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Abstract
This paper investigates the pinning synchronization analysis of linearly coupled
reaction-diffusion neural networks (RDNNs) with unknown time-varying coupling
strengths and unknown time-varying delay. By constructing a
Lyapunov-Krasovskii-like composite energy functional (CEF) and applying the
well-known LaSalle’s invariance principle, an adaptive learning control is designed to
guarantee the asymptotic convergence of the synchronization error, several sufficient
conditions of the synchronization are derived. Compared with the existing results, the
update laws do not need the information of the characteristics of the identical node
and the coupling matrices. An example shows the proposed theoretical result is
feasible and effective.
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1 Introduction
In the past few decades, neural networks (NNs) have become a hot topic due to their wide
and important applications, such as signal transmission, image processing,machine learn-
ing, and pattern recognition, and so on. Most of the previous studies mainly concentrated
on stability analysis, periodic or almost periodic attractors of NNs with or without de-
lays [–]. However, it has been shown that delayed NNs can exhibit some complicated
dynamics and even chaotic behaviors [–]. Based on the Lyapunov stability theory and
Halanay inequality, by virtue of drive-response concept and time-delay feedback control
techniques, reference [] proposed several sufficient conditions for the exponential syn-
chronization of two identical chaotic delayed NNs with stochastic perturbation. In ref-
erence [], based on the linear matrix inequality (LMI) method, two delay-dependent
criteria were derived to ensure the exponential stability of the error systems, which im-
plied themaster systems to synchronize with the slave systems. The non-fragile controller
can be obtained by solving a set of LMIs. In reference [], by introducing an improved
Lyapunov-Krasovskii functional and employing convex combination approach, a delay-
dependent output feedback controller was derived to achieve synchronization with the
help of a master-slave concept and linear matrix inequality approach.
Since chaos synchronization in an array of cellularNN systems byWu andChua [] was

investigated, the synchronization problems in arrays of coupled delayedNNswere investi-
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gated [–]. In reference [], based on the Lyapunov function method and the specific
property of the Householder transform, some criteria for the global synchronization of
linearly coupled NN systems with time-varying coupling were obtained. Considering the
effects of coupling delay, references [, ] addressed the global exponential synchro-
nization in an array of coupled delayed NNs with both constant and delayed couplings.
In practical applications, it was usually desirable to regulate a coupled network to a pre-
scribed trajectory using external forces for the correct functioning of the whole network
[]. However, for a large-scale network, it is literally impossible to apply control actions
to all nodes. Fortunately, many existing works have shown that one can adopt the pinning
control strategy to synchronize a coupled network to a homogeneous trajectory, which
means that one only needs to place local feedback injections on a small fraction of network
nodes. Pinning control is an effective control scheme for controlling high-dimensional sys-
tems with numerous applications to turbulence, instabilities in plasma, multimode lasers,
and reaction-diffusion systems, where the method could work in any region of parameter
space and requires a significantly smaller number of controllers []. Moreover, for a large
complex network, it is usually difficult to control it by adding controllers to all nodes. In
order to reduce the number of controllers, a natural approach is to control the network by
pinning parts of nodes. For a general reference on pinning control see references [–].
In the pinning control of coupled networks, it is well known that one of themost challeng-
ing problems is how to select a set of pinned nodes to guarantee the convergence of the
pinning process. Reference [] studied synchronization via pinning control on general
complex dynamical networks, such as strongly connected networks, networks with a di-
rected spanning tree, weakly connected networks, and directed forests. In reference [],
it was shown that the network can be pinned to a homogeneous state by applying adaptive
feedback control actions to a small fraction of network nodes.
For many realistic networks, the node state in complex networks rely intensively on the

time and space inmany circumstances. As pointed out in reference [], food webs attract
increasing attention of researchers from different fields in recent years. A food web can be
characterized by a model of complex network, in which a node represents a species. To
our knowledge, species are usually inhomogeneously distributed in a bounded habitat and
the different population densities of predators and preys may cause different population
movements, so it is important to investigate their spatial density in order to better protect
and control their population. In such a case, the state variable of node will represent the
spatial density of the species. In addition, the whole structure and dynamic behavior of
the multilayer cellular NNs are seriously dependent on the evolution time of each vari-
able and its position (space), but also they are intensively dependent on its interactions
deriving from the space-distributed structure of the whole networks []. Moreover, both
in biological and man-made NNs when electrons are moving in asymmetric electromag-
netic fields, strictly speaking, diffusion effects cannot be avoided, so we must consider
that the activations vary in space as well as in time, which is expressed by partial differen-
tial equations [–]. [] discussed the adaptive synchronization in an array of linearly
coupled NNs with reaction-diffusion terms and time delays. In [], the pinning control
problem of linearly coupled RDNNs with unbounded time delays was also considered.
The authors investigated adaptive synchronization phenomena for delayed RDNNs with
unknown time-varying coupling strengths under stochastic perturbations [].
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Motivated by thework of [, , , ], in this paper we study the pinning synchroniza-
tion in an array of linearly coupled delayed RDNNs with unknown time-varying coupling
strengths and unknown time-varying delay, which is challenging and important both in
theories and applications. How to incorporate adaptive pinning control techniques for
time-delay systems into learning control to solve the synchronization problem of linearly
coupled RDNNs with unknown time-varying parameters and unknown time-varying de-
lays. As is well known, adaptive control can effectively deal with constant parametric
uncertainties for systems. It is still an open problem how to control a system with un-
known time-varying parameters. The main design difficulty is how to deal with the un-
known time-varying parameters. Fortunately, this paper shows that this difficulty can be
successfully overcome by constructing a Lyapunov-Krasovskii-like CEF. Suitable adaptive
controllers are designed to ensure pinning synchronization for linearly coupled RDNNs.
Compared with the previous works, the main contributions of this paper lie in the follow-
ing. () We extend the existing concept of CEF to the time-delay setting, and a class of
linearly coupled RDNNs with time-varying parameters and time-varying delays are given
under the assumption that all time-varying parameters have a common periodicity. As far
as we know, this extension has not been investigated in the literature at the present stage.
() The CEF-based adaptive pinning control strategy, extended to delayed parabolic NNs.
Thus, delayed parabolic NNs are further enlarged so that a CEF-based adaptive pinning
control scheme can be designed for them. () From the viewpoint of technical innova-
tion, we introduce a novel approach to handle unknown time-varying parameters in de-
layed parabolic NNs. We study the combination of learning control and adaptive pinning
control leading to the asymptotic synchronization adaptive system in the presence of un-
known time-varying parameters. In practice, the proposed synchronization controller will
be easy to implement. Moreover, numerical simulations are provided to show the feasibil-
ity of the developed methods.
The paper is organized as follows. Section  provides some mathematical preliminaries

and formulates themodel of linearly coupled delayed RDNNs, some necessary definitions,
lemmas, andhypotheses are presented. In Section , some criteria for the pinning synchro-
nization of such linearly coupled RDNNs are derived. In Section , a numerical example
is given to show the validity of the theoretical results.We conclude this paper in Section .
Notation: Let IN be an N-dimensional identity matrix. For a symmetric matrix M ∈

RN×N , denote the ith row and the ith column of M as the ith row-column pair and let
Ml represent a minor matrix of M by removing arbitrary l ( ≤ l ≤ N ) row-column pairs
ofM, denote λmin(M) and λmax(M) as the minimal and maximal eigenvalues ofM, respec-
tively. Let C[(–τ , ] × Rm;Rn] denote the Banach space of continuous functions which
map (–τ , ] × Rm into Rn with the topology of uniform convergence. � = {x | |xl| < dl, l =
, , . . . ,m} is a compact set with smooth boundary ∂� and mes� >  in space Rm, dl > 
is a constant; L(�) is the space of real functions on � which are L for the Lebesgue
measure. It is a Banach space for the norm

∥∥u(t,x)∥∥ =
√√√√ n∑

i=

∥∥ui(t,x)∥∥,
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where u(t,x) = (u(t,x), . . . ,un(t,x))T and ‖ui(t,x)‖ = (
∫
�

|ui(t,x)| dx)/. In addition, we
define∥∥u(t,x)∥∥

τ
= sup

–τ≤s≤

∥∥u(t + s,x)
∥∥
.

2 Model description and preliminaries
A single delayed RDNNs and Dirichlet boundary condition can be described by the fol-
lowing partial differential equations:

∂ui(t,x)
∂t

=
m∑
l=

∂

∂xl

(
Dil

∂ui(t,x)
∂xl

)
– aiui(t,x) +

n∑
j=

wijgj
(
uj(t,x)

)

+
n∑
j=

hijgj
(
uj
(
t – τ (t),x

))
+ Ji, t ≥ ,x ∈ �,

ui(t,x) = , (t,x) ∈ (–τ̄ , +∞)× ∂�,

ui(s,x) = ϕi(s,x), (s,x) ∈ (–τ̄ , ]× �,

()

where x = (x,x, . . . ,xm)T ∈ �, ui(t,x) denotes the state the ith neuron at time t and in
space x; ai >  represents the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the networks and external inputs; wij

denotes the strength of the jth unit on the ith unit at time t and in space x; hij is the synaptic
connection strength of the jth unit on the ith unit at time t and in space x; gj(uj(t,x))
denotes the activation function of the jth unit at time t and in space x and J = (J, J, . . . , Jn)T

denotes a constant external input vector. τ (t) denotes the time-varying delay and satisfies
 ≤ τ (t) ≤ τ̄ ,  ≤ τ̇ (t) ≤ μ < , where τ̄ and μ are constants; Dl = diag(Dl,Dl, . . . ,Dnl)
with Dil ≥  stands for transmission diffusion operator along the ith neuron. ϕi(s,x) is a
continuous and bounded function, i, j = , , . . . ,n, l = , , . . . ,m.
Let ∇ • Y = (∇ • Y,∇ • Y, . . . ,∇ • Yn)T , ∇ • Yi = ( ∂yi

∂x
, ∂yi

∂x
, . . . , ∂yim

∂xm )T , in which Y =
[Y,Y, . . . ,Yn]T and Yi = (yi, yi, . . . , yim)T , i = , . . . ,n. For convenience, we rewrite system
() as the following vector form:

∂u(t,x)
∂t

=∇ • (
D ◦ ∇u(t,x)

)
–Au(t,x) +Wg

(
u(t,x)

)
+Hg

(
u
(
t – τ (t),x

))
+ J , t ≥ ,x ∈ �,

u(t,x) = , (t,x) ∈ (–τ̄ , +∞)× ∂�,

u(s,x) = ϕ(s,x), (s,x) ∈ (–τ̄ , ]× �.

()

Here

A = diag(ai), D = (Dil)n×m, W = (wij)n×n, H = (hij)n×n,

g
(
u(·,x)) = (

g
(
u(·,x)

)
, g

(
u(·,x)

)
, . . . , gn

(
un(·,x)

))T ,
∇u(t,x) =

(∇u(t,x),∇u(t,x), . . . ,∇un(t,x)
)T ,

∇ui(t,x) =
(

∂ui(t,x)
∂x

,
∂ui(t,x)

∂x
, . . . ,

∂ui(t,x)
∂xn

)T

, i = , . . . ,n,

D ◦ ∇u(t,x) = (Dil
∂ui(t,x)

∂xl
)n×m is the Hadamard product of matrix D and ∇u(t,x).
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In this paper, N and such RDNNs () can be linearly coupled into a complex networks,
which is characterized by

∂zi(t,x)
∂t

= ∇ • (
D ◦ ∇zi(t,x)

)
–Azi(t,x) +Wg

(
zi(t,x)

)

+Hg
(
zi
(
t – τ (t),x

))
+ J + ci(t,x)

N∑
j=

Gij�zj(t,x)

+ ciτ (t,x)
N∑
j=

Gτ ij�τ zj
(
t – τ (t),x

)
, i = , , . . . ,N , ()

where zi(t,x) = (zi(t,x), zi(t,x), . . . , zin(t,x))T ∈ Rn is the state vector of the ith node, the
matrices � ∈ Rn×n and �τ ∈ Rn×n describe inner-coupling of RDNNs at time t and t – τ (t),
respectively.G = (Gij)N×N ∈ RN×N andGτ = (Gτ ij)N×N ∈ RN×N are the coupling configura-
tion and the delayed coupling configurationmatrices, respectively. If there is a connection
from node i to the node j (i 	= j) at time t, then the couplingGij > , otherwiseGij =  (i 	= j).
Gτ ij >  is defined similarly to Gij > , but it may not be identical to G. The diagonal ele-
ments of matrices G and Gτ are defined as

Gii = –
N∑

j=,i	=j
Gij, Gτ ii = –

N∑
j=,i	=j

Gτ ij, i = , , . . . ,N . ()

The coupling matrices G and Gτ are not required to be symmetric or irreducible. ci(t,x)
and ciτ (t,x) are unknown time-varying strengths for coupling and delayed coupling, re-
spectively.
The boundary condition and the initial condition for system () are given in the following

forms:

zij(t,x) = , (t,x) ∈ (–τ̄ , +∞)× ∂�, i = , , . . . ,N , j = , , . . . ,n,

zi(s,x) = ϕi(s,x), (s,x) ∈ (–τ̄ , ]× �, i = , , . . . ,N ,
()

where ϕi(s,x) = (ϕi(s,x),ϕi(s,x), . . . ,ϕin(s,x))T .
In order to obtain our main results, we assume the following conditions hold.
(A) gj(·) and c∗i (t,x), c∗iτ (t,x) satisfy the assumptions (A) and (A) in reference [],

respectively.
(A) In the system (), the inner coupling matrices �, �τ and the diagonal elements of

the matrix Gτ satisfy

‖�‖ = γ , ‖�τ‖ ≤ γτ , |Gτ ij| ≤ gτ , ()

where γ , γτ and gτ are positive constants. Denote ρmin as the minimum eigenvalue
of the matrix (� + �T )/.

(A) Suppose Gi is the minor matrix of (ĜT + Ĝ)/ by removing the first i –  rows and
columns, where Ĝ is a modified matrix of G via replacing the diagonal elements
Gii by (ρmin/γ )Gii, where ρmin and γ are denoted in (A).
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Remark  Why do we consider periodically time-varying coupling strengths instead of
more general ones? In fact, some works on the rejection or estimate of periodic distur-
bances (or parameters) has been widely reported, e.g., see [–], where the periodic
disturbances are allowed to enter the controlled systems. As pointed out in reference [],
periodic disturbances often exist in many mechanical control systems such as industrial
robots and numerical controlmachines or disturbances depending on the frequency of the
power supply. Recently, there have, indeed, been publications on some physical systems
that can be described by the model with periodic disturbances []. The above reasons
motivate our work in this paper.

Remark  In [], by constructing a differential-difference type learning law and an adap-
tive learning control law, based on the Lyapunov-Krasovskii-like CEF method, a novel
sufficient condition was derived to ensure adaptive asymptotical synchronization in the
mean square sense for stochastic delayed RDNNs with unknown time-varying coupling
strengths. Why do we study the pinning synchronization of linearly coupled RDNNs with
unknown time-varying coupling strengths and unknown time-varying delay in this paper?
As we know now, real-world complex networks normally have a large number of nodes. So
it is usually difficult to control a complex network by adding the controllers to all nodes. To
reduce the number of the controllers, a natural approach is to control a complex network
by pinning part of the nodes. Furthermore, we should point out here why the parameters
Gij, Gτ ij, ci and ciτ are necessary. In this paper, Gij denote the instantaneous coupling con-
figuration, which play a key role in the synchronization process. Gτ ij denote the delayed
coupling configuration for a lag (perhaps long term) effect, which exist in practice, and
generally do not play a positive role in the synchronization process. ci and ciτ denote the
coupling strengths which can be adjusted out of the structure of the network. Thus, ci and
ciτ have important engineering and physical sense in the control and physical problem of
synchronization.

Remark  The activation functions are typically assumed to be continuous, bounded,
differentiable, and monotonically increasing, such as the functions of sigmoid type, and
these conditions are no longer needed in this paper. Especially in some applications,
one is required to use unbounded activation functions. For example, when NNs are de-
signed for solving optimization problems in the presence of constraints (linear, quadratic,
or more general programming problems), unbounded activations modeled by diode-like
exponential-type functions are needed to impose constraints’ satisfaction. The extension
of the quoted results to the unbounded case is not straightforward. Different from the
bounded case, where the existence of an equilibrium point is always guaranteed, for un-
bounded activations it may happen that there is no equilibrium point. When considering
the widely employed piecewise-linear NNs, infinite intervals with zero slope are present
in activations, and it is of great interest to drop the assumptions of strict increase and con-
tinuous first derivative for the activation. The absolute capacity of an associative memory
model can be significantly improved by replacing the usual sigmoid activation functions
with non-monotonic activation functions []. In this paper, the activation functions gj(uj)
also include some kinds of typical functions widely used in circuit design, such as nondif-
ferentiable piecewise linear output functions of the form gj(y) = /(|y – | – |y + |) and
non-monotonically increasing functions of the form of Gaussian and inverse Gaussian
functions [].
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Lemma  ([]) Let A ∈ Rn×n be symmetric. One has

λmin(A)aTa≤ aTAa≤ λmax(A)aTa, ∀a ∈ Rn.

Lemma ([]) For a symmetricmatrixM ∈ RN×N and a diagonalmatrixD = diag(d, . . . ,
dl, , . . . , ︸ ︷︷ ︸

N–l

) with di > , i = , . . . , l ( ≤ l ≤ N ), let M – D =
[ A–D̃ B

BT Ml

]
, D = diag(d, . . . ,d,

, . . . , ︸ ︷︷ ︸
N–l

) where Ml is the minor matrix of M by removing its first l row-column pairs, A and

B are matrices with appropriate dimensions, D̃ = diag(d, . . . ,dl). If di > λmax(A–BM–
l BT ),

i = , . . . , l,M –D <  is equivalent to Ml < .

The object is designing a controller vi(t,x) to achieve synchronization, we introduce
adaptive pinning control strategy to nodes in the NNs (). Then the controlled network is
given by

∂zi(t,x)
∂t

= ∇ • (
D ◦ ∇zi(t,x)

)
–Azi(t,x) +Wg

(
zi(t,x)

)

+Hg
(
zi
(
t – τ (t),x

))
+ J + ci(t,x)

N∑
j=

Gij�zj(t,x)

+ ciτ (t,x)
N∑
j=

Gij�τ zj
(
t – τ (t),x

)
+ vi(t,x), i = , , . . . ,N . ()

Define the error vector by

ei(t) = zi(t,x) – u(t,x), i = , , . . . ,N .

The feedback control law is designed as follows:

vi(t,x) = –


pi
[
ĉ∗i (t,x) + ĉ∗iτ (t,x) + ĉ∗i (t –ω,x) + ĉ∗iτ (t –ω,x)

]
ei(t)

– pi
[
ĉ∗∗
i (t,x) + ĉ∗∗

iτ (t,x)
]
ei(t), i = , . . . , l ()

and vi(t,x) = , i = l+, . . . ,N , where vi(t,x) = (vi(t,x), vi(t,x), . . . , vin(t,x))T , pi is a positive
constant. ĉ∗i (t,x), ĉ∗iτ (t,x), ĉ∗∗

i (t,x) and ĉ∗∗
iτ (t,x) are estimations to c∗i (t,x), c∗iτ (t,x), c∗∗

i and
c∗∗
iτ , respectively. The time-varying periodic adaptive gains and the time-invariance update
laws are designed as

ĉ∗i (t,x) =

{
ĉ∗i (t –ω,x) + ηi(t,x)ei(t)Tei(t), t ∈ [, +∞),
, t ∈ (–ω, ],

ĉ∗iτ (t,x) =

{
ĉ∗iτ (t –ω,x) + ηi(t,x)ei(t)Tei(t), t ∈ [, +∞),
, t ∈ (–ω, ]

()

and

˙̂c∗∗
i (t,x) = –θiei(t)Tei(t), ˙̂c∗∗

iτ (t,x) = –θiei(t)Tei(t), ()

http://www.advancesindifferenceequations.com/content/2014/1/146
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respectively, in which

ηi(t,x) =

⎧⎪⎨
⎪⎩
,  ≤ t < 

ω,
η̄i(t,x), 

ω ≤ t ≤ 
ω,

, t > 
ω,

ηi(t,x) =

⎧⎪⎨
⎪⎩
,  ≤ t < 

ω,
η̄i(t,x), 

ω ≤ t ≤ 
ω,

, t > 
ω,

one can choose η̄ji(t,x), ≤ η̄ji(t,x)≤ , j = , , such that ηi(t,x) and ηi(t,x) are increasing
and continuous functions. And θji, ≤ θji ≤ , j = , , are positive constants.

Definition  If there is a control input vi(t,x) such that

lim
t→∞

∥∥zi(t,x) – u(t,x)
∥∥
 = , for all i = , , . . . ,N ,

then the coupled NN () is said to be synchronized.
One gets the following error dynamical system:

∂ei(t)
∂t

= ∇ • (
D ◦ ∇ei(t)

)
–Aei(t) +Wf

(
ei(t)

)

+Hf
(
ei
(
t – τ (t)

))
+ ci(t,x)

N∑
j=

Gij�ej(t)

+ ciτ (t,x)
N∑
j=

Gτ ij�τ ej
(
t – τ (t)

)
+ vi(t,x), i = , , . . . ,N , ()

where ei(·,x) = (ei(·,x), . . . , ein(·,x))T , f (ei(·,x)) = (g(zi(·,x)) – g(u(·,x)), . . . , gn(zin(·,x)) –
gn(un(·,x)))T .

3 Main results
Theorem  Assume (A)-(A) hold. If there exist a natural number ≤ l ≤N and positive
constants qi, L, L such that

λmax
(((

ĜT + Ĝ
)
/
)
l

)
< –

α

cMγ
()

holds,whereα =
∑m

r=(–
D∗
r

dr
)+λmax( L

)+λmax(–A+ WTW+HTH
 )+ Ngγ 

τ

δ
cτM+ 

–μ
(λmax(  ×

L) + δcτM) and D∗
r =max≤j≤n(Djr) ( ≤ r ≤ m) are positive constants, then the controlled

coupled RDNN () is globally synchronized under the pinning adaptive controllers ().

Proof Define the Lyapunov-Krasovskii composite energy functional as

V (t) =
∫

�

{



N∑
i=

eTi (t)ei(t) +



l∑
i=

[
pi
∫ t

t–ω

(
c̃∗i (s,x)

 + c̃∗iτ (s,x)
)ds]

+



l∑
i=

pi
[
θ–
i
(
c̃∗∗
i (t,x) + L

) + θ–
i
(
c̃∗∗
iτ (t,x) + L

)]

+
(λmax( L

) + δcτM)
 –μ

N∑
i=

∫ t

t–τ (t)
eTi (s)ei(s)ds

}
dx, ()
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where

t ≥ ω, P = diag(p, . . . ,pl, , . . . , ︸ ︷︷ ︸
N–l

),

c∗i (t,x) = c∗i (t –ω,x), c∗iτ (t,x) = c∗iτ (t –ω,x),

c̃∗i (t,x) = c∗i (t,x) – ĉ∗i (t,x), c̃∗iτ (t,x) = c∗iτ (t,x) – ĉ∗iτ (t,x),

c̃∗∗
i (t,x) = c∗∗

i – ĉ∗∗
i (t,x), c̃∗∗

iτ (t,x) = c∗∗
iτ – ĉ∗∗

iτ (t,x).

Taking the derivative of (), by (), (), and (A) along the solutions of () yields

V̇
(
t, e(t)

) ≤
∫

�

{ N∑
i=

eTi (t)

{
∇ • (

D ◦ ∇ei(t)
)
–Aei(t) +Wf

(
ei(t)

)

+Hf
(
ei
(
t – τ (t)

))
+ ci(t,x)

N∑
j=

Gij�ej(t) + ciτ (t,x)
N∑
j=

Gτ ij�τ ej
(
t – τ (t)

)

–


pi
[
ĉ∗i (t,x) + ĉ∗iτ (t,x) + ĉ∗i (t –ω,x) + ĉ∗iτ (t –ω,x)

]
ei(t)

– pi
[
ĉ∗∗
i (t,x) + ĉ∗∗

iτ (t,x)
]
ei(t)

}

+
l∑

i=

pi
{


[
c̃∗i (t,x)

 + c̃∗iτ (t,x)
] – 


[
c̃∗i (t –ω,x) + c̃∗iτ (t –ω,x)

]

+
[
θ–
i
(
c̃∗∗
i (t,x) + L

)˙̃c∗∗
i (t,x) + θ–

i
(
c̃∗∗
iτ (t,x) + L

)˙̃c∗∗
iτ (t,x)

]}

+
N∑
i=


 –μ

(
λmax

(


L

)
+ δcτM

)

× [
eTi (t)ei(t) –

(
 – τ̇ (t)

)
eTi

(
t – τ (t)

)
ei
(
t – τ (t)

)]}
dx

=
∫

�

{ N∑
i=

eTi (t)

[
∇ • (

D ◦ ∇ei(t)
)
–Aei(t) +Wf

(
ei(t)

)
+Hf

(
ei
(
t – τ (t)

))

+
N∑
i=

N∑
j=

ci(t,x)eTi (t)Gij�ej(t) +
N∑
i=

N∑
j=

ciτ (t,x)eTi (t)Gτ ij�τ ej
(
t – τ (t)

)]

+
l∑

i=

eTi (t)pi
{
–


[
ĉ∗i (t,x) + ĉ∗iτ (t,x) + ĉ∗i (t –ω,x) + ĉ∗iτ (t –ω,x)

]
ei(t)

–
[
ĉ∗∗
i (t,x) + ĉ∗∗

iτ (t,x)
]
ei(t)

}

+
l∑

i=

pi
{


[
c̃∗i (t,x)

 + c̃∗iτ (t,x)
] – 


[
c̃∗i (t –ω,x) + c̃∗iτ (t –ω,x)

]

+
[
θ–
i
(
c̃∗∗
i (t,x) + L

)˙̃c∗∗
i (t,x) + θ–

i
(
c̃∗∗
iτ (t,x) + L

)˙̃c∗∗
iτ (t,x)

]}
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+
N∑
i=


 –μ

(
λmax

(


L

)
+ δcτM

)

× [
eTi (t)ei(t) –

(
 – τ̇ (t)

)
eTi

(
t – τ (t)

)
ei
(
t – τ (t)

)]}
dx. ()

According to Green’s formula, Lemma  in reference [] and the Dirichlet boundary con-
dition, one can obtain

N∑
i=

∫
�

eTi (t)∇ • (
D ◦ ∇ei(t)

)
dx = –

N∑
i=

∫
�

n∑
j=

m∑
r=

Djr

(
∂eij(t)
∂xr

)

dx

≤ –
N∑
i=

∫
�

m∑
r=

D∗
r

d
r
eTi (t)ei(t)dx. ()

In view of (A), Lemma , and aTb≤ aTXa + bTX–b, ∀a,b ∈ Rn, we know that

N∑
i=

eTi (t)
[
–Aei(t) +Wf

(
ei(t)

)
+Hf

(
ei
(
t – τ (t)

))]

≤
N∑
i=

[
–eTi (t)Aei(t) +



eTi (t)W

TWei(t) +


f T

(
ei(t)

)
f
(
ei(t)

)

+


eTi (t)H

THei(t) +


f T

(
ei
(
t – τ (t)

))
f
(
ei
(
t – τ (t)

))]

≤
[
λmax

(
–A +

WTW +HTH


)
+ λmax

(


L

)]
eT (t)e(t)

+ λmax

(


L

)
eT

(
t – τ (t)

)
e
(
t – τ (t)

)
. ()

From Gτ ij ≥  and (), we have

|Gτ ij| < |Gτ ii|. ()

By (A), (), and Lemma  in reference [], we derive

N∑
i=

N∑
j=

ciτ (t,x)eTi (t)Gτ ij�τ ej
(
t – τ (t)

)

≤ 

cτM

N∑
i=

N∑
j=

(Gτ ij)eTi (t)�
T
τ Q�τ ei(t) +



cτM

N∑
i=

N∑
j=

eTj
(
t – τ (t)

)
Q–ej

(
t – τ (t)

)

≤ Ng


cτM

N∑
i=

eTi (t)�
T
τ Q�τ ei(t) +

N

cτM

N∑
j=

eTj
(
t – τ (t)

)
Q–ej

(
t – τ (t)

)

=
Ngτ γ 

τ

δ
cτM

N∑
i=

eTi (t)ei(t) + δcτM
N∑
j=

eTj
(
t – τ (t)

)
ej
(
t – τ (t)

)
, ()

where Q = N
δ I .
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From ()-() and (A), we get

V̇
(
t, e(t)

) ≤
∫

�

{ m∑
r=

(
–
D∗

r
d
r

)
eT (t)e(t)

+ eT (t)
[
λmax

(
–A +

WTW +HTH


)
+ λmax

(


L

)]
e(t)

+ λmax

(


L

)
eT

(
t – τ (t)

)
eT

(
t – τ (t)

)
+
Ngτ γ 

τ

δ
cτMeT (t)e(t) + δcτMeT

(
t – τ (t)

)
e
(
t – τ (t)

)

+ cM
N∑
i=

N∑
j=,j 	=i

eTi (t)Gij�ej(t) + cM
N∑
i=

GiiρmineTi (t)ei(t)

–



l∑
i=

pieTi (t)
[
ĉ∗i (t,x) + ĉ∗iτ (t,x) + ĉ∗i (t –ω,x) + ĉ∗iτ (t –ω,x)

]
ei(t)

–
l∑

i=

pieTi (t)
[
ĉ∗∗
i (t,x) + ĉ∗∗

iτ (t,x)
]
ei(t)

+
l∑

i=

pi
{


[
c̃∗i (t,x)

 + c̃∗iτ (t,x)
] – 


[
c̃∗i (t –ω,x) + c̃∗iτ (t –ω,x)

]

+
[
θ–
i
(
c̃∗∗
i (t,x) + L

)˙̃c∗∗
i (t,x) + θ–

i
(
c̃∗∗
iτ (t,x) + L

)˙̃c∗∗
iτ (t,x)

]}

+
N∑
i=

(λmax( L
) + δcτM)

 –μ

× [
eTi (t)ei(t) –

(
 – τ̇ (t)

)
eTi

(
t – τ (t)

)
ei
(
t – τ (t)

)]}
dx

≤
∫

�

{
eT (t)(M – P̄)e(t)

}
dx, ()

where M = αIN + cMγ ĜT+Ĝ
 , P̄ = (L + L + cm + cτm)P, α =

∑m
r=(–

D∗
r

dr
) + λmax(–A +

WTW+HTH
 ) + Ngτ γ 

τ

δ
cτM + 

–μ
(λmax( L

) + δcτM) + λmax( L
).

It is clear that matrix M is symmetric. Let M – P̄ =
[ Ã–P̃ B̃

B̃T Ml

]
, where Ml is the minor

matrix of M by removing its first l ( ≤ l ≤ N ) row-column pairs, Ã and B̃ are matrices
with appropriate dimensions, P̃ = (L + L + cm + cτm)diag(p, . . . ,pl). According to (),
(), (), and Lemma , we derive λmax(Ml)≤ α + cMγ λmax(((ĜT + Ĝ)/)l), which implies
thatMl < . If we choose positive constants L, L, and pi such that p∗

i > λmax(Ã– B̃M–
l B̃T ),

p∗
i = (L + L)pi > , i = , , . . . , l. It follows from Lemma  and Ml <  that M –D < . By

(), we get V̇ (t, e(t)) ≤  and V̇ (t, e(t)) =  if and only if e(t) = Nn. Therefore, the set � =
{eT (t) | e(t) = Nn} is the largest invariant set contained in the set � = {eT (t) | V̇ (t, e(t)) =
} of system (). According to the well-known LaSalle invariance principle [], we can
conclude e(t) →  as t → +∞. That is, the pinning controlled network () asymptotically
synchronizes to network () under the pinning adaptive controllers (). This completes
the proof. �
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Remark In [–, , ], the synchronization for single delayedRDNNwas discussed
and a series of the sufficient conditions were given. Recently, adaptive synchronization to
linearly coupled RDNNswas investigated in references [, ], some sufficient conditions
for adaptive synchronization of such a system were established. However, different from
the above references, in this paper we develop pinning synchronization RDNNs with gen-
eral coupling matrices and coupled unknown time-varying parameters. Furthermore, the
condition for pinning synchronization is dependent on reaction-diffusion terms and the
diffusion region �.

Remark  Since we consider the RDNNs with unknown time-varying parameters, so it is
more complicated. Based on learning control technique, the synchronization criterion is
obtained by adjusting time-varying coupling strengths, which is different from the meth-
ods used in references [, ]. The results of this paper are new and they complement
previously known results.

Remark  It is difficult to get the entire information on the coupling matrix Gτ , thus we
apply the partial information that the diagonal elements of the coupling matrix strength
for delayed configuration Gτ ii has the upper bound gτ . In this paper, the coupling matrix
G does not need to be symmetric. Compared with the results in paper [, ], to achieve
pinning adaptive synchronization, we can adaptively tune the coupling strengths c and cτ
in this paper. In addition, the controllers are independent of the information of the time
delay, so it is very easy to implement.

Remark  For the pinning controlled network (), one may choose periodic adaptive
control. The adaptation laws () and () are difference-type and a differential-type up-
dating laws, which deal with the unknown time-varying parameters and unknown time-
invariance parameters. This control method was originally proposed in reference [].
Based on the learning control techniques in references [–], we study the pinning syn-
chronization of linearly coupled delayed RDNNs with general coupling matrices. Indeed,
it is quite challenging to design some appropriate pinning learning controllers.

Remark  Recently,many results have been obtained for complex dynamic networkswith
time-varying parameters [].However, the existing studies show that ordinary differential
equations with the time-varying parameters were processed by the bounding technique.
As far as we know, until now this extension has not been investigated in the existing lit-
erature on distributed parameter systems. From the viewpoint of the technical approach,
the main design difficulty is how to deal with the unknown time-varying parameters and
unknown time-varying delays. In this paper, the difficulty is successfully overcome via con-
structing a Lyapunov-Krasovskii-like CEF, applying inequality techniques and an adaptive
pinning control method.

Remark  From the proof of Theorem , we can also derive similar results for the RDNNs
with Neumann boundary conditions or mixed boundary conditions. Furthermore, we can
easily see that the results and research method in this paper also can be extended to many
other types of RDNNs such as the bidirectional associative memory NNs and Cohen-
Grossberg NNs.
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Theorem  Suppose (A)-(A) hold. If there exist a natural number  ≤ l ≤ N and
positive constants qi, L, L such that λmax(((ĜT + Ĝ)/)l) < – α̃

cMγ
holds, where α̃ =∑m

r=(–
D∗
r

dr
) + λmax(–A) + α∗ + Ngγ 

τ

δ
cτM + (β∗+δcτM)

–μ
+ β∗, β∗ = 

 max≤j≤n
∑n

k= L|hkj|,
α∗ = 

 max≤j≤n
∑n

k=(|wjk| + |hjk| + L|wkj|) are positive constants, then the system () is
synchronized under the pinning adaptive controllers ().

Proof The proof is quite similar to that of Theorem . To avoid unnecessary duplications,
here, we only provide a sketch of the proof and omit the details.
Consider the Lyapunov functional candidate:

V (t) =
∫

�

{



N∑
i=

eTi (t)ei(t) +
l∑

i=

[
eTi (t)ei(t)

∫ t

t–ω

(
c∗(s,x) + c∗τ (s,x)

)ds]

+



l∑
i=

[
θ–
i
(
c∗∗(t,x) + L

) + θ–
i
(
c∗∗
τ (t,x) + L

)]

+
(β∗ + δcτM)

 –μ

N∑
i=

∫ t

t–τ (t)
eTi (s)ei(s)ds

}
dx.

According to (A) and Lemma , we get

N∑
i=

eTi (t)
[
–Aei(t) +Wf

(
ei(t)

)
+Hf

(
ei
(
t – τ (t)

))]

≤
N∑
i=

[
–eTi (t)Aei(t)

]
+



N∑
i=

[ n∑
j=

n∑
k=

(|wjk| + |hjk| + L|wkj|
)
eij(t)

]

+



N∑
i=

n∑
j=

n∑
k=

L|hkj|eij
(
t – τ (t)

)
≤ [

λmax(–A) + α∗]eT (t)e(t) + β∗eT
(
t – τ (t)

)
e
(
t – τ (t)

)
. ()

The derivative of V (t) along the trajectories of () gives

V̇
(
t, e(t)

) ≤
∫

�

{ m∑
r=

(
–
D∗

r
d
r

)
eT (t)e(t)

+ eT (t)
[
λmax(–A) + α∗]e(t) + β∗eT

(
t – τ (t)

)
eT

(
t – τ (t)

)
+
Ngγ 

τ

δ
cτMeT (t)e(t) + δcτMeT

(
t – τ (t)

)
eT

(
t – τ (t)

)

+ cM
N∑
i=

N∑
j=,j 	=i

eTi (t)Gij�ej(t) + cM
N∑
i=

GiiρmineTi (t)ei(t)

–



l∑
i=

pieTi (t)
[
ĉ∗(t,x) + ĉ∗τ (t,x) + ĉ∗(t –ω,x) + ĉ∗τ (t –ω,x)

]
ei(t)

–
l∑

i=

pieTi (t)
[
ĉ∗∗(t,x) + ĉ∗∗

τ (t,x)
]
ei(t) +

l∑
i=

pi
{[
c̃∗(t,x) + c̃∗τ (t,x)

]
–
[
c̃∗(t –ω,x) + c̃∗τ (t –ω,x)

]
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+
[
θ–

i
(
c̃∗∗(t,x) + L

)˙̃c∗∗(t,x) + θ–
i
(
c̃∗∗
τ (t,x) + L

)˙̃c∗∗
τ (t,x)

]}
+

N∑
i=

(β∗ + δcτM)
 –μ

[
eTi (t)ei(t) –

(
 – τ̇ (t)

)
eTi

(
t – τ (t)

)
ei
(
t – τ (t)

)]}
dx

≤
∫

�

{
eT (t)

[
α̃IN + cMγ

ĜT + Ĝ


– (L + L + cm + cτm)P
]
e(t)

}
dx. ()

Analogously to the proof of Theorem , we can conclude that the pinning controlled
network () asymptotically synchronizes to network () under the pinning adaptive con-
trollers (). This completes the proof. �

Corollary  Suppose (A)-(A) hold. If there exist a natural number  ≤ l ≤ N and pos-
itive constants qi, L, L such that λl+ < – χ

cMγ
holds, where χ = min{α, α̃}, α and α̃ are

defined in Theorem  and Theorem , respectively. Then the delayed RDNN () is globally
synchronized under the pinning adaptive controllers ().

4 An illustrative example
A simple example is given in order to illustrate the usefulness of ourmain results. Our aim
is to examine the adaptive synchronization characteristic of linearly coupled RDNNs with
unknown time-varying coupling strengths.

Example  Consider the following -dimensional uncoupled delayed RDNNs:

∂ui(t,x)
∂t

=Di
∂ui(t,x)

∂x
– aiui(t,x) +

∑
j=

wijgj
(
uj(t,x)

)

+
∑
j=

hijgj
(
uj
(
t – τj(t),x

))
, t ≥ ,x ∈ �, i = , ,

ui(t,x) = , (t,x) ∈ (–τ̄ , +∞)× ∂�, i = , ,

ϕ(s,x) =  sin(πx), ϕ(s,x) =  sin(πx),

()

where x ∈ � = {x | |x| ≤ }, gj(y) = tanh(y) and τj(t) = et
+et (j = , ). It is easy to see that gj(·)

satisfies (A), Lj = ,  < τ (t) <  and τ̇j(t) = et
(+et ) ≤ 

 .
Let A =

(  
 

)
, W =

(  –.
– 

)
, H =

( –. –.
–. –.

)
, D = D = .. Then numerical simulation

shows that system () has a chaotic attractor (see Figures -). In the following, we design
the pinning controllers for system ().
Next, we present a dynamical system consisting of three linearly coupled RDNNs. The

dynamical behavior of the entire array can be described by the following delayed RDNNs
with unknown time-varying coupling strengths:

∂zi(t,x)
∂t

=∇ • (
D ◦ ∇zi(t,x)

)
–Azi(t,x) +Wg

(
zi(t,x)

)

+Hg
(
zi
(
t – τ (t),x

))
+ ci(t,x)

N∑
j=

Gij�zj(t,x)

+ ciτ (t,x)
N∑
j=

Gτ ij�τ zj
(
t – τ (t),x

)
+ vi, i = , , , ()
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Figure 1 Chaotic behavior of the state u1(t,x) in system (20).

Figure 2 Chaotic behavior of the state u2(t,x) in system (20).

zi(t,x) = , (t,x) ∈ (–τ̄ , +∞)× ∂�, i = , ,

zi(s,x) = i cos(πx), zi(s,x) = i cos
(


πx

)
,

where zi(t,x) = (zi(t,x), zi(t,x))T (i = , , ) is the state variable of the ith NNs. The cou-
pling configuration matrix is chosen to be

G =

⎛
⎜⎝–  –

 – 
  –

⎞
⎟⎠ ,

and the delayed coupling matrix is taken as Gτ = .G. The inner-coupling matrix is cho-
sen as � = �τ = I . We choose the nodes  and  as pinned nodes. Choosing the adaptive
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Figure 3 Asymptotical behavior of the error e11(t,x).

controllers we have

vi(t,x) = –


pi
[
ĉ∗i (t,x) + ĉ∗iτ (t,x) + ĉ∗i (t –ω,x) + ĉ∗iτ (t –ω,x)

]
ei(t)

– pi
[
ĉ∗∗
i (t,x) + ĉ∗∗

iτ (t,x)
]
ei(t), i = , ,

and vi(t,x) = , i = . The time-varying periodic adaptive gains and the time-invariance
update laws are designed as () and ().
Select the parameters of the above given system as follows:

c∗ (t,x) =  sin
π t


, c∗(t,x) =  cosπ t,

c∗(t,x) =  sin
π t


, c∗τ (t,x) = – sin
π t


,

c∗τ (t,x) = cosπ t, c∗τ (t,x) = cosπ t,

c∗∗
 = , c∗∗

 = , c∗∗
 = , c∗∗

τ = , c∗∗
τ = , c∗∗

τ = .,

η̄i(t,x) = .t – , η̄i(t,x) = .t – , pi = ., i = , .

The change processes of the state variables uj(t,x) and eij(t) (i = , , , j = , ) are shown
in Figures  to . According to Theorem  and the simulation results, we can see that the
coupled system () is synchronized.

5 Conclusions
In this paper, pinning synchronization of linearly coupled delayed RDNNs is discussed
in detail. Some novel criteria for achieving network synchronization have been presented
by utilizing some analytical and adaptive learning control techniques. It is interesting to
find that a network can realize pinning synchronization via adaptively adjusting the un-
known time-varying coupling strengths. The coupling configurationmatrices are general,
which are not required to be symmetric or irreducible. Moreover, some effective pinning
schemes have been designed for networks with fixed structure and coupling strengths.
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Figure 4 Asymptotical behavior of the error e12(t,x).

Figure 5 Asymptotical behavior of the error e21(t,x).

Figure 6 Asymptotical behavior of the error e22(t,x).
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Figure 7 Asymptotical behavior of the error e31(t,x).

Figure 8 Asymptotical behavior of the error e32(t,x).

Compared with existing results, our synchronization is still very useful when the existing
methods become invalid. Finally, the theoretical result is shown by a numerical example,
which verifies well the theoretical analysis.
In fact, it is worth mentioning that there are still some important problems to solve for

linearly coupled delayed RDNNs with unknown time-varying coupling strengths. From
the literature, there are two common phenomena inmany evolving networks: delay effects
and impulsive effects. The states of electronic networks and biological networks are often
subject to instantaneous disturbances and experience abrupt changes at certain instants,
which may be caused by the switching phenomenon, frequency change, or me other sud-
den noise, i.e., they exhibit impulsive effects []. Impulsive dynamical networks, which
are characterized by abrupt changes in the state differences of the systems at certain in-
stants, have sparked the interest of many researchers for their various applications in in-
formation science, automated control systems, etc. Since delays and impulses can heavily
affect the dynamical behaviors of NNs, it is necessary to investigate both delay and impul-
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sive effects on the synchronization of NNs. Very recently, the chaos synchronization of the
Rikitake system based on Takagi-Sugeno fuzzy control techniques was studied []. The
problem of sampled-data synchronization has been discussed for NNs with time-varying
delay in the framework of the input delay approach []. To be more consistent with real-
istic networks, in the future, we will use these interesting control techniques to consider
the pinning synchronization in a linearly coupled delayed RDNNs model with unknown
time-varying strengths.
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