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1 Introduction

As it is known, the fractal curves [1, 2] are everywhere continuous but nowhere differ-
entiable; therefore, we cannot use the classical calculus to describe the motions in Cantor
time-space [3—10]. The theory of local fractional calculus [11-20], started to be considered
as one of the useful tools to handle the fractal and continuously non-differentiable func-
tions. This formalism was applied in describing physical phenomena such as continuum
mechanics [21], elasticity [20—22], quantum mechanics [23, 24], heat-diffusion and wave
phenomena [25-30], and other branches of applied mathematics [31-33] and nonlinear
dynamics [34, 35].

The fractional Heisenberg uncertainty principle and the fractional Schrodinger equa-
tion based on fractional Fourier analysis were proposed [36—48]. Local fractional Fourier
analysis [49], which is a generalization of the Fourier analysis in fractal space, has played
an important role in handling non-differentiable functions. The theory of local fractional
Fourier analysis is structured in a generalized Hilbert space (fractal space), and some re-
sults were obtained [26, 49-53]. Also, its applications were investigated in quantum me-
chanics [23], differentials equations [26, 28] and signals [51].

The main purpose of this paper is to present the mathematical aspects of the Heisen-
berg uncertainty principle within local fractional Fourier analysis and to structure a local
fractional version of the Schrédinger equation.

The manuscript is structured as follows. In Section 2, the preliminary results for the
local fractional calculus are investigated. The theory of local fractional Fourier analysis is
introduced in Section 3. The Heisenberg uncertainty principle in local fractional Fourier
analysis is studied in Section 4. Application of quantum mechanics in fractal space is con-

sidered in Section 5. Finally, the conclusions are presented in Section 6.
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2 Mathematical tools
2.1 Local fractional continuity of functions
Definition 1 [18-20, 27-30] If there is

|f (x) = f (x0)| < & 2.1)

with |x —x9| < 8, for £, >0 and ¢, € R. Now f(x) is called a local fractional continuous
at x = x9, denoted by lim,_,, f(x) = f(x0). Then f(x) is called local fractional continuous
on the interval (g, b), denoted by

fx) € Cyla,b). (2.2)

The function f(x) is said to be local fractional continuous at xy from the right if f(x,) is
defined, and

lim f(x) = f(x3)-

X%}

The function f(x) is said to be local fractional continuous at xq from the left if f(xo) is
defined, and

lim f(x) :f(xa).
X*)XO
Suppose that lim,_, s f (x) =f(x5), lim, 5 f (%) = f(x5) and f(x{) = f(xg), then we have
the following relation:
lim f(x) = lim f(x) = lim f(x).
XX x—>X0

x>

For other results of theory of local fractional continuity of functions, see [18—20, 27-30].

2.2 Local fractional derivative and integration
Definition 2 [18-20, 27-30] Setting f(x) € Cy(a, b), alocal fractional derivative of f(x) of
order « at x = x; is defined by

@] A - f)

ax® |, %0 (% —xg)e

£ (x0) , (2.3)

where A%(f(x) — f(x0)) = I'(Q + o) A(f(x) — f (x0)) with a gamma function I'(1 + ).

Definition 3 [18-20, 27-30] Settingf(x) € Cy(a, b), a local fractional integral of f(x) of
order « in the interval [a, b] is defined as

(@) 1 ’ 1 ~
A1) = s [ S0 = s i > ey 4

where Atj = tj, — tj, At = max{A#f, Af, At;,...} and [¢,£4],j=0,...,N-1,ty =a, ty = b,
is a partition of the interval [a, b].
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Their fractal geometrical explanation of local fractional derivative and integration can
be seen in [22, 26, 50-52].
If f(x) € Cyla, b], then we have [18, 19]

| f @) < oI |f ()| (2.5)
withb—a>0.

Lemma 1 [18, 19]

[l @g0)]” < [0l 9 |g@)[*] [0l 9 |g@)*g0)]. (2.6)
Proof See [18,19]. O

3 Theory of local fractional Fourier analysis

In this section, we investigate local fractional Fourier analysis [49-53], which is a gener-
alized Fourier analysis in fractal space. Here we discuss the local fractional Fourier series,
the Fourier transform and the generalized Fourier transform in fractal space. We start with

a local fractional Fourier series.

3.1 Local fractional Fourier series
Definition 4 [18, 19, 49-52] The local fractional trigonometric Fourier series of f(¢) is
given by

oo o0
f(t)=ag + Z a sing (kK wt*) + Z by cose (K wt*). (3.1)
i=1 i=1
Then the local fractional Fourier coefficients can be computed by
1 T a
a0 = 7z Jo f(E)(dD)*,

ar = ()7 [ (1) sing (k% 0l £)(dt)*, (3.2)
b = (2) [ £(2) cosa (k% 0l ) (dt)*.

The Mittag-Leffler functions expression of the local fractional Fourier series is described
by [18, 19, 49-52]

S Ot (Jex )@
&= CkEa(’”l#), (3.3)

k=—00

where the local fractional Fourier coefficients are

I oo o
Cr = (2;)‘1 /_ l f(x)Eqy (ﬂ#)(dx)“ with k € Z. (3.4)

The above is generalized to calculate the local fractional Fourier series.
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3.2 The Fourier transform in fractal space
Definition 5 [18, 19, 49-53] Suppose that f(x) € C,(—00,00), the Fourier transform in
fractal space, denoted by F,{f(x)} = f£(w), is written in the form

1 oo o oL o
Fa {f(x)} = m [m Ea (—l w X )f(x)(dx) ’ (35)
where the latter converges.

Definition 6 [18, 19, 49-53] If F,{f(x)} = f5*(w), its inversion formula is written in the

form

flx) = # /_ : Ey (i "2 )f2¥ (o) (dw)*, x> 0. (3.6)

3.3 The generalized Fourier transform in fractal space
Definition 7 [18, 19] The generalized Fourier transform in fractal space is written in the
form

1 oo
F{f(x)} = ) /:Oof(x)Ea (=i hox® ™) (dx)*, (3.7)

2m)*
r'l+a)

where &g = withO<a <1.

Definition 8 [18, 19] The inverse formula of the generalized Fourier transform in fractal
space is written in the form [18, 19]

1 o0
0= i / B (ho o) o', (3.9)
where ki = lﬁﬁ?:) withO <o <1.

3.4 Some useful results
The following formula is valid [18, 19].

Theorem 1 [18, 19]
FAf“ @)} = i*how® F, {f (%)} (3.9)
Proof See [18,19]. O

Theorem 2 [18, 19] IfF,{f(x)} = f5*(w), then we have

[ If @) (@0 = / 5 ()] (dew)*. (3.10)

Proof See [18,19]. O

Theorem 3 [18,19] IfF,{f(x)} = f5*(w), then we have

/f(x)@(dx)"‘:/ fE(w)gh™ (w)(dw)®. (3.11)
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Proof See [18, 19].

4 Heisenberg uncertainty principles in local fractional Fourier analysis
Theorem 4 Suppose that f € Ly, [R], F,{f (%)} = f5%(w), then we have

r2<1+a><[ﬁfi[ﬂx)xﬂz(dx)“].[mf S (@)er (d@}
ahy T L i S @) () i [ f@)Rdx ]

with equality only if f (x) is almost everywhere equal to a constant multiple of
2
CoEu ——),
K
with K > 0 and a constant Cy.

Proof Considering the equality

; - Foa a2 o _ 1 > (o) 2 a
L(+a) [mv“’ (oo | o) = 5705 /,oo[f ()] (dx)°,
we have
1 O a2 g 1 o o
[m /_Oo[f(x)x ] (dx) ]|:F(1+a)_/ [£54 (@)how® ] (dx) :|

- |:—F(1+a) /_oo[f(x)x |7 (dx) :||: )/ (x) *(dx) i|

1 © ——
= e | T

2

> | [T

When £ x)" = f@(x), then we have f(x) = CoEa(—%) with a constant Cj.
Since

(F@*) = (P ) =@ 76 +£ @)@ @)

and

1

JR— () o o
i e @

1 OO YR a
= ‘m [ oof ()f @ (x)x (dx)* |,

we have

1 OO @) o o
i

- [(f)x / 1) ()

__ / )2,

when (|f(x)|?)x®* — 0, x — 00.

(4.1)

(4.2)

(4.4)

(4.5)

Page 5 of 16
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Hence, there is

’ f )| (dx)”

1 o o )
- [ ) e

_ 1 = () (AN F () 1Y o 1
“F(ua) [mf G )" + T gy /,oo

‘ / SO ) () (d)

<
“I'l+a)

such that

1 o " ) 9
s [ )
o0 2
| reopar
_12 1 % ) , 2
=T (1+a)‘mme(x)‘ (dx)

IA

4
ra

(e
(s /v e o)
|

£ (dx)“)

IA

IA

Therefore, we deduce to

)/ [fx)| (dx)*

r? (1+o¢)

W12 1 ° o
54[m/:oo[f(x)x | (dx) :||:F(1+a) /-oo[f“’ (@)how* ] (dw) }

1 * o 2 o 1 s Dt 2 o

Hence, this result is obtained.

x%f ()f @ (x) (dx)”

o 1 F,o @12 o
4 F(1+a)/ [T (@) ][F(l )/ [f5 (w)how®]  (dw) }

As a direct result, we have two equivalent forms as follows.

Theorem 5 Suppose that f € Ly ,[R] and f© (x) = LIS | then we have

dot;

4 sy Joso ()2 (dx)

with equality only §
with K > 0 and a constant Cy.

Fz(l +Ol) |: 1+a f [f(x)x (dx)a] ) |: r(lﬂx f [f(a (x) (dx)a
1"(1+oz) f—oo

If (x) 1> (dx) ]

Page 6 of 16

(4.8)

(4.9)

(4.10)
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Proof Applying Theorem 4, we have

ﬁ f : [ ] () = F(11+ o f : [ (@hoe"] (de)* (412)
such that
P +a) _ [m I [f(x)x“]z(dx)“] . [ ria o [ @) (dx)” ] wis)
4 e Joo @) P (d) e [ @) P(da)
Hence, Theorem 5 is obtained. O

The above results [37, 38] are different from the results in fractional Fourier transform

[36, 37] based on the fractional calculus theory.

5 The mathematical aspect of fractal quantum mechanics
5.1 Local fractional Schrodinger equation
We structure the non-differential phase of a fractal plane wave as a complex phase factor

using the relations

Yo = AE, (i (K7 - 0t*))

_AE, (Z—(ﬁﬁ“ —Eat“)>, (5.1

where the Planck-Einstein and De Broglie relations are in fractal space

E, = hywt,

(5.2)
Py = hok“.
We can realize the local fractional partial derivative with respect to fractal space
vy, " bR L (Po7* = Eqt*)
a= 7 La a| 77 Lol — Lq
hy hg
l‘Ot
= —Pyq 5.3
e 53)
and fractal time
8011/[& el o B
= ——E,AE, | — (P, — Eot*
R R L)
-~ B, (5.4)

ha

where V¥ = 22 4 %/‘“ + Lok [26] with 7 = x%% + Y7 +27k* [26].

From (5.3) we have

—%he Vg = Pyt (5.5)
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such that
h? 1 - -
_ﬁvmxlﬁa — ﬁpa 'Pawow (56)
where V2 = 20 4 0%, 88;20; with 7 = x%i% + 5% + z*k“.

 x2a ayZO(
From (5.4) we have

0 v
“ Ny =EyYq. 5.7
e = Eals 67)

We have the energy equation

1 - —
E,=—P, -P,+V,
2m
-H, (5.8)
such that
Ea% = Hawow (59)
and

h2
Eoz‘ﬁoz =—— Vzawa + VaWou
2m

where H,, is the local fractional Hamiltonian in fractal mechanics.
Hence, we have that

o 2
"V _ —h—“vz"% + Vg, (5.10)

o,
P e otv 2m

Therefore, we can deduce that the local fractional energy operator is

o

9
Eo( = lahaﬁ (511)
and that the local fractional momentum operator is

Py = i%hy V. (5.12)

Therefore, we get the local fractional Schrédinger equation in the form of local fractional
energy and momentum operators

1 - —
Hawa = _Poz . Pctwlot + Vawa: (513)
2m
where the local fractional Hamiltonian is

H,=—P, P, +V,. (5.14)

Page 8 of 16
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We also deduce that the general time-independent local fractional Schrédinger equation
is written in the form
0"V

i*hy =H,¥,, 5.15
ha s = Hal (5.15)

which is related to the following equation:

0°Sulgnt) _ ( 9% S t) (5.16)

o P\ g

where S, is non-differential action, H, is the local fractional Hamiltonian function, and
q? (i=1,2,3) are generalized fractal coordinates.

5.2 Solutions of the local fractional Schrédinger equation
5.2.1 General solutions of the local fractional Schrodinger equation
The general solution of the local fractional Schrodinger equation can be seen in the fol-

lowing. For discrete k, the sum is a superposition of fractal plane waves:

Val(rt) =Y AnEa (i (kir* — t%))

n=1
=3 ALK, (’— (B - Eﬁ"‘))
n=1 o
oo l,a _ ﬁZ
_ ZAnEa —(P,7 — >~ (5.17)
hy 2m
n=1
and
PZ
E, = —%. (5.18)
2m

If we consider Py = pyyi® + Pyof” + Prak® = proi® and 7 = x%% + 2%5% + z°k*, we have
fractal plane waves:

%(x, t) = %(an, t)
_ = ﬁ a I}Lzot o
= ;A,@ ( e (pmx St )) (5.19)

5.2.2 Fractal complex wave functions

The meaning of this description can be seen in the following. Similar to the classical wave
mechanics, we prepare N atoms independently, in the same state, so that when each of
them is measured, they are described by the same wave function. Then the result of a
position measurement is described as the fractal probability density, and we wish it is not
the same for all. The set of impacts is distributed in space with the probability density

¢o (P(r), £) = |V (r 1) (5.20)
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In view of (5.20), we have

Pa(x,0) = [Ya(x,0)] (5.21)

The set of N measurements is characterized by an expectation value (r), and a root

mean square dispersion (Ar)®,

1 *© 2
v —— | 0P @r. 5.22
) r3(1+a)/_oor|‘” (,0) @) (5.22)
Similarly, the square of the dispersion (Ar)2* is defined by

(Ar* = (%)~ ((%)a)’

(= = ®)a)’),

1

T (+a) /,m (= a) [l 0 (@) (5.23)

If the physical interpretation of a particle in fractal space is that the probability

dP(r) = %a) |Wa(r, )| (dr)®, (5.24)

3(

the integral of this quantity over all fractal space is

— ; * 2 3a
PO e / bt
-1, (5.25)
For (5.18) we have

Valrt) =Y AnEa (i (ki — t%))

n=1
oo ia _ ﬁZ
- ZA,,ED[(—<Par°‘ - —“t“)) (5.26)
—~ hy, 2m
such that
1= #/wwf (r,0)|*(dr)*® (5.27)
T B(1+a) ) ' '

5.2.3 Probabilistic interpretation of fractal complex wave function of one variable
In (5.22), we have

ba,8) = |Va (%, 1) (5.28)

Page 10 of 16
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and
Px)=1 (5.29)
such that
1 *° 2 o
el IR
e pZ 2
E | — - a _ Fxa o a
(£ ome- e
_2A’L
"Tl+a)
=1, (5.30)
where
E (ﬁ(p x* —@t‘)‘)) xelL
VACHER SR ’ (5.31)
0, xé¢L.
We have an expectation value (x), and a root mean square dispersion (Ax)“,
= s [ a0 @ (532)
xa_F(1+a) _Oox o (% x .
and
(A%)* = (x), — (%))
- <(x“ @a)’),
- i | - ) o @, (533)

For a given fractal mechanical operatorA, we have an expectation value (A), and a root
mean square dispersion (AA)%,

1> 2
R / Al @) (5.34)

and

(A4 =((A- <A>a)2>a
(4?) )*

F(1+Ol)/ |vfa(x»t)| (dx)”. (5.35)

Page 11 of 16
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5.3 The Heisenberg uncertainty principle in fractal quantum mechanics
Suppose that

1

00 9 o«
m[m’wa(x,t)| (dx)* =1, (5.36)

we have a fractal positional operator expectation value

1 * oo o
(x)a, = m '/_Ool X |1ﬂa(x,t)|2(dx) =0 (537)

and a root mean square dispersion of positional operator

1

(M) = - e f 200 | (3, 0) | (). (5.38)

Similar to the fractal positional operator, we have a fractal momentum operator expec-
tation value

s ﬁ _ 1 = o ﬁ 2 o _
(Py)a —< hay >a- rise) / fha 7 (Va0 (dx)" =0 (5.39)

and a root mean square dispersion of positional operator

1 o0 8201 9
Apx 20 _ 2072 nes o 4
8P = s | 0P (5.40)
Considering
1 & 2
A 2u - 2o, 20 ” ,t d [X’ 5.41
(7 = s [ )P (5.41)
(AP, = / " e O |V (1| (dx)® (5.42)
¥ Fl+a) ) o  “ox2e!™ ’ ‘
and
g BTN (5.43)
Nl+ao) ) o o Eh '
by using Theorem 5, we have that
(1 +a) - 1 /00 2"‘|1// ( t)|2(d o 1 /OO 92 |¢ ( t)|2(dx)0£
4 | TO+a) )~ WPV va gy | aae Ve
such that
M1+ao) 9y (AP)™
—a < (Ax) G (5.44)
Hence, we have that
ra 2
DU+ (ape(ap (5.45)

4

Page 12 of 16
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such that

w < (Ax)"(AP, (5.46)

where

(Ax)* = /(Ax)2e = \/ i) /_ : 202 |y (x, 1) | () (5.47)
and
o cx a
(AP,)* = \/(AP,)? \/mw 2 “a |Vl \ (dx)e. (5.48)
Suppose that
h o
h = (g) , (5.49)

then we have

T(L+a) ()

< (Ax)*(AP,)” (5.50)
and
Yy (=),
o =’ ” Va @ 5.51
! (271) ot o Vet Vel (5.5
where V2o = 222 0% 9% 1o,

dx2a F) yZa F) 220(

The above equation (5.50) differs from the results presented in [36, 37]. Also, Eq. (5.51)
is different from the ones reported in [38—4.0, 54, 55].
Below we define the local fractional energy operator

= B\ 0¥
E, =i — ) — (5.52)
2 ) ot*
and the local fractional momentum operator
— h\?
P, =i (—) ve, (5.53)
2w

where V¥ = Bx“‘ iy dy“‘] + o 9% 5ak® [26].
Thus, we get the PIancl(-Elnstein and de Broglie relations are in fractal space as

EOI = (L)awa’
= (£)ke

(5.54)

where / is Planck’s constant.

Page 13 0of 16
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6 Conclusions

In this manuscript, the uncertainty principle in local fractional Fourier analysis is sug-
gested. Since the local fractional calculus can be applied to deal with the non-differentiable
functions defined on any fractional space, the local fractional Fourier transform is impor-
tant to deal with fractal signal functions. The results on uncertainty principles could play
an important role in time-frequency analysis in fractal space. From Eq. (A.7) we conclude
that there is a semi-group property for the Mittag-Leftler function on fractal sets. Mean-
while, uncertainty principles derived from local fractional Fourier analysis are classical
uncertainty principles in the case of « =1. We reported the structure the local fractional
Schrédinger equation derived from Planck-Einstein and de Broglie relations in fractal time

space.

Appendix
We have [13, 20]

y*[F,a,b] + y“[F,b,c] = y*[F,a,c] (A1)
such that
o —x)"
S% S% “[F,x,9] = , A2
H0) - S0 = Y [Fn) = D o (A2)
where S%(y) is a fractal integral staircase function. We have the relation [18-20]
H*(FN(y,0)) =-y* (A3)
such that
(y — %)
S% S% y*[F,x, H*(F N (x, A4
2(y) - Sg(x) = y*[F,x,y] = H*(F N (x,)) = Tra) (A4)
Inversely we obtain
SE(x) = SE(y) = y[F,y,4] :H"‘(Fﬂ (y,x)) :—M. (A.5)
r'd+oa)
Hence, both S§(x) = 1+oz) and S§(y) = 1+a are seen in [20, 21].
In view of Eq. (A.4), we easily obtain that
E, (io‘xo‘) = C0Sy X% + i sing &% (A.6)
and
E, (x"‘ + yo‘) =E, ((x + y)“) =E, (x"‘)Ea (y"‘), (A7)
k(2K e k 20k
where E,(x%) = Y %) ¢ Mm ,Sing x% =Y 7o) F[i)+(2k+1 al COsa X% = D% H)er and * is a

fractal unit of imaginary number [18-20, 53].
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