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The presented methods split the original problem to a coupled system of two
second-order equations and involve only three spatial grid points of a compact
stencil without discretizing the boundary conditions. The linear stability of the
presented methods has been examined, and it is shown that the proposed two-level
finite difference method is unconditionally stable for a linear model problem. The
new developed methods are directly applicable to fourth-order parabolic partial
differential equations with singular coefficients, which is the main highlight of our
work. The methods are successfully tested on singular problems. The proposed
method is applied to find numerical solutions of the Euler-Bernoulli beam equation
and complex fourth-order nonlinear equations like the good Boussinesq equation.
Comparison of the obtained results with those for some earlier known methods show
the superiority of the present approach.
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1 Introduction

Consider the fourth-order quasi-linear parabolic partial differential equation (PDE)
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where Q = {(x,£)] —o0 <a <x < b <oo,t >0}, equipped with the following initial and
boundary conditions:

u(x,0) = uo(x), us(x,0) =u(x), a<x<b, (2a)
and

u(a,t) = go(t), ulb,t)=g(t), t>0, (2b)

Urx(a,t) = ho(t), Une(b,t) = Ii(2), £>0, (2¢)

where f, ug, 11, g0, &1, ho, and h; are functions of sufficient smoothness with required
high-order derivatives.

Fourth-order PDEs arise in various mathematical models of physical problems in science
and engineering such as vibrations of a homogenous beam, propagation of shallow water
waves, fluid dynamics, surface diffusion of thin solid films, and deformation of beams [1-
5]. Jacob Bernoulli formulated the first consistent elasticity theory of thin beams, in which
the curvature of an elastic beam at any point is proportional to the bending moment at
that point. Based on his uncle’s elasticity theory, Daniel Bernoulli derived a PDE repre-
senting the motion of a thin vibrating beam [1, 2]. Then, Leonard Euler extended and ap-
plied Bernoulli’s theory to the loaded beams [6]. The Euler-Bernoulli beam equation is a
fourth-order PDE governing the undamped transverse vibrations of a homogenous beam,
in which the support does not contribute to the strain energy of the system and is set up
as follows [6]:

2 2 2
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where u(x, t) is the transverse displacement of each position of the beam, o (x) > 0 is the
flexural rigidity, ;(x) > O is the linear mass density, p(x, £) is the load per unit length, and
b — a is the length of the beam. The quantity u,, is the value of the bending moment
of the beam. Equation (3) must be solved subject to the initial conditions (2a) and simply
supported boundary conditions (2b)-(2c). The solution of the Euler-Bernoulli beam equa-
tion (3) is significant in various branches of engineering such as the construction of flexible
structures, the layout of robotic designs, and so on (see [1, 2]). The other time-dependent
fourth-order PDE studied in the paper is the second-order Benjamin-Ono equation [5, 7]
of the form

*u %) d%u

+r +—
dxt dx2 ar?

=0, (x0t)eg, (4)

where the constant g denotes the depth of the fluid, and r is a nonzero constant controlling
nonlinearity and the characteristic speed of the long waves. In this case, the solution u(x, t)
is the elevation of the free surface of the fluid. It is one of the most important nonlinear
PDEs arising in the study of water waves and is used in the analysis of many other physical
applications such as the percolation of water in the porous subsurface of a horizontal layer
of material [7]. We also consider the good Boussinesq equation, which is similar to the
Korteweg-de Vries equation and presents a balance between dispersion and nonlinearity
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leading to the existence of soliton solutions [8]. The general form of the good Boussinesq
equation can be written as
P?u  Pu 3w dtu
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It is one of the important models having numerous applications in several fields, for in-
stance, ion-acoustic waves in plasma, magnetohydrodynamics waves in plasma, longitu-
dinal dispersive waves in elastic rods, pressure waves in liquid-gas bubble mixtures, and
so on (see [8, 9]). It describes shallow water waves propagating in both directions and
possesses a highly complicated mechanism of solitary wave interaction [10].

Another particular class of fourth-order nonlinear parabolic PDEs considered in this

study is of the form

dtu Bu  u

2 a2t + 32 =g, b Uy Uy, Uy — Up, Unyy — Uxg), (X, F) € 2, (6)
subject to the initial and boundary conditions (2a)-(2c) (see [11]).

Owing to their great importance and wide range of applications, the attention of many
physicists and mathematicians has been attracted to the studies of such problems. The
closed-form solutions to fourth-order PDEs are necessary to know the qualitative behav-
ior of natural processes and physical phenomena. But most fourth-order time-dependent
PDEs have no closed-form solutions except for certain particular types of linear or quasi-
linear equations. Therefore, construction of accurate numerical methods for finding ap-
proximate solutions to these equations are of great significance. Among the entire arse-
nal of numerical methods available to approximate a fourth-order PDE, such as the finite
element method, spline collocation method, the finite difference method, is attractive be-
cause of its relative ease of implementation, flexibility, and accuracy in the solution values.
Higher-order methods yield not only comparable accuracy but also require much coarser
discretization with greater computational efficiency. Apart from this, the advantage of de-
veloping a compact scheme restricted to the patch of cells immediately surrounding any
given grid point is its suitability to be used directly adjacent to the boundary without in-
troducing any extra nodes outside the boundary of the domain. Higher-order difference
approximations for one-space-dimensional nonlinear parabolic and hyperbolic differen-
tial equations were discussed in [12-20]. A meshless numerical solution of hyperbolic
PDEs using an improved localized radial basis functions collocation method was proposed
in [21]. Recently, a new high-order compact implicit variable mesh discretization for one-
space-dimensional unsteady quasi-linear biharmonic problem was developed in [22].

Various explicit and implicit difference schemes for numerical solution of the Euler-
Bernoulli equation by decomposing it into a system of second-order PDEs have been
studied by Conte [23], Crandall [24], Evans [25], Fairweather and Gourley [26], and Col-
latz [27]. The three-level explicit method suggested by Collatz [27] is easy to implement
but is very time consuming even for the most modest problems due to the stability re-
striction. Andrade and McKee [28] suggested high-accuracy alternating direction implicit
methods for solving fourth-order parabolic equations with variable coefficients. Using a
multiderivative method, Twizell and Khaliq [29] derived a stable difference scheme for
fourth-order parabolic equations with constant coefficients. Evans and Yousif [30] pre-
sented an unconditionally stable second-order accurate finite difference scheme using the
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alternating group explicit method achieving a better accuracy level. Later, Khan et al. [31]
reported a three-level difference method of accuracy O(k* + 4*) for numerical solution
of the Euler-Bernoulli equation by using a sextic spline in space and finite difference dis-
cretization in time. Further, Caglar and Caglar [32] considered a family of B-spline meth-
ods to produce accurate numerical solution of the Euler-Bernoulli equation. Rashidinia
and Mohammadi [33] developed an approximation for finding the numerical solution of
differential equation (3) by replacing the time derivative by a finite difference approxi-
mation and the space derivative by sextic spline functions using off-step points to obtain
three-level implicit methods of accuracies O(k? + 4*) and O(k* + 1*). Mittal and Jain [34]
discussed two new methods for solving the Euler-Bernoulli equation using B-splines with
redefined basis functions. Most recently, Mohammadi [35] proposed a sextic B-spline col-
location scheme for numerical solution of fourth-order time-dependent PDEs subjected
to fixed and cantilever boundary conditions. Lai and Ma [7] proposed a lattice Boltzmann
model for the second-order Benjamin-Ono equation (4). Numerous numerical methods
have been proposed for solving the good Boussinesq equation (5) (see [8—10]). Recently,
Siddiqi and Arshed [36] developed a quintic B-spline collocation method for finding an
approximate solution of the good Boussinesq equation.

The consideration of using off-step nodal points for discretization is motivated by the
polar form of one space Laplacian operator V2 = 82/9r2 + (at/r)(d/8r), which has a singular
coefficient associated with the first-order derivative term. Using only three grid points at
each time level, three-level compact difference methods of order two in time and four
in space for the solution of differential equation (1) for uniform mesh were reported by
Mohanty and Evans [37], but these methods fail at singular points, and a special technique
was needed to solve singular problems. To this concern, in the present article, using the
same number of grid points (3 + 3 + 3) of a single compact cell, we have proposed two new
off-step discretizations for the solution of the fourth-order quasi-linear PDE (1) having
the foremost advantage that these are directly applicable to the singular problems without
requiring any fictitious points. Recently, Mohanty and Kaur [11] proposed an implicit high-
order two-level finite difference scheme for the solution of particular type of fourth-order
equation (6). However, that scheme featured a major shortcoming that it is not directly
applicable to the singular problems and requires a special treatment to handle singular
points. In this paper, we have developed two new two-level unconditionally stable implicit
methods using off-step nodal points for the solution of the differential equation (6). The
proposed new methods are convenient to implement at singular points without requiring
any modification, and we do not need to discretize the boundary conditions, which is a
main attraction.

An outline of the paper is as follows: In Section 2, we formulate and derive three-level
quasi-variable mesh difference methods using off-step points for the solution of quasi-
linear fourth-order PDE (1). In Section 3, we present and derive new quasi-variable mesh
two-level off-step discretizations to solve the particular type of fourth-order PDE (6). Fur-
ther, in Section 4, the stability analysis of the derived methods for linear model problems
have been discussed. In Section 5, we apply the proposed methods to a linear fourth-order
PDE in polar coordinates. In Section 6, the performance of the proposed methods is il-
lustrated by numerical experiments done on a collection of test problems having physical
significance including the highly nonlinear good Boussinesq equation. Some concluding
remarks about this paper are given in Section 7.
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2 Three-level quasi-variable mesh off-step discretization and derivation

For simplicity, we first consider the fourth-order nonlinear parabolic PDE of the form

84 2

A(x, t) g

Py + W :f(xy Ly Uy Uy Uy Uy )y (%5 ) € Q. 7)

We introduce the new variable v defined as

Then equation (7) is reduced into an equivalent form of two second-order differential

equations:
82
a—;j =y, () e, (8a)
v 92
Alx, t)a—x;/ + 3—;: =f(x, tu, v, U, Uy, vy),  (x,F) € Q. (8b)

Since the value of u and u; is prescribed at ¢ = 0, this implies that the values of all succes-
sive tangential partial derivatives u,, uy,, ... of u are known at £ = 0. Since v(x, 0) = u,(x, 0),
the value of v is also known at ¢ = 0. Also, note that the values of # and v are given at x = a
and x = b.

The associated initial and boundary conditions with (8a)-(8b) are

u(x,0) = ug(x), v(x,0) = up(x),

uy(x,0) =u(x), a<x=<b, (9a)
u(a,t) = go(t), v(a,t) = ho(t), t>0, (9b)
u(b,t) = g1(t), v(b,t) = hi(t), t>0. (9¢)

In order to obtain a numerical solution of above initial boundary value problem, we
superimpose on the solution domain 2 a rectangular grid with spacing /; =%, — %1, [ =
1(1)N +1, in the x-direction such that a = x¢ <%; < --- <%y <xn41 = b, N being a positive
integer, and k = ¢, — £; > 0 in time direction. Spatial grid points are defined by x; = x¢ +
Zle hi, I =1(1)N +1, and time steps are given by ¢; = jk,j = 0,1,2,...,/, where J is a positive

integer. The mesh ratio is denoted by n; = (4,1/h;) > 0,1 = 1(1)N. The neighboring oft-step

h
e
to the uniform mesh case. Let ”/p 1/1 denote approximate solution values of u(x, £), v(x, £)

points are defined as x;,12 = x; + and x;_1/3 = x; — %, [ =1(1)N. For n; =1, it reduces
at the grid point (x;,¢), and U, Vl/ be their exact solution values at the the grid point
(%1, tj), respectively. For E = A, A,, and A,,, let the values E(x;, ¢;) be denoted by Eé. For
simplicity, we consider 7; = 1 (a constant # 1), [ = 1(1)N. Such a mesh is called a quasi-
variable mesh.

At the grid point (x;, ¢), for S = A, U, and V, we denote

3a+bS

Zw, a,b=0,1,....

ab
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Let

L=n?+n-1, M=1+n)(1+3n+n?),

At the grid point (x;, ¢), let

-1 n WAL
Py =L+ ),
y 3 18( n+n’) /
1-n+n?
Poy= =

h; AQ
P1=n2+n—1——(1+n+n2)—.’,
3 All

h
Q1=(1+n)(1+3n+n2)+é(l—nQ)(l+n+n2)

_ 2 @ 2 21&
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Q= 5 +g(1—n2)(1+n+n2)A—’;l,
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(10)

(11a)

(11b)

(11¢)

(11d)

(11e)

a1f)

(11g)

(11h)

We require the following approximations for deriving the high-accuracy quasi-variable

mesh methods. For r = 0, £1, we denote:

a,, =ou +(1—20)U, +0U "

l+r l+r?

0<6<1,
-7 -7 -7
Upp= (Ul:i:l + Ul)/z’

w, = (Ut -ullyik

tly l+r l+r

77 j+1 j+1 j-1 j-1
Utlil/z = (Ulztl +U) -Uy, -4 )/4/(,
77 j+1 j -1\ 12

uttlw = (ul+r - 2I’Il+r + ul+r)/k )

Uil = (U5+1 - (1 - ”Z)Ué - ﬂzUl)_l)/(n(l + ﬂ)hl),

. =@, -T)/ah),

X1+1/2
77 77 77
le_l/z = (Ul - ulil)/h[,
— 2

U =—" (W, -+ +nl.,).
xx) 77(1+'7)h12( I+1 ( ’7) 1+ 1—1)

(12a)
(12b)
(12¢)
(12d)
(12€)
(12f)
(12g)

(12h)

(12i)
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Similarly, approximations are defined for the solution variable v(x, £) at the grid point (x;, ;)
by replacing U with V' in these expressions. Next, we define

F = £ U, V), U’tl,U;,,Vﬂq), (13a)
— e

PJH:I/Z zf(xlj:l/Z; t/’ Ulﬂ:l/27 Vl:l:l/Z’ Utlil/Z’ uxl:tl/Z’ Vxl:ﬂ/z)’ (13b)
= — (1=-n+n?) ,—

u,=u,- Th%uml, (13c)
= - (-n+n?) ,—j

V,=V)- — n? Vi (13d)

= i Q+n+n?), ~ -
o= Tty Vi Vi) (13¢)

= 5 (A-n+n? - =
- @ e, 40T, ), (13f)

L[ _
T 2+ )

= o Qenen), o
V=V ————h(Fp,~F._
1 6(1 L n)A;l ( 1+1/2 l 1/2)

Ui

tis1

A+n+n”), —  —j L+n+ )AL S
o 1( t ~ ttz_l) + 7},’}112%%. (13g)
12(1 + )4 124,
Finally, we let
= === = =
Fl :f(x[,t/'; ul’ Vl’ L[tl, le,Vxl). (14)

Then, at each grid point (x;, ), [ = 1(1)N, j = 1,2,..., the proposed differential equations
(8a)-(8b) are discretized by finite difference methods of accuracies O(k* + h7) and O(k* +
k*h; + I}) given by

), - 1+, + U,

W? — . .
= é[(" - 1)V11+1 +(1+ n)(l +0+ 172) V]l —n%(n - l)V],_l] + O(kzhl3 + h?), (15a)

n-1 . . .
(Aoo + 0 3 MAvo | (Vi — A+ )V, +1V))

h? — . .
== L0 =Dy, + W) (U4 0°) Uy, =0 = DUy ]
2 y N _
+ 0=+ e (1= 2 JFi- - 0FL
+ O(K*h} + K°H; + hy), n#1 (15b)
and
=i o Moo i v 1, Y
Uy -+ + U, = E[Lv“1 +MV,+NV_|+T, (16a)

(A()() + hlPIlAIO + hlzpzlAzo) (‘_/ll+l — (1 + T])‘_/]l + 77‘_/]1_1)
2

h — —j —j - 5 —j@
1 7] 7] 7 ! o/
= E[_Pluttl+1 -Quy, - Rluttl_l] + ?[PTP']I+1/2 +Q[F, + R;kpll—llz] +T, , (16b)
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__i(1) —i(2)
respectively, where T) = O(K* I} +13), T, = O(k*h? + k*Ii3 + h3) for arbitrary 6, provided

that n #1.
The derivation of the numerical methods (15a)-(15b) is straightforward. So, we discuss
in detail the derivation of the novel off-step discretization technique given by (16a)-(16b).

At the grid point (x;, ¢;), we let

3f i of i of j 8f
Vi = ] &= ) &=

o7

9 j
au’ b=

The differential equations (8a)-(8b) at the grid point (x;, ;) may be written as

Uso = Voo, (17a)
AgoVao + Uoa =f (%, t), u’ v’ UZ’ uf ) F’ (17b)
Similarly,
J U i i
Fl:tl/2 :f(xl’ t]’ ulil/Z’ Vl]il/Z’ uilj:l/Z’ uxl;tl/z’ Vilﬂ/z) (18)
By using the Taylor series expansion in T-"éil 15> We obtain
. . k2 772],12
Flap=F,+ s h+ 2—4’T2 + O(Khy + }), (19a)
- i K2 h?
PJZ—1/2 = F;—l/Z + Z Tl + ﬂ T2 + O(kzh[ + h?), (lgb)
where
T, =60 (Uozaf + Vozﬁ; + U12)’,j + Vl28§) + UosS;y
Ty = 3Unoc) + 3Vao B, + Usoy] + VaoS) + 3Un&).
Next, we let
Ul L[l +ﬂ1hl (203)
v, V) + b2V, Vi (20b)
U, =U, +camh(V, -V, (20¢)
—j .
V - V + dlhl(ljlhl/Z _Fl 1/2) + dzhl( tt1 u]ttl,l) + d3h2 xxl (20d)
=j
u, = utl + el( —(1+ n)utl + nUt, ) (20e)

where a1, b1, ¢1,d1,d>,ds, and e; are the parameters to be determined in such a way that
)
the truncation error T)  is of accuracy O(K*h? + k2K + ).

Using approximations (12a)-(12i), with the help of equations (19a)-(19b), from (20a)-

(20e) we obtain

= J 2 hlz 4 3
U,=U,+6k L102+ZT3+O(I< +hl), (21a)
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= "
V]l =V +0k* Voo + éﬂ +O(k* + 1),

= j 2 h12 272
U, = U, + 0K U + - Ts + O(KChj + ),

= . h?
V,, =V, +0K Vi + 5 To+ O(K*h; + 1Y),

— X k2 h2

L_[; = U, + 5 Uos+ ng7 +O(K*h} + }),
where

T3 = 6a; Uy,

Ty = 6b1 V>,

Ts = [+ 6c1(1+ 1) Uso,
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(21b)

(21¢)

(21d)

(21e)

d
T = |:(77 +3dy(1+1)Ag0) Vao + 6(1 + 77)(51 + dz) Uyy + (3dy(1 + n)Ax + 6d3)V20:|,

T7 =3e1n(1 + )y

Finally, invoking the Taylor expansion and using (21a)-(21e) in (14), we obtain

—j X k2 h2
I_-“]l =F + < T+ éTs + O(K*hy + 1),

where Ty = Tsa} + Ty, + Tsy] + T8} + T+£).
Further, by Taylor’s series expansion we may write

n(1+n)

), -+, + U, = LIL1 -1+ n)Ll{ + nUf_l +60 5

H K U,

+O(K*h} +k*), n#1
and

(AOO + hlpllAIO + h?leAzo) [‘_/Ilﬂ — (1 + T})VIZ + T}lefl]

= (Aoo + Py, Ay + h12P21A20)[‘/[j+1 -1+ 77)V1j + ’7‘/{4]

+6

1
n 2+ n)h,ZkZAoo Vi + O(KXIE + k%), n 1.

(22)

(23a)

(23b)

Since Uy, = Vi, using relation (23a) in (16a), by the help of Taylor series the local trunca-

—i(D) —iM
tion error Tll associated with (16a) may be obtained as T], = O(kzh? + hls) for arbitrary 6.
In a similar manner, by the help of approximations (12a)-(12d), (19a)-(19b), (22), and (23b),

o)
from (16b) we obtain the local truncation error T/, associated with (16b) as

—_@ KWk U
le = —1—2’7(1 + Tl)|:T1 - % - 69A00V22]

4

— ;1—1277(1 + 71)[(1 -n+ y]2)T2 + 2T8] + O(kzh? " h?)
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We observe from (24) that for the proposed method (16b) to be of accuracy O(k* + k*h; +
h?), the coefficient of 4} in (24) must be zero, that is, if and only if

(1-n+n*)T,+2T5 =0. (25)

Thus, equating the coefficients of each of Usg, Va0, Uz, Uso, V3o, and Uis in (25) to zero,
we obtain the values of the parameters

1Q-n+n? AQ+n+n?
a=b=——"7-—, =———
4 12(1 +n)
4= 1+n+n%) ~(+n+n?)
YT 6+ )Ag” 27 12(1+ mAge”
P @ +n+nH)Amp A-n+n?
3= — e =——(/————.
12A00 2n(1+n)

Hence, we conclude that for this set of parameters, T/lm = O(kzhl2 + kzhl3 + h?) and the
difference method (16b) is of accuracy O(k* + k2h; + h?) for arbitrary 6.

For the quasi-linear differential equation (1), that is, when the coefficient A = A(x, ¢, u, v),
we need to modify our proposed difference methods (15a)-(15b) and (16a)-(16b). In this
case, we make use of the following approximations in (15a)-(15b) and (16a)-(16b):

AT P T (26)
Ay = 2(Z§+1 -1+ n)zlé + nZﬁ_l), (26b)
n(1+n)h}
where
A, = A, 5, T, V), (26¢)
le'ﬂ = A(xlﬂ, L Uléil’véil)‘ (26d)

Using approximations (26a)-(26d), the difference methods (15a)-(15b) and (16a)-(16b)
retain their orders, and hence we obtain difference methods of orders O(k? + h?) and
O(K? + k*h; + h3), respectively, for the numerical solution of the quasi-linear equation (1).

When 71 =1 (constant mesh case), that is, for /;,; = &; = h, the proposed methods (15a)-
(15b) and (16a)-(16b) for the solution of the differential equations (8a)-(8b) reduces to the
following implicit difference methods of orders O(k? + 42) and O(k? + h*):

82U, = BV, + O(KH> + 1Y), (27a)

Aood2V) + 1T, = F)+ O(K*K + hY), 1=1(N,j=12,... (27b)
and

. //12 . T
j j j
83U, = E[V“l +10V,+ V. ] + O(K*h* + K°), (28a)
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h? 243\ =5 H* hA10 \—j hAw \
|:A00+12<A20— AOO )i|8 Vl 12[(1 AOO )L[n“+101,lm+( + AOO )L[ml]

e hA hA1o
:E[(l 2A00)PJ1+1/2+F1 <1+2A0 )Fll 1/2:|+O(k2h2+k2h4+h6)

[=11)N,j=1,2,..., (28b)

respectively, for arbitrary 6.
Note that for the constant mesh case, the difference method (28a)-(28b) is fourth-order
accurate in space for a fixed value of the mesh ratio parameter A = k/k?.

3 Two-level off-step discretization strategy and truncation error analysis
In this section, we develop new quasi-variable mesh off-step finite difference methods for
the differential equation (6) with initial and boundary conditions given by (2a)-(2c).

Let us introduce the new variable v(x,t) = u,y(x,t) — us(x, ). Then we may rewrite the

given PDE (6) in a coupled manner as

0%u  du

Pyl +v, (x1t) e, (29a)
9?2 a

8_9612/ = a—‘; +g(x, L,V Vi),  (%,1) € Q. (29b)

Note that the initial and Dirichlet boundary conditions are given by u(x,0) = uo(x),
u(a,t) = go(t), and u(b, t) = g1(t). Since the grid lines are parallel to the coordinate axes, this
implies that the values of their successive tangential derivatives are known on the bound-
ary, that is, the values of u,,(x,0) = ug(x), u(a, t) = gy(¢), and u.(b,t) = g{(¢) are known
exactly on the boundary.

The initial and boundary conditions associated with (29a)-(29b) can be written as

u(x, 0) = ugp(x), v(x,0) = ug(x) —u1(x), a<x<b (30a)

wa,t) =go(®),  vat)=ho()-g),  ubt)=a(),

v(b,t) = () —g(¢), t>0. (30b)
Let
’t; =t + vk, (31)

where 0 < T <1 is a parameter to be suitably determined.
Our quasi-variable mesh numerical methods are described as follows. For p = 0, £1, let

,, =t + -0, (32a)
U;il/Z = (u;il + flj) 12, (32b)
a, = (un,-u,,)k (32¢)
U, = (U, - (1= )] - n*U)_,) (n@ + D), (32d)
a,,, = (U, - ) mh), (32¢)

Page 11 of 29
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w.o =W -u.)h, (32f)

X1-1/2

~j 2

w,=—-" (U
’”” n(1+n)h2(

1= W+ + ). (32g)

Replacing U by V in these expressions, similar approximations are defined for the solution
variable v(x, t) at the grid point (x;, £;). Using these approximations, we define

/G\ll = g(xlr/t;; Z\[;’ /‘7;’ ai ) /‘7916 ); (333)

Gll:tl/Z =& (xlil/Z’ & ul:tl/Z’ Vl:i:1/2’ uxlim Valc[il/z) (33b)
Let

A~ (L=n+n?) ,~

u,=1 - i, (34a)

& o~ A=-n+n?) .~

ViV -k, (34b)

&~ Q) o o

L[;l = 551 - 12(1 + 77) hl(‘/l+l - ‘/l—l)’ (34C)

s o~ A+n+n?), A ~j 1+n+n%) i

Vicl = Valcl - 6(1 + n) hl(Gl+1/2 - Gl—l/Z) - 12(1 + n) h (‘/thl th 1) (34d)

Finally, we define

a =g(x1,’t;,Q,,\2/1,L?/ Vv, )- (35)

xp? "Xy

Then, at each internal grid point (x;, ), [ = 1(1)N,j = 0,1,2,..., the finite difference meth-
ods of orders O(k* + h7) and O(k? + kh; + i) for the differential equations (29a)-(29b) are
given by

., -+l +l_,

R B

S Lo =0T+ Vi) + Wem(@+n+0®) (@ + V) =0’ = D(U;, + V)]
+ O(K*h} + ki + hy), (36a)

Vl]u -1+ ’7)/‘71] + 77"71]-1

h? .
= L= Vi, + Qe (e n') Vg =’ =)V,

2

h e
+ gl |:(Tl ~1)G,yp + (14 '7)<1 BN > -1’1 -1)G_ 1/2:|
O(K*h} + kij + h}), n#1 (36b)
and
Ujy = (e U] + 0l

+ V’

hi ] 7 o
= E[L(utz 1 I+1 + Vl—l)] + T[ ’ (37a)

)+ M(Uj, + V) + N(U,

t-1
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Vl/+1 -1+ ’7)/‘71] + 77"71}-1

1+ 77) GJ G]

- 1/2]

A/(Z)
+1), n#l, (37b)
1

2
=ﬁpw
6

41

h =i
+MV +Nth 1] + = nGpyp +

respectively, for 7 = 1/2, where T} = O(CK? + kii} + k) and T} = O3 + ki? + i),
provided that  #1.

We discuss in detail the derivation of quasi-variable mesh finite difference method (37a)-
(37b). In this section, at the grid point (x;, £;), we denote

9 9 9 9 9
-2 g% %% ;% g %
ot o’ v’ L, v,

The proposed differential equations (29a)-(29b) at the grid point (x;, ;) can be written as

Uyo = Uo + Voo, (38a)

Vao = Vo +g(x1,6, U, V], UL, V])) = G, (say). (38b)
In a similar manner,

i j .
Gp=¢ (xl’ L ul:tl/Z’ Vl:i:l/Z’ ufc,ﬂ,z Valclil/z) (39)

The following relations are obtained upon differentiating system (29a)-(29b) with respect
to ¢ at the grid point (x;, £;):

U1 = Upy + Vo, (40a)

V21 = V()2 +E+HU()1 +IV()1 +]LI11 +1(V11. (4‘0b)

By the help of approximations (32a)-(32f), from (33b) we get

~i . 2h2

Gl = Gl + TkS1 + 2—4’52 + O(K* + khy + 1), (41a)
o J h12 2 3

Glip =Gy + TKS + ﬂ52 +O(K* + khy + h}), (41b)

where

Si=E+ UOlH + V()ll + U] + VK,

52 = 3u20H + SVZOI + Ugo] + Vgo](.

Now, let
0= + p 200, (42a)
V=Vl s qi2?i o (42b)
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»

x] = /L?jq + rlhl (/‘71]'+1 - ";'lj—l)’ (42C)

Vic, =Vi+ $11(Gl1p = Grypp) +2(Viy, = Vi,

), (42d)
where p1,q1,71,51, and s, are the parameters to be determined in such a manner that the
truncation error 7"; is of order O(k>h? + k3 + h3).

Using approximations (32a)-(32f) and (41a)-(41b), we obtain

Lﬁli = LI{ + Tkl + %1253 +O(K* + ), (43a)

;\% = V] +thkV + %1254 +O(K* + I}), (43b)

flil = Ufg + Tkl + %1255 + O(k2 + khy + h?), (43c)

’\7,;1 = Vv{z +1kVi + ]%1256 + O(k2 + khy + h?), (43d)
where

S3 = 6p1 U,

S4 =641 Vo,

S5 =[n+6r(1+n)]Uso,

Se = |:(n +3s1(1+ n)) V3o +6(1 + n)(-%1 + 32) Vn]-

Using (31) and (43a)-(43d) in (35), we obtain

S W2
G, =G +1kS; + =87+ O(K + ki + 1), (44)

where S; = S3sH + Syl + S5] + SgK.
. . . . ) . .
Using relation (40a) and Taylor series, the local truncation error 7; = associated with
(37a) is obtained as

A0 1 1
7 :kh,zn( 2+n)<

T - 5) Uy + O(k2hl2 + khl3 + h?) (45)
For the proposed difference method (37a) to be of order O(k? + ki + h;’), the coefficient of
khl2 in (45) must be zero; thus, we obtain t = %, and the local truncation error ?{(l) reduces
to O(K*h? + ki3 + I3).

With the use of approximations (32a)-(32g), (41a)-(41b), and (44) in (37b) and relation
(40Db), taking 7 = %, the local truncation error /7\”{(2) associated with (37b) may be obtained
as

) 4
?{(2) = —%n(l +M[(1=n+n?)S; +28;] + O(K*h} + khj + Ir}). (46)
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Thus, for the proposed difference method (37b) to be of order O(k? + ki, + hl3), we must
have

(1-n+n%)Sy +25;,=0. (47)

Substituting the values of S, and S, into (47) and equating to zero the coefficients of
U, Vo, Uso, V30, and Vi3, we obtain the following values of the parameters:

B G R/ A (3 R )
p=aq A DYC B
Q+n+n?) Q+n+n?)
Sl=———— Sy =———.
! 6(1+17) > 12(1 + )

With this set of values, the local truncation error ?{(2) reduces to O(k*h? + ki3 + Iry).

For n =1 (constant mesh case), that is, for /;,1 = h; = h, for t = %, the proposed methods
(36a)-(36b) and (37a)-(37b) for the solution of differential equations (29a)-(29b) reduce
to the following implicit difference methods of orders O(k? + h2) and O(k? + h*):

82U = (U, + V)) + O(K*K? + h*), (48a)
82V =n*(V] +G) + O(K*K* + h*), 1=1(1)N,j=0,1,2,... (48b)
and
200 = (0, + V) +10(, 4 T))  (E, + V1)
+ O(K*h* + kh* + 1), (49a)

S0 o n a2
tha T 10Vtz + ‘/tl—l] + g[GZH/z + GJl + Gl—l/z]

207 _ s

82V = E[V

+ O(K*W* + kh* + h°), [=1(1)N,j=0,1,2,..., (49b)
respectively.

4 Stability analysis using characteristic equation
Let us consider the singularly perturbed model equation

*u  9’u
gty =), ®HeQ (50)

where 0 < € <« 1 is a small parameter. The proposed difference method (28a)-(28b) of or-
der O(k? + h*) for the uniform mesh when applied to this equation results in the following

scheme written in the matrix form:
YT =2S+T)y -Syt+w, (51)

where

Su S h T
S= 11 12 , T = 11 12 , y
521 522 T21 T22

Il
N
| I
N
1l
1
e
| I
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The matrices S and T are 2N x 2N block tridiagonal, y is the 2N-component solution
vector, and w denotes the 2N component column vector of known boundary values and
right-hand side function values of the block system (51). The submatrices for S and T are
given by

Su=120[1,-2,1],  Spp=-h*0[1,10,1],

Sa1 =[1,10,1], Syo =1222K%€0[1,-2,1],

Tyn=-12[1,-2,1], Ty =h*[1,10,1],

Ty =[0,0,0],  Tap=-122%H%€[1,-2,1],

where [a,b,c] is the N x N tridiagonal matrix having eigenvalues b + 2./accos(2¢), ¢ =
(s)/(2(N +1)),s = 1(1)N, and A = k/k? is the mesh ratio parameter for the uniform mesh
(for n = 1, that is, for k1 = iy = h). Here, u = (1, s, ..., un)" and v = (vi,va,...,vn)7 are
solution vectors.

The eigenvalues of Si1, S12, S21, and Spy are given by —4.86 sin? ¢, —h20(12 — 4 sin® ¢), 12 —
4sin® ¢, and —4812h%€0 sin? ¢, respectively. Further, the eigenvalues of T1y, T13, To1, and
Ty, are given by 48sin® ¢, h*(12 — 4sin® ¢), 0, and 481%/%¢ sin? ¢, respectively.

For discussing the stability of the differential equation (50), we consider the homogenous
part of the difference scheme (51), which may be written as

Yy =Qr+S7T)y -1, (52a)

77 =1y + 0. (52b)

We denote by &} = y/— Y/ and &} = 2 — Z the error vectors at the jth iterate (in the absence
of round-off errors), where

J+l J
Yj+1 — U s Zj+1 — Y/ — U ,
|4 |4

U and V being exact solution vectors.

We may write the error equation as

j+1
Ej+l _ [81} :HEj,
&2

where the amplification matrix H is given by

20+ ST I
H-= .
I 0

The characteristic root & of the matrix S satisfies the following characteristic equation:

_ s 2 12 _ s 2
det[ 480sin®p—&  —h20(12 — 4sin d’)}:o,

12—4sin’¢p  —48A%h*efsin® ¢ — £

Page 16 of 29
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which on simplification gives

£ = —24(1+A*H’€)0sin’ ¢

+ /57662 (1 - 12)%€) sin* ¢ — 16426 (6 sin” ¢ — 9 —sin* ). (53)
The characteristic root p of the matrix T satisfies the following characteristic equation:

—48sin’¢p—p  H2(12 - 4sin® @)
det 272 .2 =0,
0 48)\°h=esin“ ¢ — p

which gives
p1=48sin’¢ and py = 482%h%€ sin . (54)

Let v be the eigenvalue of S~ T, where & and p are eigenvalues of S and T satisfying (53)
and (54), respectively. If i denotes the characteristic root of the amplification matrix H,
then it satisfies the following characteristic equation:

which gives
u2—2Wu+1=0, (55)

where W =1 + 7. Hence, we conclude that the difference method (28a)-(28b) is stable if
W] <1

For stability of the particular fourth-order PDE, we consider the linear parabolic equa-
tion of the form

tu BPu  d%u

g S 0 T e, (f) e 56
ot~ 2oaer T o SEwD ()€ (56)

Applying the method (48a)-(48b) of order O(k? + 4?) for the uniform mesh to the differ-
ential equation (56), we obtain the matrix equation

QY =Ry +1, (57)
where

QA @ R R |u &
S P S P A K

u, v are solution vectors, and the vectors /3, /; consist of homogenous functions, initial and
boundary values of the block system (57). The submatrices Q;, Qs, Ry, and Ry are given by

A k
Ql = [01 1, O] - 5[11 _2:1]! Q2 = 5[0!1! O])
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A —k
Ri=[0101+50L-21], R= {[0,1,0].

, 5,1-21sin’ ¢,
respectively. Hence, the elgenvalues of the matrices Q and R for the difference

The eigenvalues of submatrices Q;, Qq, Ry, and R, are given by 1+ 2A sin® q)
—k
2 )
method (48a)-(48b) are given by 1 + 24 sin? ¢ and 1 — 24 sin® ¢, respectively.

The amplification matrix of system (57) is given by Q7'R. Since the matrices Q! and R

and

commute each other, the eigenvalues v of Q'R are given by

1-2xsin’¢
V= (58)
1+ 2Asin“ ¢

Since 0 < sin® ¢ <1, from (58) it is easy to verify that || <1 for all variable angles ¢ and
A > 0. Hence the method (48a)-(48b) is unconditionally stable for the differential equa-
tion (56).

5 Application of the proposed difference methods to a linear singular equation
Let us consider a class of linear singular equations of the form

0%u 2 a3\’ %u
4 - -
Viu+ =<8r2+;8r) Ut =f(r,t), O0<r<1,t>0, (59)

equipped with the initial and boundary conditions of the form (2a)-(2c). Equivalently,
equation (59) can be written in a coupled form as

0%u

W =V, (603)

v 3%u %u 0%u ou

a2 + P =B(r)— 573 + C(r)ﬁ +D(r)5 +f(r,t), O0<r<lt>0, (60Db)
where

—2a a2 -a) oo —2)
B -, <=2 pey - T
r r r

For o =1and 2,

, 0% ad

:ﬁJrrar

denotes the Laplacian operator in cylindrical and spherical coordinates, respectively, in
one space dimension.

Applying the difference method (15a)-(15b) to the singular equation (59), we obtain the
following difference scheme of accuracy O(k? + hlz):

2

), — (1+ 0, + it = —’[(n ~ V), + A+ )0+ 02),-n*(-17,,],  (6la)
Vo = (L4 )7, 4 07 + - [(n Vity,,, + L+ n)(L+ 1+ 02y, - 21 -V, ]

l’l2 .
[m DB, , +Con), + Dy, +1,,)



Mohanty and Kaur Advances in Difference Equations (2016) 2016:326 Page 19 of 29

+(1+n)<1_g+772)(BlVl +C11/ +Dl”r[ +fl)

_nZ(n_l)( 1711/ +Cl %1_/_%+Dli%ﬁj %+fl]—§)i|’ (61Db)

where, for p = 0,%1/2, Bl+p = B(I’[+p), Cl+p = C(rl+p)’ Dl+p = D(rl+p): andf[];,p :f(rl+p7 t})
Similarly, applying the difference method (16a)-(16b) to the singular equation (59), we
obtain the following difference scheme of accuracy O(k* + k*h; + h3):

Eéu -1+ ’7)7[; + 7771'-1 i [L‘/m +MT/ + NT/ ] (62a)

‘_/l+1

1+ 77)‘/ + 77‘/ + 5 [Pl”]ttm + Qll’[lttl + Rlultt, 1]

77h2 —_j i j
|:(’7+P0)( L1V e +Cl+%‘/,+% +Dl+%ulrl+% +f,+%)

(1+n)

5 " (Bi¥, + Ci¥, + Dyt + f] + qo (., T, ,) + 10V, + 5071 — 7)y))
+(1 —po)(Bl_%T/;li% +Cy? + Dl_%ﬁﬁli% +f;'_§)}, (62b)
where
o= _%Bm do = (11;(;’7:;’)) i,
ro:—(1++nz)C;h2, soz—% ih.

Note that the quasi-variable mesh difference schemes (61a)-(61b) and (62a)-(62b) for the
solution of singular equation (59) do not have the terms involving 1/(r41), so the singu-
larity at » = 0 is avoided, and thus these schemes can be very easily solved in the region
[0 < 7 <1] x [¢ > 0] without any modification. The difference scheme of accuracy O(k? + i*)
developed by Mohanty and Evans [37] using three spatial grid points for the uniform mesh
featured a major drawback: it is not directly applicable to the singular equation (59) since
it contains the term Fj_j, so a singularity arises at [ = 1 since rp = 0 and requires a special
treatment to deal with the singular points. However, this is not the case with our proposed
schemes since F;_ 1 appears instead of F;_;, which is the major advantage of using off-step

discretization.

6 Computational results

In order to test the accuracy of the proposed methods, we have solved a large variety of
linear and nonlinear fourth-order parabolic problems. In each case, the exact solution
is prescribed and the right-hand side functions, the initial and boundary conditions, are
obtained using the exact solution as a test procedure. We have chosen 6 = 0.5 in each
case for computing the solution of PDE (1), and all the computations were performed us-
ing MATLAB. The matrices represented by the new formulas are block tridiagonal. The
Gauss-Seidel iteration method has been used for solving linear coupled system of equa-
tions, whereas the Newton nonlinear iteration method has been applied to determine the
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solution of nonlinear equations (see [38, 39]), and in each case, the iterations are termi-
nated once the absolute error tolerance 10712 is reached.

Note that the proposed difference methods (15a)-(15b) and (16a)-(16b) are three-level in
time. The values of # and v are known from the initial conditions. To begin any compu-
tation, it is necessary to know the values of # and v of required accuracy at the first time
level, that is, at ¢ = k. Using the known values of u and u;, at £ = 0, we can determine all
their successive tangential partial derivatives at ¢ = 0, that is, the values of

aru? 8”114? arv? ar+lv?
dxr " dxrot’ dx dxrdt’

r=0,1,...,

are known at £ = 0.

We use the following approximations for # and v of accuracy O(k?) at ¢ = k:

k2

Uy = Uy + kU + EU?” +O(k%), (63)
2

V=V +kV) + ?v;gl +O(K). (64)

The considered fourth-order quasi-linear PDE (1) may be written as

9%u 9%y
P —A(x, t,u, uxx)@ (8 Uy Uy Uy Uy Uners), (X, 2) € Q. (65)

Differentiating (65) twice successively with respect to x and using the relation v = u,,, we

get

9%y 4

2 tu
8t2 - ﬁ |:_A(x’ t; u, uxx) +f(xr t’ U, v, U, Uy, Vx)i|, (xr t) € Q' (66)

oxt
Using the initial values and their successive tangential partial derivatives in (65) and (66),
we can determine the values of 1/ and V.
(64), respectively, we can compute the values of # and v of required accuracy at ¢ = k.

Finally, substituting these values into (63) and

Throughout our computation (wherever not specified), we have used the time step k =
1.6/(N +1)? for finding the solution at ¢ = 1. Since

b—a=xn—x0= (XN —xn) + (v —an1) + -+ (01 —x0) =y +hy + -+ I

=h1(1+n+n2+---+nN),

so the first mesh spacing in the x-direction is obtained as

(b-a)1-n)

hl = 1- nN+1

, n#L (67)
Thus, we can calculate /1; using (67) and mesh lengths of the remaining subintervals in the
x-direction are computed by using the relation /;,; = nhy, [ =1(1)N.

Example1 We consider the Euler-Bernoulli beam equation (3) in the following form [32—
35]:

9*u  9%u

P +W=(7r4—1)sin7rxcost, 0<x<1,t>0. (68)
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Table 1 The absolute errors in the displacement u and the bending moment uyy for the
Euler-Bernoulli beam equation (68) for Example 1

Methods Time N+1 k x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
Proposed 0.02 20 0.00125 wu 1.53 (-08) 291(-08) 4.00(-08) 4.70(-08)  4.95(-08)
method Uy 1.52(=07) 2.90 (-07) 399 (-07) 469 (-07) 4.93(-07)
(28a)-(28b) 0.02 40 0.00125 u  5.07(-09) 9.64 (—09) 133 (-08) 1.56 (-08) 1.64 (-08)
Uy 5.01 (-08) 9.53 (-08) 1.31(-07) 1.54 (-07) 1.62 (-07)
0.05 20 0.005 u  479(-07) 9.11 (-07) 1.25 (-06) 147 (-06) 1.55 (-06)
Uyy 1.08 (-05) 2.05 (-05) 2.82 (-05) 3.31 (-05) 348 (-05)
0.05 40 0.005 u  4.19(-07) 7.96 (-07) 1.10 (-06) 1.29 (-06) 1.35 (-06)
Uy 3.16(-06)  6.02 (-06) 8.28 (-06) 9.74 (-06) 1.02 (-05)
Mohammadi [35] 0.02 20 0.00125 u  4.29(-07) 2.51 (=07) 1.24 (-07) 138 (-07) 140 (-07)
0.02 40 0.00125 u 854(-08) 623(-08) 491(-08) 5.07 (-08) 5.12 (-08)
0.05 20 0.005 u 296 (-06) 1.77 (-06) 1.64(-06)  2.28 (-06) 2.65 (-07)
0.05 40 0.005 u  9.07(-07) 7.84 (-07) 769 (-07)  8.27(-07) 8.61 (-08)
Mittal and Jain 002 181 0.005 u 1.50 (-07) 2.90 (-07) 390(-07) 4.60(-07)  4.90 (-07)
[34] 005 181 0.005 u 1.10 (-06) 2.09 (-06) 2.88 (-06) 3.38 (-06) 3.56 (-06)
Rashidinia and 0.02 20 000125 u 447(-07) 266(-07) 1.39(-07) 1.55(-07) 1.57(-07)
Mohammadi [33] 0.05 20 0.005 u 291 (-06) 1.73 (-06) 1.60 (-06) 2.23 (-06) 2.60 (-07)
Caglarand 002 121 0.005 u  480(-06) 9.70(-06) 1.40(-05)  1.90(-05)  2.40(-05)
Caglar [32] 002 19 0.005 u  520(-06) 2.10 (-06) 3.10(-06)  4.20 (-06) 5.20 (-06)
002 521  0.005 u  490(-07) 990(-07) 1.40(-06) 1.90(-06)  2.40 (-06)

The exact solution of this problem is

u(x,t) = sin Tx cost.

We have solved this problem by the proposed method (28a)-(28b) with /2 = 0.05,0.025 and
k =0.00125,0.005. The absolute errors in the displacement # and the bending moment
U,y at particular points x = 0.1,0.2,0.3,0.4, 0.5 are computed and reported in Table 1 for
different time levels ¢ = 0.02 and ¢ = 0.05 using 16 and 10 time steps, respectively. We have
compared our results with the results in [32—35], and it is evident from Table 1 that the
proposed method (28a)-(28b) provides relatively more accurate solutions in comparison
to the other existing methods. Figure 1(a) and 1(b) give a comparison of the plots of the
exact and numerical solutions with 2 = 0.025 and k = 0.005 for £ = 0 to 0.5.

Example 2 We consider the following nonhomogenous fourth-order parabolic equa-

tion [33]:
9?2 9% 6
—u+(1+x)—u= 2 +at——a" Jcost, O0<x<1,¢>0. (69)
ot? ox* 7!

The exact solution is

u(x,t) = %x7 cost.

We have solved this problem using method (28a)-(28b) with /% = 0.05 and k = 0.00125
using 16 time steps. The absolute errors in # and u,, at particular points x = 0.1,0.2,0.3,
0.4,0.5 are tabulated in Table 2 at ¢ = 0.02 and compared with the results reported in [33].
These results verify the superiority of the proposed method.
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Figure 1 Example 1: The graph of numerical and exact solutions for h = 0.025 and k = 0.005.

Table 2 The absolute errors for the nonhomogenous fourth-order parabolic equation (69),

Example 2

Methods A Time steps x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
Proposed O(k? + h*)- 05 16 u o 209(=11) 263(-11) 123(-10) 193(-10) 285(-10)
method (28a)-(28b) Uy 506(-09) 154(-08) 6.00(-08) 340(-08) 3.87(-08)
Ok’ + h*-method in[33] 05 16 u  746(-10) 291(-10) 865(-10) 6.87(-10) 6.98(-10)
O(k* + h*)-method in [33] 05 16 U 625(=10) 222(-10) 453(-10) 441(-10) 503 (-10)

Example 3 We seek the numerical solution of the following homogenous variable coeffi-
cient problem [28, 29, 33]:

1 x*\o*u d%u 1
~+—)—+—=0, —<x<Lt>0. (70)
x 120/ 9x* 92 2

The exact solution is

2\ .
u(x,t) =1+ — | sint.
120

In order to compare the results obtained using our proposed methods with those of the
existing methods [28, 29, 33], we have solved this problem using method (28a)-(28b) with
h =0.05 and k = 0.000125, 0.00025, 0.000625 using 80, 40, and 16 time steps, respec-
tively. The maximum absolute relative errors defined as

are tabulated in Table 3 at ¢ = 0.01. Numerical comparison with the existing method of the
same accuracy O(k? + i*) as the proposed method (28a)-(28b) demonstrates the superi-
ority of our proposed methods. The 3D graphs of the numerical solution vs exact solution
are plotted in Figure 2(a) and (b), respectively, for 0.5 <x <1 from ¢ = 0 to 0.01.
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Table 3 The Maximum absolute relative errors for Example 3 at t = 0.01 for various values of
A (uniform mesh)

A Proposed o(k? + h*)- O(k? + h%)- Method Method
O(k? + h%)- method method discussed discussed
method discussed discussed in [29] in [28]
(28a)-(28b) in[33] in[33]
0.05 u 6.0176 (-12) 521 (-08) 5.33 (-08) 9.90 (-08) 1.90 (-06)
Uy 24614 (-12)
0.1 u 44223 (-12) 1.03 (-07) 9.97 (-08) 8.10 (-08) 7.20 (-07)
Uy 3.1911(-12)
0.25 u 52459 (-12) 3.74 (-08) 3.51 (-08) 6.90 (-08) 4.10 (-07)
Uy 49774 (-12)

0.8
0.005

0.6
x values 0 tvalues X values 0 tvalues

(a) Numerical Solution (b) Exact Solution

Figure 2 Example 3: The graph of numerical and exact solutions for A = 0.1, h = 0.05, and k = 0.00025
fort=0t00.01.

Example 4 We consider the singularly perturbed problem of the form

9%y 9%u
e—+—=f(x,£), 0<e<kK1,0<x<1,t>0. 71
ot Tz =@ < (71)

The exact solution is
et
u(x,t)=e sin T x.

The maximum absolute errors (MAEs) using methods (28a)-(28b) and (27a)-(27b) are
tabulated in Table 4 at ¢ = 1 for various values of €.

Example 5 We solve numerically the linear singular problem (59) whose exact solution
is u = r*sinrsint using difference schemes (61a)-(61b) and (62a)-(62b). The MAEs are
tabulated in Table 5 at ¢ = 1 for @ = 1,2 and 1 = 0.94. The 3D graphs of numerical solution
using method (16a)-(16b) vs exact solution are plotted in Figure 3(a) and (b), respectively
forO<r<1fromt=0tol.
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Table 4 The MAEs for Example 4 at t = 1.0 for a fixed A = (k/h?) = 1.6 (uniform mesh)

h O(k? + h*)-method (28a)-(28b) O(k? + h?)-method (27a)-(27b)
€=0.1 €=0.01 €=0.001 €=0.1 €=0.01 €=0.001
1/8 u 3.0988 (-04)  29825(-05)  35010(-06)  3.2430(-02)  1.0781(-02)  1.1932(-03)
Uy 24400(-03) 38680 (-04)  44212(-05  39514(-01)  1.1690(-01)  1.2865 (-02)
1716 u 19387 (-05)  1.8905(-06) 22211 (-07)  80703(-03) 27648 (-03)  3.0660 (-04)
U 1.5294(-04)  24412(-05) 27933 (-06)  99261(-02)  3.0176(-02) 33273 (-03)
/32 u 12121(-06)  1.1856(-07) 13934 (-08)  2.0148(-03) 69554 (-04)  7.7174(-05)
Uy 9.5655(-06) 15293 (-06) 17506 (-07)  24840(-02)  7.6039(-03) 83890 (-04)
Table 5 The MAEs for Example 5 at t = 1.0, = 0.94 (quasi-variable mesh)
N+1 O(k? + k2h; + h})-method (16a)-(16b) O(k? + h?)-method (15a)-(15b)
a=1 a=2 a=1 a=2
8 u 1.8743 (-04) 54079 (-04) 36061 (-03) 8.7376 (-03)
Uy 14353 (-03) 8.2498 (-03) 86067 (~02) 7.9741 (-02)
16 u 1.7017 (-05) 45019 (-05) 6.8621 (-04) 16912 (-03)
Uy 1.5498 (-04) 13071 (-03) 26282 (-02) 4.7895 (-02)
32 u 3.1833 (-06) 7.4946 (-06) 1.2889 (-04) 3.5410 (-04)
Uy 5.1980 (-05) 43430 (-04) 11033 (-02) 3.0090 (-02)

Ny \ ’

0.5 0.5

0.5 0.5
x values 00 tvalues x values 00 tvalues
(a) Numerical Solution (b) Exact Solution

Figure 3 Example 5: The graph of numerical and exact solutions for & = 1, 7 = 0.94, and N + 1 = 8 for
t=0to 1.0.

Example 6 We consider the second-order Benjamin-Ono equation (4) with ¢ = 1 and
r =-1. Fuet al. [40] constructed the exact periodic solutions of equation (4) for the above

parameters using the Jacobi elliptic function expansion method having the form
LS P S
ulx,t) = 5 —40% + 61 tanh*[I(x — rt)].

To compare our results with the results of Lai and Ma [7], we solve this problem with the
difference method (28a)-(28b) with /# = 0.1 and k = 0.01 taking the same physical con-
stants as in [7]: / = 0.3 and r = 0.01 with [-25,25] as the computation domain. The MAEs
are tabulated in Table 6 at various time levels ¢ = 5,10,15, and 20. The 2D graph of the
numerical solution vs exact solution is plotted in Figure 4 for -25 <x <25 at ¢ =5.



Mohanty and Kaur Advances in Difference Equations (2016) 2016:326

Table 6 The MAEs for the second-order Benjamin-Ono equation (4) withg=1,r=-1,
Example 6 at various time levels for h=0.1,k =0.01

t O(k? + h*)-method (28a)-(28b) Method discussed in [7]
u Uyx u
5 42188 (-07) 24846 (-07) 3.3988 (-04)
10 1.8157 (-06) 8.2387 (-07) 52273 (-04)
15 5.5052 (-06) 24263 (-06) 8.2328 (-04)
20 14255 (-05) 6.2847 (-06) 1.2596 (-03)
Figure 4 Example 6: Comparison between 03 — —
numerical and exact solutions of equation (4) at o rgum?gce;l ?oulutlon
t=5forh=0.1and k=0.01. o2k - xacisouton
\\ //
04} \ 4
1 i
~ 0 \\ ]
o) {
3 b
=01t { E
1
{ I’
-02f Lo
) #
L
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t i
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Table 7 The MAEs for the good Boussinesq equation (5), Example 7 at various time levels for
a uniform mesh with k = 0.05

t Parameters O(k? + h*)-method Collocation method
(28a)-(28b) discussed in [36]
u Uxx u

0.5 h=1/40 X0 =30 8.1007 (-07) 44585 (-06) 8.2943 (-07)

1.0 h=1/60 Xo =40 7.6030 (-09) 3.1598 (-08) 7.3326 (-09)

15 h=1/80 Xo =50 58974 (-11) 2.0970 (-09) 6.4525 (-11)

20 h=1/100 Xo =60 2.9068 (-13) 3.2836 (-13) 52066 (-13)

Example 7 We consider the good Boussinesq equation (5) on the domain -25 <x <25
with the following exact solution [36]:

A
u(x,t) = —Asech’ [\/;(x—cuxo)} - <b - %)

This exact solution represents a solitary wave with amplitude A located initially at x = x,
and moving to the right or left corresponding to the sign of the velocity c. If ¢ is posi-
tive (negative), then the solitary wave moves to the right (left). For comparison with [36],
we first choose the parameters A, b, and ¢ similar to [36], that is, A = 0.369,b = —%, and
¢ = 0.868 for various values of xy. We have solved this problem with the method (28a)-

(28b) presented in this article at various time levels ¢ = 0.5,1.0,1.5, and 2.0, and MAEs are
reported in Table 7.
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Table 8 The MAEs for Example 8 at t = 1.0, 77 = 0.92 (quasi-variable mesh)

N+1 O(k? + k2h; + h})-method (16a)-(16b) O(k? + h?)-method (15a)-(15b)
a=10 a=20 a=40 a=10 a=20 a=40

8 u 33667 (-05)  7.7683(-05)  1.7212(-02)  26072(-04)  3.0874(-04) 26133 (-02)
Uy 33298(-04)  76915(-04)  17290(-01)  23571(-04)  7.0446(-04) 25645 (-01)
16 u 21139(-06) 47259 (-06) ~ 1.0805(-03) 86976 (-05)  1.0909 (-04)  9.5763 (-03)
Uy 21334(-05  47049(-05  10817(-02)  12171(-04)  34424(-04) 94655 (-02)
32 u 13319(-07)  27901(-07)  7.8958(-05)  4.1496 (-05) ~ 5.1293(-05)  3.9491 (-03)
Uy 15345(-06)  29686(-06)  79178(-04)  54398(-05) 15469 (-04) 39160 (-02)

. : R
QR
15 1.5 \\\\\\\\\\\
) ® SR \\\\ \
5 1 3 1
g g
=] 3
0.5 05
0 0
1 1
1 1
0.5 05 0.5 05
x values 00 tvalues xvalues 0o tvalues
(a) Numerical Solution (b) Exact Solution
Figure 5 Example 8: The graph of numerical and exact solutions for &« = 20,  =0.92 and N + 1 = 8 for
t=0to 1.0.

Example 8 We compute the approximate solution of the following quasi-linear equation:
4 82

0*u u
=ou(uy — Ug) +f(x,8), 0<x<1,t>0. (72)

(1+u2+uix)@ + W

The exact solution is
u(x, t) = coshxsinh ¢.

The MAEs are tabulated in Table 8 at £ =1 for n = 0.92 and for various values of a. The
3D graphs of numerical solution using method (16a)-(16b) vs exact solution are plotted in
Figure 5(a) and (b), respectively, for 0 <x <1 from¢ =0 to 1.

Example 9 We consider the following particular type of fourth-order nonlinear parabolic
equations:

94u Pu  d%u

8_3(:4_ W+W=au(um—ut)+g(x,t), O0<x<1,t>0. (73)

The exact solution is

u = coshxsint.
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Table 9 The MAEs for Example 9 at t = 4.0, ) = 0.92 (quasi-variable mesh)

N+1 O(k? + kh; + h})-method (37a)-(37b) O(k? + h?)-method (36a)-(36b)
a=1 a=5 a=10 a=1 a=5 a=10
8 u 2.5627 (-05) 3.5373 (-05) 7.1052 (-05) 1.1611 (-04) 1.1059 (-04) 8.9291 (-05)
Uy — Ut 2.8854 (-05) 88904 (-05)  4.3557 (-04) 1.6636 (-05)  4.6297 (-05) 24532 (-04)
16 u 1.6009 (-06) 22252 (-06)  4.5252(-06) 43184 (-05) 43903 (-05)  4.6318(-05)
Uyx — Ut 1.8900 (-06) 5.7189 (-06) 2.8222 (-05) 2.0745 (-06) 8.1349 (-06) 3.5144 (-05)
32 u 9.1931 (-08) 13617 (-07) 2.9842 (-07) 2.1699 (-05) 2.2259 (-05) 24254 (-05)
Uy — Ut 14804 (-07)  4.2072 (-07) 2.0094 (-06) 1.7714 (-06) 6.1484 (-06) 2.7953 (-05)
Table 10 The MAEs for Example 10 at t = 1.0 for a fixed A = (k/h?) = 1.6 (uniform mesh)
h O(k? + h*)-method (49a)-(49b) O(k? + h?)-method (48a)-(48b)
a=1 a=10 o =20 a=1 a=10 a=20
1/8 u 1.0745 (-05) 1.3706 (-05) 1.9813 (-05)  9.7462 (-03) 1.2495 (-02) 1.7658 (-02)
Uy — Ut 24924 (-04) 2.2351 (-04) 1.7245 (-04) 3.9007 (-02) 6.3033 (-02) 1.0975 (-01)
1716  u 6.6313 (-07) 84307 (-07) 12147 (-06) 24146 (-03)  3.0834 (-03)  4.3337(-03)
Uy — Ut 1.5550 (-05) 1.3987 (-05) 1.1042 (-05) 9.7392 (-03) 1.5641 (-02) 2.7121 (-02)
/32 u 41496 (-08) 52605 (-08)  7.5414(-08)  6.0229 (-04)  7.6836 (-04) 1.0785 (-03)
Uyy — Ut 9.6855 (-07) 8.7423 (-07) 6.8805 (-07) 24340 (-03) 3.9032 (-03) 6.7769 (-03)

The MAEs using method (36a)-(36b) and (37a)-(37b) are reported in Table 9 for n = 0.92
at t = 4 using the time step k = 3.2/(N + 1)2 for various values of a.

Example 10 We consider the particular type of fourth-order singular equation of the

form:

0*u ) Bu  Pu (g —u) o @) 0 Lis0 (74)
o f— =2 T Tu+alxt), O0<x<1t>0.
x4 0x20t  ot? x x &

The exact solution is
ot
u=esinmwx.

The MAEs using method (48a)-(48b) and (49a)-(49b) are reported in Table 10 at ¢ = 1 for

various values of «.

7 Conclusions
In this paper, we propose finite difference approximations for the fourth-order time-
dependent parabolic PDEs (1) and (6). The methods were tested on several examples taken
from the literature to observe the accuracy and efficiency of the new methods. The results
illustrate that the errors in the numerical solution obtained by the current approach are
smaller than those obtained by earlier research studies. The main conclusions are:

(i) High-order accumcy' In the case of the uniform mesh, for a fixed value of the mesh ra-
h2 , the proposed three-level method (28a)-(28b) and two-level method
(49a)-(49b) are fourth-order accurate in space. The numerical results for Examples 1, 2,

tio parameter A =

and 3 indicate that the methods produce better results in comparison to the existing meth-
ods [28, 29, 32-35] for the Euler-Bernoulli beam equation. Also, it is seen from Table 6
that the proposed algorithm performs significantly better than the scheme in [7] for the
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second-order Benjamin-Ono equation and is in good agreement with [36] for the nonlin-
ear good Boussinesq equation.

(if) Compact stencil: The finite difference methods discussed here are based only on
three spatial grid points. In each time step, every iteration involves solving a tridiagonal
system.

(iii) No Ghost points: The boundary conditions are incorporated in a natural way without
the use of any extra nodes or special schemes adjacent to the boundary, thereby eliminating
the usual complexity encountered with the difference methods.

(iv) Directly applicable to singular problems: The existing fourth-order implicit differ-
ence method of [37] for solving the fourth-order quasi-linear parabolic equation (1) is not
directly applicable to problems in polar coordinates and requires a special technique to
handle singular points because of the presence of the terms of the form 1/r;_;, which give
rise to singularity at / =1 as ry = 0. In the present paper, by using off-step nodal points
the singularity at r = 0 is avoided, which enables a direct application of the proposed sta-
ble methods for finding the numerical solution of fourth-order parabolic equations with
singular coefficients.

(v) Unconditional stability of the two-level method: The two-level implicit methods for
the particular type of the fourth-order parabolic PDE (6) are unconditionally stable. Thus,
the time step can be considerably large, which is extremely useful when the problem is
solved on a long time interval. In Example 6, the maximum absolute errors has been cal-
culated at large time levels ¢ = 5,10, 15,20, and in Example 9, the errors are computed at
t = 4. The accuracy of the schemes is not degraded at large time intervals.

Also, the numerical solution of u,,, in case of solution of (1) and the one-dimensional
time-dependent Laplacian u,, — u; and in case of solution of (6), which are quite often
of interest in various applied problems, are computed as a byproduct of the proposed
methods. We are currently working on extension of these methods to solve 2D and 3D
fourth-order nonlinear parabolic PDEs. Application of these new methods to some more

physical problems in science and engineering will be the content of our further research.
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