take a fixed constant § satisfying 0 < (1 + %)8 < 1. From (hy) we see that there
exists Rs > 0 such that, for any |s| > Rs and ¢ € [0,27],

[f(t,s)| <8lsl.
Set
M, = max{[f(t,s)’ :te€[0,27], s < Ra}.
Then we see that, for any (¢,s) € R?,
[f(t,s)‘ < 8|s| + Ms. (2.4)

From (2.3) and (2.4) we get

2 2
/ |g(x(t)) | dt <2M; + 8/ |x’(t)| dt + 2t My + ||p||1.
0 0

Set M = 2M; + 2w M3 + ||p|l1- Then we obtain

2
/ lg(x(0))| dt < 532 ||, + M. 2.5)
0
From (2.2) we know that x(¢) satisfies the equation as follows:

&) + A2 (f (6,4 (1)) + g(x(8)) = p(2)) = 0. (2.6)

Multiplying (2.6) by x(£) — % with & = 5 [>7

5= Jo  *(s)ds, and integrating the equality on [0, 2],
we get from (2.5) and (2.6)

2

21 2
/ \x’(t)\2 dt = \? / F(6X'0) (x(t) - %) dt + 22 / g(x(@®)) (x(t) - ) dt
0 0

0

2
-2 /0 pt)(x(¢) — %) dt
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27 27
< If (&% (0)) (x(2) - %) | dt + /0 lg(x(8)) (x(2) - %) | dt
21
+/0 |p(t)(x(t)—a_c)|dt
27 27
<s / 1w/ (6)| () — & dt + M, f In(t) — |t
0 0

27T
+ = oo / (lg(x(®)] + |p(0)]) dt
0
< (8]|%'[|, + Mav27 ) llox — Ell2 + (827 ||« ||, + M + [|pl11) 1% — Zl| oo

Using the Wirtinger inequality and the Sobolev inequality, we have

le =l < ¥, -l < \/gﬂx/!!f

Then we get

/ozn & () de < 5(1 ¥ %) %[, + (Mzm ' \/g(M ' IIp||1)) I

which means that

2’

[, =l + o

where y =8(1 + %), co=Mo/27 + \/§(M+ llpll1)- Since 0 < ¥ < 1, we have

0 e 2.7)

’ 0
I, = 12

Integrating the first equation of (2.2) on [0, 27] and noticing X € (0,1], we get

2
/ y(t)dt =0,
0

which implies that there exists £ € [0,27] such that y(¢y) = 0. Then we get from (2.4),
(2.5), and (2.7)

2 2 2 2
()] < )] + /0 /(1) dt < / lg(x(0) | dt + fo (6,2 (0)) | e + / Ip(0)| dt
0 0
<2V278c1 + M + 2t M, + ||pll1 :=c.
Therefore,

Iylleo <c. (2.8)

Let x(t,) (¢t. € [0,27]) be the minimum of x(¢). Then we have x/(¢,) = 0 and x”(¢,) > 0.
Since x(t,) satisfies

& (t) + 27 (F (£, 0) + g(x()) - p(£)) = 0,
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we have
f(£,0) +g(x(2)) < p(t.).

Hence,
2(x(t)) < ~f(8,0) + p(t.) < |[f (£, 0)] + |p(t)| < sup{|f(£,0)| + |p(¢)| : £ € R},

which implies
x(t) < d. (2.9)

Let x(¢t*) (t* € [0,27]) be the maximum of x(¢). Then we have x'(¢*) = 0 and x”(¢*) < 0.
Similarly, we can obtain

x(t*) > dy. (2.10)
From (2.9) and (2.10) we see that there exists # € [0,27] such that
dy <x(t) <d. (2.11)

In what follows, we shall prove that there exists 0 < € < dy such that, for any 27 periodic
solution (x(z), y(¢)) of (2.2) with x(¢) < ¢, ¢ € [0, 27],

e<x(t)<¢, tel0,2x].

The right inequality x(¢) < ¢ (¢ € [0,27]) follows directly from the condition max{x(¢) :
t €[0,2n]} # ¢ and x(¢) < ¢, t € [0,27]. Next, we prove the left inequality. Otherwise,
there exist a sequence {),} with A, € (0,1] and a sequence of 27 periodic solutions of
(2.2) {(%4(8), yu(£))} (with & = &, in (2.2)), satisfying x,(¢) < ¢, t € [0,27], and

min x,(f) >0, n— oc.
te[0,27]

Without loss of generality, we assume that, for every n,

min x,(¢) < dp. (2.12)
te[0,27]

Set e, = x,,(¢,) = Minye[o,27) % (£), &, € [0,27]. From (2.11) and (2.12) we see that there exists
oy, € (¢, t, + 27) such that

x(aty) = do, en <xy(t) <do, te(ty,ay,).
Since (x,(2), y.(t)) satisfies the equation

J/,,(t) = _)‘n (g(xn(t)) +f(tv )‘nyn(t)) —P(t)),
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we have

In(8)9,,(8) = =2y (g(%(®)) + £ (£, 1nyn(®)) = p(2)).

Recalling x/,(£) = 1,9, (t), we get

n(07,(8) = —(g(xa(®)) + £ (£, %,,(2)) — p())x,,(2). (2.13)

Integrating both sides of (2.13) over the interval [t,,«,] and using the fact x,(z,) =
Anyn(ts) = 0, we obtain

dy oy Ay
%yi(%):_/g“ g(s) a,'s—/t:1 f(tx,()x,(0) dt+/t~n p(t)x (¢) dt.

Therefore, we get

di di 2
_/g,, g(s)ds = /Sﬂ g(s)ds| < %yi(an)+/ V(t,x;(t))x;(t)|dt
2w
! dt. 2.14
. /0 Ip(0,(0) d 2.14)
From (hy) we have
dy

lim g(s)ds = —o0. (2.15)

—
n—oo J.

Next, we shall estimate the right hand side of (2.14). First, it follows from (2.8) that we have
J’f,(Oln) < Cz‘
Meanwhile, according to (2.4) and (2.7), we get
2w 2w 2w
/ If (&, (), (¢) | dt < 6/ x2(t) dt + M, / |, ()| dt
0 0 0

<8, [; + V2 Ms x|,

< 8cf + /2w Mycy.

Obviously, we have

2w
f lp®), ()| dt < V27 |pllos |, ]|, < V27 Pl
0

Hence, the right hand side of (2.14) is bounded. This conclusion contradicts (2.15).

To use Lemma 2.2, we define an open bounded set 2 = {(x,y) :e <x < {,—c—1<y<c+1},
and a map S: (0,+00) x R — R?, S(x,9) = (y,—g(x) —f_ + p). Then, for any 27 -periodic
solution (x(£),y(t)) of system (2.2), such that (x(£),y(t)) € , for all ¢ € [0,27], we have
(x(2),y(t)) € 2, for all ¢ € [0,27]. Therefore, the first condition of Lemma 2.2 is satisfied.
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Obviously, S does not vanish outside the rectangle Q2. Furthermore, the Brouwer degree
of S, dp(S,2,0), is defined and dp(S, 2,0) = dp(g, (¢,¢),p —f_) =1 because g is continuous
and g(e) < p —f, g(¢) > p — f. According to Lemma 2.2, system (2.1) has at least one 27

periodic solution. O

Lemma 2.3 [14] Assume that g : R — R is continuous and lim,_ , sgn(x)g(x) = +00.
Then, for any constant v € R,

e
cLlIdT:loo Tg(c) =1
where
¢ dx ¢ dx
7,(c) =2 _— |, 7,(v,¢) =2
=2, JGo-cw) I 260 - 66+ vie—x)

with G(x) = [ g(s)ds.

Remark 2.4 Wheng : [0, +00) — Ris continuous and satisfies lim,_, , o, g(x) = +00, we can
also define 7,(c) and 7,(v, ¢) for ¢ > 0 large enough. In this case, we know from Lemma 2.3

that, for any constant v,

T4(v,¢) _
c>+00 T, (c)

When g : (0,+00) — R is continuous and lim,_, ,, g(x) = +00, we can get a similar esti-
mate. Under this condition, it is noted that g may have a singularity at the origin, x = 0,
namely, lim,_, o+ g(x) = —00. For any constant v € R and sufficiently large ¢ > 1, let us set

. ~ c dx
T (v,¢) = 2/1 V2(G(c) - G(x) + v(c —x))

’

where G(x) = flx g(s)ds. Then we have

th(v,c
lim -£ ( )=1, (2.16)
c—+0  7(c)

where 7 is defined by (1.5).

In fact, let us consider a function gy : [0, +00) — R, go(x) = g(x + 1), x > 0. Obviously, g
is continuous on the interval [0, +00) and satisfies lim,_, ;o go () = +00. Then we have, for

x>0,

X x+1
Go(x) = /0 go(s)ds = /1 g(s)ds =G(x +1).

According to Lemma 2.3, we get

Ton\V, C
lim 29y
c>+00 Ty (¢
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When ¢ > 0 is large enough, we have

¢ dx
Ty (v,€) =2
’ /0 V2(G0(0) - Go@) + v(c - )

—Z/C dx

o V2Gle+ ) -G +1) +v(c—x))
c+1 dx

:2/1 V2(Glc+1) - Gx) + v(c+1—-x))

_ +
=1, (v,c+1).

Similarly, we have
T () =T(c+1).

Consequently, we get

T (v,c+1)
lim *——=1.

c>+o0 T(c+1)

Therefore, the conclusion (2.16) holds.

3 Proof of Theorem 1.1
In this section, we shall use the continuation Lemma 2.1 given in Section 2 to prove The-

orem 1.1.

Proof of Theorem 1.1 Let us set

T =limsupt(c) > 27.
c—+00

Then there exist 0 < &g < %(r —27) and a sequence {c,} with lim,_, o ¢, = +00 such that,

for every n,
T(c,) > T — &0 > 27 + 2.

We shall prove that the condition of Lemma 2.1 is satisfied for ¢ = ¢, with n sufficiently
large.
Let (x(2),¥(t)) be any 27 periodic solution of (2.2) for some A € (0,1] and suppose that,

for n large enough,

x(t*) = max x(¢t)=c,>d,
te[0,27]

where d is given in (1.3). Assume that x(¢,) (¢, € [0,2n]) is a local minimum of x(¢£). From

the proof of Lemma 2.1

x(t) < d.
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Then there exists an interval [, 8] C [0,27] containing t*, with « = a(x, 1), B = B(x, 1)
such that

xa)=x(B)=d;  x(t)>d, te(ap)

and

From (2.2) we have

y@)y' (&) + A (f (£, A(2)) + g(x(2)) - p(2))¥(2) = 0. 3.1)

Integrating both sides of (3.1) on the interval [t, £*] with « <t < t*, we have

¥ () = 2(G(x(")) - G(x(2))) + 2A/ S (@ 2y(0)y(r)dr - ZA/ p(@)y(r)dr. (3.2)

From (hy) we know that, for any sufficiently small ¢ > 0, there is a constant M, > 0 such
that, for any (¢,y) € R?,

[f&y)| < elyl + M. (3.3)

Since y(t) > 0, t € [a, *], it follows from (3.2) and (3.3) that, for ¢ € [, t*],

*

Y2(t) 52(G(x(t*)) - G(x(t))) + 2/ [f(t,ky(r))|‘ky(r)| dr + Zf |p(t)’ |Ay(t)’ dt

£

yz(t)dr + 2/ (’p(r)| +M8)‘)»y(r)| dr

< 2(G(x(£)) - G(x()) + 2¢ /

t

t

* £
y*(tr)dt +M;f X (t)dt
t

< 2(G(x()) - G(x()) + 2¢ /

t
£

=2(G(x(t")) - G(x(2))) + 28[ Y () dt + M, (x(t*) - x(t)),

t

where M, = M, + ||pllo. Let us set

b(0) = / ey
Then we have

¢'(t) = =y ().
Hence,

-9/ () - 2ep(t) < 2(G(x(t*)) - G(x(2))) + ML (x(£*) — x(2)). (3.4)
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Multiplying both sides of (3.4) by ¢! and integrating over the interval [t,t*] yields

_/ [¢(r)e28f]/dr 5/ [2(G(x(¢*)) - G(x(x))) + ML (x(¢") — x(x)) ]e*" dx.
Since ¢(t*) = 0, we have
p(0)e < / [2(G(x(t)) - G(x(r)) + My (x(£*) - 2(0)) e*" .

From x'(t) = Ay(t) > 0, t € [o,£*] we know that x(£) is increasing on the interval [«, t*].
Therefore, we get, for t € [a, £*],

o011 < [ 2(6(:0)) - Glot) + ML) ~s(0) .
Furthermore,

#(0) = 206 [2(G(x(¢")) - G(x(0)) + M, (x(£') - x0) .
Consequently, we can get, for ¢ € [, "],

7 (@) < (L+x()[2(G(x(t%)) - G(x(0)) + ML (x(¢7) - x(8))],

where «(g) = 4w ce?™. Recalling «'(£) = Ay(¢) and y(¢) > O for ¢ € [«, t*], we have

X(0) < Y1+ k() /2(G(x(t7)) - G (1)) + My ((27) - x(0).
Hence,

X(0)
1.
7@ /2(C0) = CelD) + ML (@) —50) —

(3.5)

Integrating both sides of (3.5) over interval [«, £*] yields

1 Cn dx
V1+i(e) Jay, /2(Glcn) - G)) + ML(cy — %)

<t —a.

Similarly, we can get

1 /C" dx <p_t
VI+k(e) Ja, 2(Gle,) = GW) + M(c, —x) ~ '

Therefore, we obtain

2 /‘C" dx <f-a
VI+k(e) Ja, 2(Gle,) = GW)) + M(c, —x) ~ '

Using (hs) we can easily derive that, for n — oo,

d2 dx B
1 V2(Glen) - G&) + Mi(c, —x)

o(1).
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Then we have

2 /C” dx
Vi+i(e) i /2(Glen) - G&)) + ML(cy — %)

+0(l) < B -a.

It follows from Remark 2.4 that

lim — / ! 2ax -1
e t(e) i /2(Glen) - G@) + Mi(cn—%)

Consequently, we have

f Cn 2dx
L V2(Glen) - G@) + Milen - )

= r(c,,)(l + 0(1)).

Furthermore,

/cn 2dx > 27 +2g9 +0(1).
L V2(Glen) - G@) + M (en—2)

Since lim,_, o+ +/1 + k(€) = 1, there exist a sufficiently small ¢ > 0 and a sufficiently large »
such that, if maxpg o) () = ¢,,, then

B—a>2m + &,

which contradicts with the inequality f — @ < 2. Then we find ¢ = ¢, for n sufficiently
large. Consequently, from the continuation Lemma 2.1, we know that (2.1) has at least one
27 periodic solution. d

2G(x)
x2

Proof of Corollary 1.2 Let us denote p = liminf,_, ;o0

< i. Then there exists ¢ > 0 such
that p. = p +¢ € (p, %). Define

V(x) = pex® - 2G(x), x> 1.

Therefore, we have

2
lim sup ¥ (x) = lim sup x? <p8 - ng)) = +00
x

X—>+00 X—>+00

It follows that there exists a sequence {c, } with lim,,_, . ¢, = +00 such that
Vvx) = vlcn), x€(lcn)

Consequently,
2(G(cn) - G(x)) < 0¢ (ci —x2), x € (,cp,).

Hence, we have

r(cn)=2/5nL >2/CHL=L<£—arcsinl>.
1 V2(Glen)-Gw) — Ji (R -x) P \2 Cn
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As aresult, we get

. T
limsup t(c,) > — > 27,
n—>+00 Pe

which implies that limsup,_, , ., 7(c) > 27. According to Theorem 1.1, (1.1) has at least one
27 periodic solution. O

Remark 3.1 In [12], the existence of periodic solutions of the Hamiltonian systems of the

type
=gy, Y =-gptx) (3.6)

was studied. A similar result was obtained (see [12], Corollary 3.13) for system (3.6). How-
ever, this corollary cannot be applied directly to obtain the main results of this paper be-
cause the asymptotic behavior of the primitive G of the nonlinearity g is treated in present

paper.
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