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1. Introduction

The objective of the paper is to study the nonnegative weak solutions of nonlinear parabolic equation
with the type

u, = div(] V™ P72 V™) —a(x)u™ V™ P + fo(u™) f K"y, HPdy+g(x), inS = Qx(0,00), (1.1)
Q

u(x,0) = up(x), x€Q, (1.2)
u(x,t) =0, (x,1) € 0Q X (0, 00), (1.3)

where Q c R" is a bounded open domain with smooth boundary 6, fg K)|u(y, t)Pdy represents a
nonlocal function dependent on spatial domain €, a(x) > 0 is a bounded function, K(x) and g(x) are
bounded functions too, and V is the spatial gradient operator. We assume that p > 1, m > 1, p; <2,
p>2p, N>1,

0<ul'(x) € LI 5(Q),q > 1, |fo(s)| < clsl™, s € R' = (—c0, ). (1.4)

As usual, the here and after, the constants ¢ may be different from one to another. The equation with
the type of (1.1) has been suggested as the mathematical model for a variety of problems in mechanics,
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physics and biology, which can be found in [10, 11, 15, 17] et al. Equation (1.1) has been widely
researched, whether it is linear or nonlinear, is uniformly parabolic or degenerate parabolic. In what
follows, we only give a very roughly review.

If a(x) = g(x) = fo = 0, the existence of nonnegative solution of the problem (1.1)-(1.3), defined in
weak sense, is well established (see [10], [6] et al.).

If g(x) = f = 0, some special cases of equation (1.1) had been researched by Bertsh [3], Zhou [36]
and Zhang [34] et al. For examples, the existence and the properties of the viscosity solution to the
following equation are obtained in [3,36]

u; = uhu — y|\Vul*, (1.5)

where vy is a positive constant. The existence and the properties of the viscosity solution to the following
equation are obtained in [34]
u, = Au— b0l [Vul, (1.6)

where b(x) is a known function. The most important characteristic of the equation (1.5) or (1.6) lies in
that, generally, the uniqueness of the solutions is not true, one can refer to [4,9,29,34,36] for the details.
Thus, for the equation with the type of (1.1), one mainly concerns with the existence of the viscosity
solution and the related properties such as the large time behavior, one can refer to [8,20,33,35] et al.
for some progresses in the direction.

But if p; = 0, it is well-known the uniqueness of the solutions is true. Aassila [1] studied equation
(1.1) when p = 2,m = 1 and proved the existence of solution by Schauder fixed point theorem, studied
the convergence of the solution towards a steady state by using the point of view in dynamical systems.
Cholewa and Dlotko [7], Teman [28] considered the following problem

u, — div(| Vu P72 Vi) + |ul®u = fo(u) + g(x), (1.7)

and proved the existence of global attractor in L? which is in fact a bounded set in Wé ' L**2. Chen
[20] studied the long time behavior of solutions for following equation

u — div(| Vu 72 Vi) + a(0)lul"u = fo(u) f K®lu(y, nfdy + g(x), (1.8)
Q

and obtained the existence and L” estimate of the global attractor.

While the papers, first by Nakao-Chen [25] and later by Chen-Wang [6], had studies the global
existence and the gradient estimate for the quasilinear parabolic equation of m-Laplacian type with a
nonlinear convection term, the typical equations included in [6,25] are with the form as

u, = div(u|VulP2Vu) + VA(u). (1.9)

In our paper, we will study the global solution of equation (1.1) with the initial value (1.2) and
homogeneous boundary value (1.3) by the usual regularized method. The main techniques are inspired
by [6,25]. However, due to the local and the nonlocal nonlinearity of the equation we considered, even
to prove the initial value condition, we have to put some restrictions in the exponents of m, p, p;, g;. In
particular, as we have said, instead of the nonlinear convection term VA(u) in equation (1.9), equation
(1.1) contains the damping term —a(x)u™?'|Vu™?!| , the uniqueness of the solutions generally is not true.

AIMS Mathematics Volume 2, Issue 3, 400-421



402

We can only prove the uniqueness of the solutions under the condition p; = 0. If p; # 0 we only can
prove the uniqueness of the viscosity solutions. At the same time, comparing with [5], since equation
(1.1) is more complicated, how to get the estimate in the gradient term of the solution, and how to prove
the continuity of the solution etc, become more difficult. A clear promotion lies in that we put not any
restrictions in the derivative f(s) of the function fy(s), while it must satisfy that [f;(s)| < cls~'in [5].
Other related works on equation (1.1), one can refer to the references [2,14,16,18,19,22,24,27,30-32]
et al.
Now we quote the following definition.

Definition 1.1. A nonnegative function u(x, t) is called a weak solution of (1.1)-(1.3) if u satisfies

(i)
u € L (0,005 L¥(Q)), (1.10)
u; € L2 (0,00, L2(Q)), u™ € L2.(0, 00; W, (Q)), (1.11)
(ii)
f f [u(pt— | Vu™ P72 Vu™ - Vo — a(x)u™ IVumlp‘cp] dxdt
S
+ f f [ fow™) f KO)u"(y, HPdy + g(x)] @dxdt = 0, Vo € Cy(S); (1.12)
S Q
(iii)
lin&f | u(x, 1) — up(x) | dx = 0. (1.13)
11— Q

We are to get the solution of problem (1.1)-(1.3) by considering the regularized equation

u, = div((|Vu"* + %)IZZVM'") — a(u™ | Vu" It + fo(u™) f K"y, 0 dy + g(x), (1.14)
Q

with the initial value (1.2) and the homogeneous boundary value (1.3). Here 0 < ug(x) is a suitable
smooth function such that ug,(x) € L*(Q), lim;_,, ||ug1k||q_1 o1 =gl g-1+L

Definition 1.2. If u, is the solution of the initial boundary value problem of (1.14)-(1.2)-(1.3),
limy ooty = u, a.e in S, u is a weak solution of (1.1)-(1.3), then u is said to be a viscosity solution.

We need some important lemmas in order to get our results.
Lemma 1.1. If 1 <I<N,1+8<q, 1 <r<q<(+B)NI/N -1), u'"* € WH(Q), then
lally < P ally Y, (1.15)
where 8 = (B+ D(r™' =g H)/(NT' =17 + (B+ Dr7)).

This lemma is a general version of Gagliardo-Nirenberg inequality, it is first proved by M. Nakao
[23].

Lemma 1.2. Let y(t) be a nonnegative function on (0, T]. If it satisfies
V() + At YY) < Brfy() + Cr°,0 <t < T, (1.16)
where A,0 >0, 40 > 1, B,C >0,k < 1, then
Y(f) < A9+ 2BT " )it + 2C(A + BT '/ °,0 <t < T. (1.17)
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This lemma can be found in [26].
Lemma 1.3. Suppose Ly > 1, r,R,M >0, 4; > 0. Forn =2,3,---, let
L,=RL,,—M, 6,=NR(1-L, \LYNR-1)+r)",
Bu= Ly + M8, = Ly Ay = (1 + 4,1(8, = M))B; "
Then
(1.18)

This lemma also was first proved in [25], then used in [6].

In our paper, we assume that p > 1 + i, so equation (1.1) is a doubly degenerate parabolic equation.
By considering the solution u; of the regularized problem (1.14)-(1.2)-(1.3) and using Moser iteration
technique, we get u;’s local bounded properties and the local bounded properties of the L”-norm of
the gradient Vu,. By the compactness theorem, we get the existence of the viscosity solution of the
diffusion equation itself. In details, we will prove the following theorems.

Theorem 1.1. It is supposed that K, g are suitable smooth bounded functions, a(x) € C(Q) and exists
ao > 0, such that a(x) > ay in Q, fy satisfies (1.4). If p > 1 + %, up(x) > 0,

1
Wp(x) € Ln(Q),3 > g > 2-~, (1.19)
1 1
plsza 2p1<p’ﬁ<max{p_1__aq_1+_}’ (120)
m m
N -1 -2 N
€ = max( mivg +P1(m(P )+ m )’ (B+m) <1, (121
Nm(p—-1)—-N + mgq mp—1)—1 Nm(p—-1)—N + mgqg
then the problem (1.1)-(1.3) has a weak viscosity solution u, satisfying
W™ € L (0, 003 L1175 (©Q)) () L5, (0, 00 Wy "(Q)), (1.22)
and
1
" ()]l < c(1 +H(A + 1) VP10 1 > 0, (1.23)
where A = N(pg+ (p— 1 - H%)N)‘l. Moreover, if p > 2, then
IVu"||, < c(1+ )1 +877,¢>0, (1.24)
where { |
— +
5 = max{l + — 2 §-1},6 = max{ 2,28,
mp—-1)—1 m
and

_ plmQ2q, +1) — 1] + mp,
[m(p— 1) = 1l(p—p1)
Remark 1.1. The condition (1.21) is only used to prove (1.13). We conjecture that this condition can
be weaken.

Theorem 1.2. Let u be a nonnegative weak solution of problem (1.1)-(1.3). If g(x) < 0, f3(s) = 0, if
p>1+%,p1+q1 > (p—1) then

suppu(., s) C suppu(., t), (1.25)
forall s,t withO < s <.
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2. The L* estimation of the solution

Instead of considering the regularized problem (1.14)-(1.2)-(1.3) directly as one deals with the case
m = 1, we have to consider the following approximate problem. For small s > 0, we consider

u, = div((\Vu" + %)[)EZVM’") — a(x)u™ " |Vu"Pt + fo(u™) f K0l (y, ) dy + g(x), (2.1
Q

u(x,0) = ugr(x) + s, x € Q, (2.2)

u(x,t) = s,x € 0Q,t >0, 2.3)

where 0 < up(x) is a suitable smooth function such that ug(x) € L*(Q), limy_,q [lug|l

= q—1+% =
[T

Similar as the chapter 8 of [13], in which the existence of the initial boundary value problem of the
quaslinear equation in the divergent form is obtained, by Leray-Schauder fixed point theory, using the
condition p; < 2, we know that problem (2.1)-(2.3) has a nonnegative classical solution u;,, we omit
the details here.

Let s — 0. In a similar way as [33], we are able to prove that
Ugs = Ug, in C(S),

Vil — Vi, in LP(S),

Uy — Vg, 1n LZ(S),

|Vuzg|l’—2vugxi — % |VuZ’|”_2Vuk’"xi, weakly star in L} (0, oo; L1 (Q)),

and u is the solution of equation (2.1) with the following initial boundary values
u(x,0) = ugr(x), x € Q, 2.4)

u(x,t) =0,x € 0Q,t > 0. (2.5)

Lemma 2.1. Assume that
(H) a(x) e C (ﬁ) and exists ag > 0, such that a(x) > ag in Q;
(Ha) fo(s) € CR"), 1fo(s)] < Kols|, for some Ko > 0.
(Hs) g(x), K(x) € L*.
In addition, B + i <q,3>qg>2- i then uj' € L7 (0, co; L"‘”#(Q)) and

1
oy or < (L +1) 7H 120, (2.6)
Proof. In the proof what follows, we only denote u; as u for simplicity. We only give the proof of the
caseqg > 2— % ifg=2- %, one can get the conclusion just a minor version. Let A, = (¢—2)n*"%, B, =
(3 — g)n*™%, and
sV qf g > L
ﬁ(s)_{Ansz+an, if 0<s< ﬁ

AIMS Mathematics Volume 2, Issue 3, 400-421



405

Suppose that n > k, multiply (2.1) with f,(«™) and integrate it on Q. Since f’(s) > 0,then we have

. 2 1 2 7 2 1 ez 2
fu(™)div(|Vu™ | + %) > Vu™dx = - | (Vu"|" + %) 2 |Vu" | f (u™)dx
Q Q

- [ wuregamar=- [ 19 [ " (flsybds P dx.
Q Q 0

- f a(x) f, )" |\Vu" P dx < 0.
Q

Suppose that | fo(s) |< Kos". Then

| o™ flul™ f K" (v, P dyd
QNfum<iy Q

< C(K)f W (A" + Bnum)dxf lu|™dy
QN {ur<ly Q

< ctkn'™ [ iy < it WY
o q-1+
Ifr=141,
[ s [ koo, opd
QN{um>1) Q

<C(K)f mirea 1)cl)Cflul'"ﬁa’y<CIIM’”II T
Q

we have

| fg o™ fi™) fg KO (v, 0P dyd

1
< m B l—g-1 myd—1+5u
< el I e )

| f fn(um)g(X)deSC(g)f " l)dx<c<g>||um||q1
QNfum>1y

1+L1°

From the above calculations, we have

f Folu™ugdx + f |V f (fi()rds 1” dx < el o *ﬁ+0(—>

by Poincare inequality, we have

f fulu” )”fd“cf f (fis)Pds P dx < cllu|) 7 + 0(—)

Let n — oo in (2.12). We can deduce that
d

_ el 1
o u"a 1)Jrldx+cfu’”[q Latr-l-aldy < C||um||q i +ﬁ.
Q

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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By Jessen inequality, from (2.13) we get

d q- 1+ +p 1- q— 1+4 w8
S+ el "<l
If
1
B<p-1-—
m
by young inequality,
d m g-1+1 m g-1+L4p-1-1
—_ m m m <
Sl el < e
then

1
”um”qﬂ—# <c(l+1) r-m.

We get the desired result.

Lemma 2.2. Ifp > 1+ i uy is the solution of problem (2.1)-(2.4)-(2.5), then

|l < ct™, 0 <t <1,

i lleo < c(1+1) Pk mt21,

N

where A = ——5——.
(p-1-L)N+gp

Proof. Multiply (2.1) with #~1 and integrate it on Q, then

1 -
f@”“h@xzjlmﬂwm+—)fw#mWHux—fQummmmwwﬂHux
Q Q k Q

+ffo(um)um(l_l)fK(y)lum(y,tNﬁdydx"'fg(X)um(l_l)dx
Q Q o
1 p-
=—(- 1)[(|Vum| + ;)Tzlvumlzum(l—Z)dx_ fa(x)umqllvumlplum(l_l)dx
Q Q
+fK(y)lum(yaf)|ﬂdyff0(blm)um(l_l)dx+fg(X)um(l_l)dx

1 -
<—-(- 1)f(|Vum| + %)Tzlvum|2um(l—2)dx
Q

+C(K)f|um(y,t)|ﬁdyfum(l_l)+ldX+C(g)fl/tm(l_l)dx,
Q Q Q

which deduces that

1 1
pHi— l+m -7

ll' 111

m

d -1 pri-leg—l-g 1
L 4 (l—1+—)2p | V" P dx < " 74 S !
dt m Q

< "l + e L Gy 26))

111

(2.14)

(2.15)

11+
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SetL:l—1+i.Then

d Lip-1-3 -1
Enumnﬁ I f | VU7 P dx < 5+ el (2.16)
Q

where c is a constant independent of /.
Now, if we choose Ly =g — 1+ 1, L, =rL,.; —(p—1-1),6, =rN(1 = L,.;L,")(p + N(r — 1)),
p=L,+p—1- %)9;1 ~L,r>1+(p-1- %)q‘l,n =2,3,---, by Lemma 1.3, we have

Lytp=1-3 1-6, Lyt p—1—1)/pPoal (p=1= 5 +Ln)
"Iy, < P/ Bt g O et _ 2.17)

If we choose L = L, in (2.16), by (2.17), we have

d L —p/0, 72— L+ p-1-L-p, Lo+ L,~L
I+ e PO P | < el + el 0 < <1 (2.18)

We will prove that there exist two bounded sequences {£,}, {1,} such that
|, <&t ™, 0<t<1. (2.19)
Without loss of the generality, we may assume that ||u™|,, > 1. Otherwise, choosing &, = 1, (2.17) is

true naturally. Thus, by (2.16), we have

d —1-1_
_”Mm”iz + C—P/GnLi—P”um”Lnﬂln”umlli’rl m Hn < C”um”Z‘Fﬁ 0<t<1.

dt L
If n = 1, by Lemma 2.1, 4; = 0,&, = sup, [lu" (0|
n— 1, from (2.18),

1 makes (2.19) sure. If (2.19) is true for

q-1+5;

d L —p/6 72~ Lyttt 2P~ —tn —(p=1=L )2 Lo+
Sl P T T b < Fo<r<l. (2.20)

we can choose

1
/ln = (ﬂn—l(ﬂn _p + 1 + _) + 1)/'[;]’ fn = fﬂ—l(cp/enlﬁl;_]/ln)l/#n7 n= 273" )
m

d
Zt””m”i: +cllu”|7 < el 0 < 1 < 1. (2.21)
Suppose that
N
B < ; , (2.22)
(p—1-3)N+qp
and notice thatasn — o0, 1, > 1= —N
(p—1-;;,)N+pq
d
Sl T < 0.0 <1< 1. (2.23)
By Lemma 1.2 and (2.23), we know (2.19) is true.
Moreover, it is easy to see that {£,} is bounded. Thus, by Lemma 1.2, (2.14) is true.
1
To prove (2.15), we set T = log(1 + 1), > 1, w(t) = (1 + £)»== u"(¢). By (2.16), we have
d L 2—p L+pflf% p L L L+ﬁ
EHW(T)HL +cL7P|\Vw eI < mllw(‘r)llL +cllw@Il; ", T > log?2. (2.21)
By the lemma 3.1 in [24], we can get (2.15), we omit details here. m]
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3. The L* estimation of the gradient

Lemma 3.1. If p > max{2,1 + ;11}, uy is the solution of problem (2.1)-(2.4)-(2.5), then
IVl < et i 4 o' 0 <1< 1, (3.1)

pm(2q1+1)=D+mpy

IVig'll, < c(1 +1¢) @000 ¢ > 1. (3.2)
Here 6 = max{”%l, 28}.
Proof. Multiply (2.1) with ", and integrate it on Q, then

1 o2
m f u" N u)?dx = f div((\Vu"? + =)= V" dx — f a(x)u™ V" P u"dx
Q Q k Q
+ f fo™u"dx f K"y, H)Pdy + f g(xudx. (3.3)
Q Q Q
: m|2 1 p2 my, m m 1 p2 m m
div((|Vu™|* + z) T Vu"ul'dx = — | (IVu"| + z) > Vu"Vudx
Q Q
1 m |
=-3 L(qu P+ %) > |\Vu"?dx

d

1 A S T 1d
N - = —— 2 (VuP 3.4
2fgdtfo (s + )T dsdx = =3 ZT(Vu"P), (3:4)

Vi 1 o
C(Vu™P) = f f (s+ —)7 dsdx.
Q JO k

= alou™ Vu" x| < 5 f

Q

where we define that

At the same time,
" (u,)dx + ¢ f PO (VPP dx, (3.5)
Q

By Lemma 2.1, using Young inequality and Holder inequality,

| f o dx f KO (v, 0P|
Q Q

<cle | W Nuydx+c | wdowf |
Q Q a1+

chf”m_l(uz)zdx+cfu’"“dx

Q Q

|fg(x)u;”dx| ng”m_l(uz)zdx+cfum—1dx,
Q o o

1 d m—
fum_l(ut)zdx+ ——T(Vu™P) < cflumlzq”mlqumlzl"dx+cfum+1dx+cfum_ldx. (3.6)
Q mdt Q Q Q

By (3.3)-(3.5), we have
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Multiply (2.1) with &, and integrate it on €2, then

1 d 1 -
— fg = fg vV + )T V- fQ GO P
+ f Fo " f K"y, )P dydx + f (" dx
Q Q Q
1 -2
- f (VP + 12w f GO VP
Q k Q

+ f folu™u™ f KO)u"(y, HPdydx + f g(X)u™dx
Q Q Q

and :
T(Vi"P) < f (VP + -7 V" Pdx
a k
1 d
=- f—um“dx—fa(x)umqlquml”lumdx+ffo(um)umfK(y)lum(y, t)lﬁdydx+fg(x)umdx
m+1 Jq dt 0 0 Q Q
< et allee™ well> + c(K) f " (v, D) dy f W dx + c(g) f W"dx,
+1 Q Q Q
SO L d
m mel m
—— T(IVu )+ (m+ 12w [15°T7(Ve")

m—1
Scf|um|2‘“+mIVumIZP‘dx+cfu’"”dx+cfum_ldx
Q Q Q

m+1
+C||M2||§2(f |um(y,t)|'8dyfum+1dx+fumdx)2
Q Q Q

m=1 —
ScflumIZq” " |Vum|2mdx+cfum“dx+cfum ldx
Q Q Q

2

+c( f " (y, HPdy)* f um+1dx+c||u%|§ﬁ‘. (3.7)
Q Q

Setting 2y =2q; + 1 — %, for Ya € [0, 2y], if we notice that p > 2p,, then we have

P=2p)

f PP dx < (@)1 ( f |um|(§5ff.”dx) V|27 (3.8)
Q Q
If 2y > (p — 2p)(N + D)/N, leta = 2y — (p — 2p1)(1 + £))*. By Lemma 1.3,
P21
( [ |u'"|(?2?’fdx) < el IO v, (3.9)
Q

where 0 = (s7! — (1 - 2%)(2)/ —a) H)/(N'=pt+s,and s = 2y — p+2p; —a)N/(p — 2p,) when
2y > (p—2p)(1 +g/N), s = g when (p — 2p))(1 + N™') < 2y < (p - 2p))(1 + g/N). By Lemma 2.1
and Lemma 2.2, from (3.8), we have

"I Vu" PP dx < et | Vu P < e M T (Ve ). 0 < £ < 1. (3.10)
P
Q
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At the same time, if we choose g = 2 in Lemma 2.1, we have

m

m+1
—(p—1—=-2)"1
™l = (f um”dx) <c(l+0) P =w" <o,
0

and
m—1 m+1
fum_ldx <t T2 = fum“dx <c. (3.11)
Q Q

By (3.7) and Lemma 2.2, we have
(1) + et DT T2(8) < ot MTh(0) + et + %Y, 0 <1< 1. (3.12)

If2y <(p—-2p))(N+1)/Nand p —2p, <2a <2y,
L " PVU PP dx < VOV RO < Vil < ey ((VeP). 0 << 10 (3.13)

If2y <(p—-2p1)(N+1)/Nand p —2p; > 2a > 0,
fg " P|\Vu"Pdx < c(1+ [IVu"|I2) < e(1+T(Vu")). 0 < £ < 1. (3.14)

(3.13) and (3.14) imply that (3.12) is still true when 2y < (p —2p1)(N + 1)/N. Using Lemma 1.2,
T(t) < et et 4 o' 0< < 1,

where 6 = max{’%l, 24}. Then (3.1) is true. Now, we will prove (3.2). For ¢t > 1, by (2.15)

f " POV dx < VU Rl Oy, < c(1+ OGP > 1 (3.15)
Q
Vi |? 1 o )
Tu(|Vu" ) = f (s + D) T ds < dVully = (V[P £ > 1. (3.16)
0
1 2 1
m+ -1
™ |13 :(f u'"“dx) <c(1+0™ P > 1. (3.17)
Q

by (3.7), using (3.15)-(3.17)

1

_ 2p
T(8) + c(1+ £ P70 ' T2(0) < (1 + DO ([Tp(0) 7

+cfu’"+1dx+cfum_ldx+c(f Iu’"(y,t)lﬁdy)zfum+1dx+c||um2+1||§(m_l),
Q Q Q Q
by Young inequality,

-m(2yp+p1) m(m+1)

L0 + (1 + 8 P70 T2(0) < e(1 + )00 + (1 + 1) o1

p(m2q1+D—D+mp; m(m+1)

=c(1 + 1) @000 + (1 + £) 70T,

which means (3.2) is true. O
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Lemma3.2. If p> 1+ i uy is the solution of problem (2.1) -(2.4)-(2.5), then

T
_ m—1 _ m—1 _l+m
f f Ul (u) dxds < ot o1 o TR 4o, 0 <t < T (3.18)
t Q

Proof. From (3.6), (3.10) and (2.14), we have

1d m-
fu’”_](u,)zdx + ——T(IVu™P) < cf "2 V2P dx + cf U™ dx + cf U™ dx
Q mdt Q Q Q

T T T
f fu’"_l(u,)zdxdssrk(t)+cf fIumlzq‘+T|Vu’"|2”1dxds+cf fum“dx
t Q t Q
<TW(t) +c f QDT (5)ds + ¢ f f W™ dx
t

< et ) 4 o WD 4 o, (3.19)
4. The proof of Theorem 1.1
The proof of Theorem 1.1 from Lemma 2.1, Lemma 2.2, Lemma 3.1 and Lemma 3.2, using the

compactness theory (cf [21]), there is a sequence (still denoted it as {u;}) of {u;} such that when k — oo,
U, — u, a.e.in S and so

fim i) [ KOG 0Pdy = fia™) [ KOy

Moreover, we have

w — u, weakly* star in L2 (0, oo; L™4"D*1(Q)), (4.1)

e — uy, weakly in L*(0, 00; L*(Q)), Vu' — Vu", weakly in L (0, 00; L"(€2)) (4.2)
|Vu,' [P~ 2ukx — x> weakly* in L5 (0, oo; L%(Q)), 4.3)

a(x)u, " |Vu|P' — v, weakly* in LlOC(O,oo;L%(Q)), 4.4)

where y = {x; : 1 < i < N} and every y; is a function in L}’ (0, T;Lﬁ(Q)), v € Ly (0, oo;L%(Q)).
(4.1) and (4.2) are clearly true.
In what follows, we only need to prove that

X = IVu"P2Vu”, in L.(0, 00; L7 (). (4.5)

loc

and )
v =a()u™"'|Vu™|P', in Ly, (0, co; L7 (£2)). (4.6)

It is easy to know that
f f (usot —x - Vo —vo+ fo(u") f K"y, n)f dyg + g(x)¢ | dxdt = 0, Yo € CF(S), (4.7
s Q

AIMS Mathematics Volume 2, Issue 3, 400-421



412

so, if we can prove that

f | Vu™ P72 Vu" Vgodxdt—ff)( Vedxdt, Vo € C)(S);

ff a(x)u™ " |\Vu" P! pdxdt = ff vodxdt, Yo € Cé(S);

then (4.5),(4.6) and (1.12) are true.

First, for any € C3(§),0 <y < 1;Vv" € L (0,T; W(])’p(Q)), we have

loc
f W(| Vi 1772 V'~ | V™ P72 V) -V — v dxdt > 0,
N

If we multiply with MZW on two sides of (2.1), then we have

p-2

f f ¢(|vuz1|2+ ) V! Izdxdt—— f f Y dxdt — f f Uy (IVu —)2 vu
S

- f f a()u™ VIV Prydxde + f f [fo(u™) f KWy, P dy + g(x)]u"ydxdr.
Q

Noticing that when 1 < p < 2,
1.» 1.»
IVl > (V' |* + —)7 - (—)7,

(Vi + ) Vi) < (Vi + )pT

and when p > 2,
mi2 lp—_z m2 mp
(V'™ + 2 = IV 1™ 2 Vil

1 p-
(VP + pﬁwzﬂ < (V' + 1),
by (4.10), (4.11), we have

p—2
+1ffl//tukm+ldxd[ ffl/tk (lvuk| + ) Vl/tk Vl//dxdt
m

- f f a(ou" vy |”‘1ﬁdxdt+( )7 mesQ

. f fs Lot fg KO (v 0P dy + gColl s

- f f Y|V PV - V" dxdt — f VYAV V(] — v™Ydxdt > 0.
S N

Since
p-2

1 2
(|Vuz1|2 + %) Vil = (Vi 2V + 2

S p-4
W' + E)pTdsVuf,

(4.8)

4.9)

(4.10)

- Vipdxdt

4.11)

(4.12)
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and

1
lim (VU"P + 2)'T dsVi - Vyal"dxdt = 0,
k=eo JJs Jo k

if we let kK — oo in (4.12), we have

1
ff Yo" dxdt — ff umvwdxdt—ff u™ xyVirdxdt
m+1 JJg < S
— ff ‘ﬁ)( -WW"dxdt — ff ¢|va|p—2vvm . V(um _ Vm)d)Cdl
s S

+ ff[fo(um)ng(y)lum(y, HPdy + g(x)lu™ydxdt > 0.
s

Now, we choose ¢ = yu™ in (4.7),

1
ff Y™ dxdt — ff u"virdxdt — ff}( - Vyu" dxdt

+ff[fo(um)f1((y)|um(y, HPdy + g(x)pu"dxdt = ff{ﬁ/\/-Vu’"dxdt.
s Q S

From this formula and (4.13), we have

ff Wy — [VVP2VV™) - V(™ — v™)dxdt > 0.
S

Letv" = u" — Ap, 1 2 0,90 € C(S). Then

f f Uy — V™ = Ap)P (" — Ap),,)dxdt > 0.
S

Let A — 0. We obtain
f f Y(xi — IVu"P*u)dxdt > 0,Y¢ € CF(S).
S

Moreover, if we choose 4 < 0, we are able to get
f f Y(xi — IVu"P2u)dxdr < 0,¥p € CJ(S).
s

Now, if we choose ¢ such that suppy C suppy, and on suppe, ¢ = 1, then we can get (4.8).
By a process of limitation, we can choose the test function ¢ in (4.8) as u™, then we have

lim ff [Vuy'|Pdxdt = ff)( - Vu"dxdt = ff |Vu"|Pdxdt.
k—0 S S S

Due to (1.20), 2p; < p, then by Holder inequality, we have

lim ffquflp'dxdt = ff)( -Vu"dxdt = ff [Vu"|P' dxdst.
k—0 S S S

(4.13)

(4.14)

(4.15)

(4.16)
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By a refinement of Fatou’s lemma, the theorem 1.4.1 in [12], we are easy to prove (4.9), and so (1.12)
is true.

Secondly, we are to prove (1.13).

For small r > 0, denote Q, = {x € Q : dist(x, 0Q) < r}. For any n > 0, let

1, if s> n,
sgn,(s) =14 7, if |s| <n,
-1, if s <-n.

For any given small r > 0, large enough £, [, we declare that
f lur(x, 1) — wy(x, Dldx < f lur(x, 0) — uy(x, 0)ldx + ¢,(2), 4.17)
(58 Q,
where ¢,(¢) is independent of k, /, and lim,_, ¢,(¢) = 0. By (2.1)

' ' 1 1 -
f f oy — w)dxdr + f f Vol(IVUP + =) Vi — (\Vi"P + =)'T Vu"ldxdr
0o Ja, 0 Jo, k [
f
+ffa(x)(ufq‘IVuflpl—u;"q‘IVu;"Ipl)godxdT
0 Q,

+ f f Lo f KO (v, 0P dy — folul?) f KO (v 0P dyledxdt =0, (4.18)
0 Q, Q Q
for Vg € LP(0, T; Wy (). Suppose that £(x) € CA(€Q,) such that
0<é<1; €lg,=1,

and choose ¢ = fsgnn(uk’" —u)") in (4.18), then
!
f f fsgnn(uf —u)" ) (g — wy)dxdr
0 Ja,
! 2 1 p=2 2 1 p=2
+f f [V~ + %) > Vu,' = (x|Vu'|” + 7) > Vu'IVésgn, (' — )" )dxdrt
0 Ja,
' m|2 1 22 m m2 1 p2 m m m room m
+ s [(AVu'|” + %) > Vuy!' — (x|Vu)'|” + 7) V"IV — uf)ésgn, (uy' — up)dxdt
t
+f f a(0)(u, " V1"t — w) | Vup' [P)ésgn, (' — ufdxdt
0 Jo,

+ fo fg o) fg KO 0 dy — folad?) fg KO (v, D dylésgn, (- uf)dxdr < 0. (4.19)

If we notice that the third term in the left hand side on (4.19) is nonnegative when  — 0, then we have

t
limf f &sgn, (" — uy") (g, — wy)dxdt
0 Ja,

n—0
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7]—)

+11mf f a(Q)(u "IV 1P — u " |V u\PéEsgn, (! — w))dxdt

n—0

At the same time,

n—0

!
= f f Esgn(uy — up) (U — wy)dxdr
0 Q,

! U —Uuj
lir% f f &sgn, (uy — ul)(ukt—ult)dxdr—hm f f &( f sgn, (8)ds).dxdt
=Y Jo Ja,
! U —Uj
:limffff sgn, (s)ds |, dx:f .fluk—ulldx—f Elugr — uldx.
10 Jo Ja, Jo Q, Q,

By (4.20) (4.21), we have

! 1 -1 1 -1
f Eug — ugldx < f ltox — tolldx + ¢ f f (V' + )T +(Vu"P + -)'7 ldxdr
Q) Q, 0 Q, k l

!
+f f a()|u, "' \Vul |t — u"" |V |d xdt
0 Jo,

fo f o(a) f KO (v. 0 dy — folad f KOy, DP dyidx.
By Lemma 2.2 and Lemma 3.1,if 0 < ¢ < 1,

! !
f f a(x)|u, " \Vul|P' = u " |Vl | |dxdT < cf f t“dxdr,
0 0 Jo,

which means (4.17) is true. Here

mNgq; N pim(p—1)+m-2) B+ m)N

€ = max{
Now, for any given small r, if k, [ are large enough, by (4.17), we have

|u(x, 1) — up(x)ldx < f |u(x, 1) — up(x, Dldx + luor (x) — ugi(x)ldx
Q,

QZV Q2r

+ f | (x, 1) = uo(ldx + | fuoi(x) = uo(x)ldx
Q.

Qo

letting t — 0, we get (1.13).

t
+1i 1 f (V| + ) 2 Vu}f — (VU + ) 7 Vu 1Vésgn, (u)! — u"ydxdt

! !
lim f fsgnn(uf —u)" ) (g — wy)dxdr = f f Esgn(uy — w))(ug — wy)dxdt
0 Jo, 0 Jo,

Nm(p —1)— N+ mgq mp—-1)—1 ’Nm(p—l)—N+mq}<

tim | fg o) fg KO (v. D dy— folul?) fg KO (v, D dylésgn, (i —u")dxdr = 0. (4.20)

4.21)

(4.22)
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5. The uniqueness of the solutions and the proof of Theorem 1.2

As we have said in the introduction, the uniqueness of the solutions of problem (1.1)-(1.3) is not
true generally. But it is not difficult to prove the following theorems.

Theorem 5.1. Let uy, uy be the two solutions of the problem (1.1)-(1.3) with the different initial values
uo1(x), up(x) respectively. If (% +B-2)\q1 <1and

p1 =0, 5.1
then

f [t (x, 1) — up(x, D|dx < f |tto1 (x) — ugr(x)|dx, Yt > 0. (5.2)
Q

o
Proof. Let u(1), uy(t) be two solutions of equation (1.1). Let v = uf'(¢),vo = uj(t). Denote w(r) =
Vi (1) — uy (1), v(t) = vi(t) — vo(1). Then w(r), vi(2), v2 () satisfy that

W (0) = [ V([T 172V vy) = div(IVvall?2Vrs) + a7 =)
- fo(v) fg KOy — fi(va) fQ K3 lvalfdy. (5.3)

For any positive integer n, let g,(s) be an odd function and

. 1, if 5> 1,
S) = 2.2 .
&n n2slel s, if §< }1

Clearly, when [s| > n7!, g/(s) = 0; when |s| < n™!, 0 < g/(s) = 657\
Multiplying (5.3) with g,(v; — v,) and integrating on Q, we have

f gn(VW' (dx + f V1P Vv = [Vl 2 V0a] V(v = va)gr(n)dx + f a(x)(v{" = v3")ga(v)dx
Q Q Q

- fQ o) fg K@)y — fyva) fg K0 lvaldyldx. (5.4)

Moreover,
. ’ d
lim fgn(V)W (Hdx = 7 [w@®ll1,

[0 = 290 = v 02 0
[ atnot - trgmar =0,
[ a0 [ Kby i) [ KoMaPayian
<1 [ Kowmbay [t - o+l [ o [ [ tasay
A ; A ol
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< clw@lhlvilty + cllvally f P v(oldx,
Q
where & € [v, v,].
So J
W@l < clw@llivall + ellvalli (vl + va1fy), (5.5)

By using (1.23)-(1.24) of Theorem 1.1 to (5.5), letting n — oco. By Gronwall’s inequality, for any
given T > 0, we can deduce that
Iw@®ll; =0,0<t<T. (5.6)

m]
Another aim of the section is to prove the uniqueness of the viscosity solution of problem (1.1)-(1.3)

Theorem 5.2. Suppose that a(x) and K(x) are bounded functions. If u(x,t) € L*(S), |Vu| < c in
addition, 2 > p; > 1, then the viscosity solution of (1.1)-(1.3) is unique.

Proof. Let u,v be the two viscosity solutions of (1.1)-(1.3). Then there are two sequences {u;} and {v;},
which are the solutions of problem (1.14)-(1.2)-(1.3), such that

lim u;, = u, llim v;=v, a.einsS. (5.7)

k—o0

Clearly, since u(x, 1), v(x,t) € L*(S), we may assume

llalloo <, |Villeo < c. (5.8)
Let
W= —v, w=u' —v.
Then
w, = (@06, Owy) + bl 1w, Tw), (x, 1) € QX (0, 00) (5.9)
w(x, 0) = upr(x) — voi(x), x € Q (5.10)
w(x, 1) =0, (x,1) € 0Q X (0, ), (5.11)
where

1
aij(X, 1= f |sVukm +(1 - S)Vv;"|p_2ds - 8ij
0

1
+ f (p=2)|sVa + (1 = )V~ (sut, + (1 = VR (supt, + (1= )iy )ds,
0
and since p; > 1, using the convexity of the function s”', by (5.8), we have

b(x,t,w,VYw) = a(xX)[u, "' |Vul|"' — v "' [Vv]'|P"]

#1068 [ KOWG.0Pdy = 07 [ KOW.0Pdy
Q Q
Ib(x, £, w, VW) < e[V = VP < |Vl < ol Vw] + c.
By the chapter 8 of [13], we know that
ot (x, 1) — vi(x, Do < Cllttor — voullco-

Let k,l — oo, we know that the uniqueness of the viscosity solution (1.1)-(1.3) is true. O
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Suppose that the viscosity solution of problem (1.1)-(1.3) is unique in what follows. Then, by
considering the regularized problem (1.14)-(1.2)-(1.3), we easily get the following Theorem 5.3, and

Theorem 1.2 is a simple corollary of Theorem 5.3.

Theorem 5.3. Let u be a weak solution of problem (1.1)-(1.3). If v satisfies
v, > div(] Vv P72 V™) = a(x)y™ [V P
107 [ KW 00Pdy + 500 inS = Q% (0,00)
Q

v(x,0) > up(x), x €9,

vix,t) =0, (x,1) € 0Q x (0, 00),

then
u(x,t) > v(x, 1, ¥(x,1 €S.
Now, let
v(x, 1) = u(x, 1) = rug(x, P71, r e (0, 1).
Then

vi(x, 1) = div(| DV™ [P72 Dv™) — a(x)y"Pimampoymas | pym e
+rMP B fo (T f K)W"Pdy + r™"Vg(x), (x,1) € Q x (0, o)
Q
v(x,0) = rug(x,0), x € Q,

v(x,1) =0, (x,1) € 0Q X (0, 00).
Noticing that g(x) < 0, fo(r7™v") > fo(v'"), and

p+qg<p-lLp-1-p<0,0<r<l,

which implies that
pp=l-qi=py) 1, plp=1-61 - 1,

vi(x, 1) > div(| DV™ P72 DV™) — a(op?™ | DV™ 1P+ fo(v'™) f KW Fdy + g(x),

Q
using the argument similar to that in the proof Lemma 3.5 of [35], we can prove

Ug = Ugy.
It follows that

uk(-xa rm(p_l)_lt) - uk(-x’ t)
(DT~ 1)y

r—1
m(p—1)—-1
> —(1 — rm(p_l)_l)tuk(x, r 1).
Letting r — 1, we get
Uy
(m(p—1)— D’

By (5.19), we can easily get Theorem 1.2.

uk[ 2

(5.12)

(5.13)
(5.14)

(5.15)

(5.16)

(5.17)
(5.18)

(5.19)
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