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1 Introduction
Let H be areal Hilbert space and C be a nonempty, closed, and convex subset of H. A map-
ping T': C — C is said to be monotone if

(Ix—Ty,x—-y) >0, Vx,yeC.

A multi-valued mapping T : H — 2/ is said to be maximal monotone if its graph is not
properly contained in the graph of any other monotone mapping. Lots of researches are
focused on the maximal monotone mapping due to its importance.

In 1976, to solve the inclusion problem 0 € Ax, Rockafellar [1] introduced the following
proximal point method:

JC()EH, xn+1:]rnxm n=0,12,...,

where J,, = (I +r,A)™" and A : H — 2" is a maximal monotone mapping. It is shown that
the iterative sequence {x,} converges weakly to a zero of A under some appropriate condi-
tions. The strong convergence of the sequence has been extensively discussed by Zegeye
and Shahzad [2] and Hu and Liu [3] in Banach spaces.
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In 2014, Wei and Tan [4] introduced the following Mann-type composite viscosity iter-
ative scheme for finding the common zeros of two families of finite maximal monotone

mappings. In particular, they proved the following theorem.

Theorem 1.1 ([4], Theorem 2.2) Let H be a real Hilbert space, C be a nonempty closed and
convex subset of H, A;,B; (i=1,2,...,k;j=1,2,...,1) : C — C be two families of m-accretive
mappings. Suppose

ArAr A1 _ JAx AR LA B B
STt = LR R L1 T,, = aol + aJ}* + a)J> + -+ alJ)’,

with ],n (I +r,A)7" fr]i = +r,B)" Zm 0@m =1 and a,, € (0,1). The sequences {x,},
{y.}, and {u,} are generated by

x €C,

= Buf @) + (L= B S,
Uy = Vaf On) + L= vi) Tr, 9,

Xni1 = f () + (1= o)ty

foreveryn=0,1,2,...,wheref : C — C is a contraction. If D = (ﬂl LAT0) N ( ﬂ 4B/ 10) is
nonempty, {a,}, {ﬂ,,}, and {v,} are three sequences in (0,1) and {r,} C (0, +00) satisfy the
following conditions:
() Y02 |y — | < +00, and oy — 0 as n — o0;

(i) D02  Bu=+00, > o2 |Bust — Bul < +00, and B, — 0 as n — oo;

(i) Y02 V1 = vul < +00, and v, — 0 as n — oo;

(iv) Y02 rus1 = 1l < +00, and ry — r* > € >0 as n — oo.
Then {x,} converges strongly to a point py € D, which is the unique solution of the following

variational inequality:

{f(wo) —po,po—q) =0, VqeD.

Remark 1.1 Actually, the m-accretive mapping in a Hilbert space defined in Wei and Tan

[4] is a maximal monotone mapping.

Theorem 1.1 gives rise naturally to the question we concerned: the real sequences {«,},
{B.}, {v4}, and {r,} are satisfying the conditions (i), (ii), (iii), and (iv). When is the restric-
tions of the real sequences relaxed? The purpose of our paper is to give an affirmative
answer to the question. Moreover, a new algorithm and an extensive problem are consid-
ered.

On the other hand, the variational inequality problem is to find # € C such that

(Au,v—u) >0, Vve(C,

where A : C — H is a nonlinear mapping. The set of solutions of the variational inequality
problem is denoted by VI(C,A). The variational inequality problem was first discussed
by Lions [5]. For finding a solution of the variational inequality problem in Euclidean
space R", Korpelevich [6] introduced the following extragradient method:
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xo=x€C,
EVl = PC(xn - )“Axn);
X1 = P, — LAX,),

for every n =0,1,2,... where C is a nonempty, closed, and convex subset of R”, A: C —
R" is a monotone and p-Lipschitz-continuous mapping, A € (0, %). She showed that if
VI(C,A) is nonempty, then the generated sequences {x,} and {x,} converge to the same
point z € VI(C,A). The extragradient iterative process was successfully generalized and
extended not only to Euclidean but also to Hilbert and Banach spaces; see, e.g., the recent
references of [7-9].

Furthermore, liduka and Takahashi [10] introduced the following outer-approximation
method:

xo=x€C,

Yn = QuXy + (1 - an)SPC(xn - )\nAxn):
Ch={zeC:lly,—zll = llxn —2ll},
Qu={z€C: ¥y —2zx-x,) =0},

Xn41 = Pc,nq,%

for every n=0,1,2,..., where A: C — H is an p-inverse strongly monotone mapping,
S : C — C is a nonexpansive mapping, 0 <a < i, <b<2p and 0 < o, < ¢ < 1. They
showed that if F(S) N VI(C, A) is nonempty, then the generated sequence {x,} converges to
Prs)nvic,ay¥. The outer-approximation method was originally introduced by Haugazeau
in 1968 and was successfully generalized and extended in recent papers [11-14].

In this paper, inspired and motivated by the above work, we introduce the following
general hybrid iterative algorithm, which is based on four well-known methods: Mann’s
iteration method, the composite method, the outer-approximation method, and the extra-
gradient method.

Algorithm 1.1 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H, A: C — H be a monotone and p-Lipschitz-continuous mapping, S: C — C be a
nonexpansive mapping, A;,B; (i=1,2,...,k;j=1,2,...,1) : C — C be two families of finite

maximal monotone mappings. Suppose
ArAk-1+Al _ JAR AR . A1 = By By g B
S, =]k b Ty, =aol +ai),! +a),> +---+al,’,

with ]2" =T +rA)L ) =T+ raB)™, Zl a, =1and a,, € (0,1). The sequences {x,},

m=0

{yu}, {zu}, and {w,} are generated by

xo=x€C,

Yn = Pc(xy — LuAxy),

Zn = WXy + (1= 0,)SPc (% — AnAy),

Wi = (L= B = V)2n + BuS Mz 4 v T 2,
Co={zeC:llwy,—z| < llxn -2},
Qu=1{z€C: {xy—z,x—x,) >0},

Xn+1 = Pc,ng, %,

foreveryn=0,1,2,....
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Our algorithm is first used for finding the common zeros of two families of finite maxi-
mal monotone mappings. By using Algorithm 1.1, we will find a common element of the set
of common zeros of two families of finite maximal monotone mappings, the set of fixed
points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a monotone, Lipschitz-continuous mapping. We will prove the strong con-
vergence theorem for the proposed algorithm, which extends and improves the corre-
sponding results in the early and recent literature; see, e.g,, [3, 4, 6, 10, 14].

2 Preliminaries

Throughout our paper, let H be a real Hilbert space with the inner product (-, -) and norm
[l ]I, C be anonempty, closed, and convex subset of H, and I be the identity mapping on H.
We write x,, s x to indicate that the sequence {x,} converges weakly to x and x, — x to
indicate that the sequence {x,} converges strongly to x. For every point x € H, there exists
an unique nearest point in C, denoted by Pcx, such that

e = Pex|l < llx—yll, VyeC.

Pc is said to be the metric projection of H onto C. A mapping T : C — C is said to be
p-Lipschitz-continuous if

ITx - Tyl < pllx-oll, VxyeC.
T : C — C is said to be nonexpansive if
ITx =Tyl < llx—yll, VxyeC.

Obviously, the 1-Lipschitz-continuous mapping is a nonexpansive mapping. It is well
known that P¢ is nonexpansive.

We use F(T) to denote the set of fixed points of T, that is, F(T) = {x € C: Tx = x}. We
use 7710 to denote the set of zeros of T, that is, 7710 = {x € C: Tx = 0}. We use /T (r>0)
to denote the resolvent operator of T, that is, JT = (I + rT)™!. As is well known, J! is non-
expansive and F(JT) = T-10.

It is well known that a monotone mapping 7 is maximal if and only if for (x,f) € H x H,
(x—,f —g) > 0 for every (y,g) € Graph(T) implies f € Tx. Next we provide an example
to illustrate the concept of maximal monotone mapping. Let A : C — H be a monotone,
p-Lipschitz-continuous mapping and N¢v be the normal cone to C at v € C, i.e., Ncv =
{weH:{(v—u,w)>0,Yu € C}. Define

_JAv+Ncv, ifveC,
e, ifveC,

Tv

it is well known that in this case T is maximal monotone and 0 € Tv if and only if v €
VI(C, A); see [15]. At the same time, it is well known that H satisfies Opial’s condition [16],

w
i.e., for any sequence {x,} with x,, — «, the inequality

liminf ||x, — x| < liminf|x, — ||
n— 00 n— 00
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holds for every y € H with y # x. H also admits Kadec-Klee property, i.e., sequential weak
convergence on the unit sphere coincides with norm convergence; see [17].
In order to prove our main results, we need the following lemmas.

Lemma 2.1 [18] For Vx € H and Yy € C, Pc is characterized by the properties:
(i) (x—Pcx,Pcx—y) =0;
(ii) IPcx =yl + llx = Pexll* < llx - yI|>.

Lemma 2.2 [4] ForVxe H,Vyc A0 andr>0,
=y + = x| < ke = 1%

Lemma 2.3 [4] Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H,A;,Bj (i=1,2,...,k;j=1,2,...,1) : C = C be two families of finite maximal monotone
mappings such that ( ﬂl LAT0) N ﬂ] 1B/ 10) is nonempty. Suppose

ApAj_q--A Ap TAj— A B B B
ShAAL L JAgAC AL T 2ol v a Pt agP 4+ a?

with ];:i = +r,A)Y ) =+ raBj)™, Zm 0dm =1, a, € (0,1) and r, > 0. Then

n

Ap 1A
Spkr 4. C s Cand T, : C — C are nonexpansive.

Lemma2.4[4] LetH,C, AZ,B],S;‘\V,kAk‘lmAl,and T,, be the same as those in Lemma 2.3, sup-
pose (N, A;:10) ﬂl 1 Bj10) is nonempty, then F(Spxr4y = MK, A0 and
Fuh)_ryﬂqﬂa

3 Strong convergence theorems

Theorem 3.1 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H, A : C — H be a monotone and p-Lipschitz-continuous mapping, S : C — C be a
nonexpansive mapping, A;, B; (i=1,2,...,k;j=1,2,...,1) : C — C be two families of finite
maximal monotone mappings such that D = (N5, A710) N (ﬂ]l-:1 B'0)NF(S)NVI(C,A) is
nonempty. Suppose

ArAp_q+A1 _ 7Ak TAR A _ B By B
Skt = Jk Ak, Ty, = aol + a2 + ay)® + - + ayJ?,

with ];:j = +r,A)" I,Ji (I +r,B)™, thrl:O am =1anda,, € (0,1).
If{an}, {Bubs {vn} {An}, and {r,} satisfy the following conditions:
(i) 0<a,<b<l;
(i) 0<c< B, <1
(iil) 0<d <yu <L Bu+vu<1;
(iv) O<p=in=q<y;
V) 0<n<r,<+00,
where b, ¢, d, p, g and n are constants, then the sequences {x,}, {y,}, {z,}, and {w,} generated
by Algorithm 1.1 converge strongly to Ppx.

Proof We will split the proof into five steps.
Step 1. D = (M, A710) N ()., B;10) N F(S) N VI(C,A) € C, N Q.
First, we show D C C,,.
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Put t, = Pc(x, — A,Ay,). Take a fixed p € D arbitrarily, then we get p € (ﬂLAi‘IO) N
(ﬂ;=1 B].‘IO), p € F(S)and p € VI(C,A). From Lemma 2.1(ii) and the monotonicity of A, we

have

ll£n - pII?
< 1% = 2ndy = pII* = 150 = Audy — tall®
= 120 = 21? = 1% = Lall® + 240 ( Ay p — )
= 10 = PI? = 1% = tall® + 24 ((AY = AP, D = Yu) + (AP = V) + (Vs Y — 1))
< Ntn = I = 10 = 2ull® + 22 (Ay Y — 1)
= %0 = 21 = (1% = 7 lI” + 2000 = Ys Y = tu) + 190 = ull*) + 22 (A1, Y — L)

= [lxy —19||2 - (”xn _yn||2 +{|Yn — tn”z) + 2% — AnAYn — Yur bn — Yn)- (3.1)
Since y,, = Pc(x,, — AnAx,), A is p-Lipschitz-continuous and by Lemma 2.1(i), we have
(xn - )\nAyn _ym tn _yn>

= (xXn = MA%y = Yy by = V) + (AnAxn — AnAYs by — Vi)

E ()WtAxn - )\nA_ym tn __yn)

< Aup %y _yn” 2, _yn”- (3~2)
Substituting (3.2) into (3.1) and by condition (iv), we have
£, - plI?
< [l%n —19||2 - (”xn _yn”2 + {|yn — tn||2) +20,011%0 = Yu 18 = Yl
= “xn —P||2 - (”xn _yn||2 + ”yn - tn”z) + ()‘ipzllxn __)/n”2 + ”tn _yn”Z)
< llxu—pI* + (420> = 1) 10 - yull?
< [l —plI*. (3.3)

From (3.3), Algorithm 1.1, the convexity of | - || and the nonexpansiveness of S, we have
2
2 = pII? = [t + (1 = )St = p|
< apllxn = pl* + (1 - ) ISts - pl?
< apllxn - pl* + - )ity - pl?
<% —P||2 +(1 _Oln)()ti - 1)||xn _yn”z

< llxn - plI*.
By (3.4), Algorithm 1.1, Lemma 2.3, and Lemma 2.4, we have

2
Wy _P||2 = ” (1= Bu = VYu)zn + ,BnankAkfl Alzn + YTy, 2n —17”

2
< (L= Bu—vllzu = pI* + B SHA1 A2, — p|* + Yl T2 — pII*

'n
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<(1-B,- Vn)”Zn _P||2 + Bullzn _P||2 + Vullzn _P||2
= |z, - pI?
<% = pII* + (1 = ) (A2 0* = 1) % — yull®

< llxx = pI*. (3.5)

By virtue of the definition of C, and (3.5), we have p € C,. So, D C C,, for every n =
0,1,2,....

Next, through the mathematical induction method, we will prove that {x,,} is well defined
andDC C,NQ,,n=0,1,2,....Forn=0,x) =x € C, Qo = C. Hence D C CyN Qp. Suppose
that {«x,} is given and D C C; N Qi for some k € N. Because D is nonempty, Cx N Qx is
nonempty. It is obvious that C,, is closed and Q,, is closed and convex. As C, ={z € C:
llzw = %ul1® + 2{z, — %, %, — z) < 0}, we also have C, is convex, for every n = 0,1,2,....
Thus, Cx N Qk is a nonempty closed convex subset of C, so there exists an unique element

%1 € Cx N Qg such that xx,q = Pc,ng . It is obvious that
(Xks1 — 2% —xp41) 20, Vz e CpN Q.
Since D C Ci N Qg, we have
(Xks1 — 2,8 —xp41) >0, VYzeD.

That is, z € Qg41. Hence D C Qgy1. Therefore, we get D C Cyy1 N Qgy1. Thus, D C C, N Q,,
foreveryn=0,1,2,....

Step 2. {x,}, {yu}, {zu}, {t.} and {w,} are all bounded.

Let po = Ppx, then py € D C C,,NQ,, from step 1. From x,,.1 = Pc,nq,* and the definition

of the metric projection, we have
%1 =1l < llpo — I, (3.6)

for every n =0,1,2,.... Therefore, {x,} is bounded. By virtue of (3.3), (3.4) and (3.5), we
also obtain {t,}, {z,} and {w,} are also bounded.
Again from (3.5), conditions (i) and (v), we have

1%, = > < (Il = P11 = Wy = pII*)

1 -1 -230%)

1

< m(llxn =pll + wn = pll) (Il = pll = W, = pll)
1

= m(”xn =pl +lwy, —pll)llxn = wall
1

< ( 1% = 21l + Wy = ) 160 = will. 3.7)

l—b)(l—quz)(
So, {y,} is bounded.
SteP 3. limy oo 1%, — yn” =0, limy oo |80 — z4ll = 0, im0 [l — wull = 0 and

lim,,_, o |6, — 24| = O.
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As Q,={zeC: (x, —z,x — x,) > 0}, we have (x, — z,x — x,,) > 0 for all z € Q, and by
the definition of the metric projection, we have x, = Pg,x. Because of x,.1 = Pc,ng,* €
C,NQ, CQ,and (3.6), we have
I, = x| < %1 — x| < llpo — I,

for every n=0,1,2,.... Therefore there exists lim,_, » [, —x||. By Lemma 2.1(ii), we have
”xn+l _xn”z =< ”xn+1 _x”2 - ”xn _x||2’

this implies that
lim (%41 — x4 = 0. (3.8)
n— o0

By %11 € C, and the definition of C,, we have ||x,,1 — wy || < ||%441 — %, || and hence
”Wn _xn” = ”Wn _xn+1|| + ||xn+1 _xn” =< 2”xn+1 _xn”' (39)

From (3.8) and (3.9), we have
lim [|%, — w,| = 0. (3.10)
n— o0

From conditions (i), (iv), (3.7) and (3.10), we have

lim ||x, —y,|l = 0. (3.11)
n— 00

In (3.3), using another technique, by condition (iv), we get

80 = pI* < 1260 = 21 = (160 = 3 + 190 = 8all®) + 20015 = Yl 1 = 7l
= “xn —19”2 - (”xn _yn||2 + ”yn - tn||2) + (”xn _yn||2 + )\ﬁpZth _ynllz)
= llan = pI* + (A0 = 1)1t = yull*. (312)

From (3.4) and (3.12), we have

22 = pI* < aullx, = plI? + (L - @) l18, — pl?

<l = plI* + @ =) (A20* = 1) Itw = yull>. (3.13)
By (3.5) and (3.13), we have
Wy = pI* < llzn =PI < 1% =PI + (L= ) (A2 0% = 1)1t = yull*. (3.14)

So, (3.14) implies that

1
1 -an)1-23p%)
1
< -
T 1 -an)-27p%)

6w = yl® < (Il = pII* = llw,, = pII?)

(I = 21l + s = Pl %0 = Wil (3.15)
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Since {x,}, {w,} are bounded, and by conditions (i), (iv), (3.10), and (3.15), we have

lim ||y, - t,] = 0. (3.16)
By [1%: — all < %0 = Yull + lyn — tull, (3.11) and (3.16), we get

lim ||x, —t,] = 0. (3.17)

n—0oQ
From (3.4), (3.5), Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have, for Vp € D,

2
lw, = plI> < (A= B = vi)llzn = pII* + Bu | St 40z, — p| = + yull T, 20 — p I

< (1= B)llzw —plI® + By | SLxA1412, _ p|?

< (U= Bz —pI* + Bu( || Sie1A12, — p|®
_ ”S;‘:lkAk—l“‘AlZn _ S;Ank—l“‘Alzn ”2)
< ”Zn _p”2 _ /3}1 ||S;4nkAk_1...Alzn _ S;:k_lmAIZn ||2

2
< |y — plI? = By || SAR1 A1, ghr-Aig |17, (3.18)
Then (3.18) implies that

1
| Sirdir-Aig, stz |2 < — (|l - pl® - lIwa - pI)

= Bu
1
ﬂ_(”xn =Pl + W= pll) 1xn = wall. (3.19)

=
From (3.10), (3.19), condition (ii), we have
Sﬁl"A"-l"'Alzn - Sﬁ"-l"'Alz,, — 0, n— oo (3.20)

Again, using a similar technique to (3.18), we have

1o = P12 < (U= Ba)ll2a = I + Bu| St A1z, — p |
< (1= Bollzn = pII? + Bu(|| Sik2A037 A1z, — p|?
— || Sz, — sty HZ)
< llzw = Pl = Bu| Spicitir Az, — Spicrbics=ig, |2

< lltn = pII> = Bu| Spt i1z, — Sppatis iz, |1
Using the same method in (3.19) and (3.20), we have
S‘;;kflAk*Z"‘Alz,, - Sﬁqk*2"‘Alzn — 0, n— oo. (3.21)
By induction, we have the following results:

S‘,ik-zAk-y'Alzn - S‘;‘nk-3”'Alz,, — 0, n— oo, (3.22)
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cey

Sﬁf‘qlzn - Sﬁ;lz,, — 0, n— 00, (3.23)
S8z, -2, — 0, n— o0 (3.24)

From (3.20)-(3.24), we claim
Stk Az, —z,—0, n— oo. (3.25)
By Lemma 2.2, Lemma 2.3, Lemma 2.4, (3.4), and the convexity of || - |2, ¥p € D, we have

2
Wy = pI* < A= Bu— Yu)llzn =PI + Bul| SiAi1 412, — || + ull T, 20 — pII?

'n

<A -y)lzu—pI* + vull Tr2n - PI*

)
<(L=yullza —pI* + ¥u <aollzn ~pI>+ ) _ai| )z —pH2>

j=1

I
<(A=y)lzu - pI* + v (aonzn —pIP+ ) a(lza - pl* - |

j-1

4%—%WQ

I
< llzn —P||2 ~—Vn Za}'H rnjzn _ZnHZ

j=1
!
j 2
< =pI* = Va Y ai|Jrszn 2| (3.26)
j=1
Then (3.26) implies that
j 2 ! 2 2
7t zn = 2a||” < —=—(Ilxa = pI* = llw = p11?)
n 2_j=1%
1
< ——— (% = pll + Wy = pll) 1, = Wil (3.27)
Vn 2

From the boundedness of {x,} and {w,}, condition (iii), (3.10) and (3.27), we have
,,fzn -z,— 0, n— oo. (3.28)

Forj=1,2,...,1. From (3.28), we have

lim || T,,z, — zull = 0. (3.29)
n—00
By Algorithm 1.1, we have

W, = zull = Bu |isﬁkAk71MAlzn —Zn ” + Yull Ty, 20 — Zn||2-
By (3.25) and (3.29), we have

lim ||lw, —z,| =0. (3.30)
n— 00

Page 10 of 18
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By (3.10) and (3.30), we get
nlg{)lo %, — zull = 0. (3.31)
By (3.17) and (3.31), we get
lim ||z, — ¢,|| = 0. (3.32)
n—>o00

Step 4. W(x,) C D, where W(x,) denotes the set of all the weak limit points of {x;}.

Since {x,} is bounded, there exists a subsequence of {x,}; for simplicity, we still denote
it by {«,}, such that x, s wasn— oo. Inthe following, we will prove u € D.

First, we show u € F(S). Assume u ¢ F(S), i.e., u # Su. Since z, = a,x, + (1 — a,)St,, we
have

(1 =) ISt = tull = ”an(tn — %) + (24 — ) ||

< aullty = xull + 120 = Eull. (3.33)
By virtue of condition (i), (3.17), (3.32) and (3.33), we have

lim [|St, — £, = 0. (3.34)
n—00

By (3.17) and %, = u, we have ¢, ~ u, where {t,} is a subsequence of {¢,} for simplicity.
From (3.34) and Opial’s condition [16], we have

liminf||¢, — u|| < liminf ||z, — Su||
n—> 00 n—00
= liminf ||t, — St, + St,, — Su]|
H—0Q
<liminf||¢, — St,|| + liminf ||St, — Su||
n— 00 n—00
<liminf||¢, — u||.
n— 00
This is a contradiction. So, we obtain u« € F(S).

k _ w w
Second, we show u € (;_; A7*0. From «x, — z, — 0 and x, — u, we have z, — u,

w
where {z,} is a subsequence of {z,} for simplicity. From (3.20)-(3.24), we have anlz,, — u,
w Ap_g-A w Ap 1A w
shdiy sy, st A,y and SpU sy

Since (I + r,,Al)anlz,, = z,, by (3.24) and condition (v), we have

1
ASNzy = — (24— SM2,) > 0, n— o0.
n

So, Aju = 0 and then u € A70.
Since (I + r,A2)Si2"z, = Sz, and by (3.23), we have

1

A9 Al _ A1 Ap Al

Azsm Zy = _r (Sr” Zn — Sr,, z,,) —0, n—o0.
n

So, Ayu = 0 and then u € A5'0.
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By induction, we have

1
ArAg_1--ArA Ag_1--A2A ArAg_1--A2A
A Sy Kk lz,,:r—(S,nk1 202y = S KOk 12,) > 0, 1n— oo.
n

So, Agu = 0 and then u € A;10. Thus, u € (L, A;%0.
Third, we show u € ﬂjzl Bj‘10, In fact, by virtue of (3.28) and condition (v), we have

B, jz—i(z '24) = 0 — 00
i) 1 n—r n—JryZn y N .
n

So, Bju =0, forj=1,2,...,I. We can easily see that u € }l.lej‘lO.
Finally, we show u € VI(C, A). Let

_JAv+Nev, ifveC,
o ifveC,

Tv

where N¢v is the normal cone to C at v € C. Let G(T') be the graph of T and (v, w) € G(T).
So, we have w € Tv = Av + Ncv and hence w — Av € Ncv. From the definition of the normal
cone and ¢, = Pc(x, — A,Ay,) € C, we have

(v—ty,w—Av) > 0. (3.35)
From Lemma 2.1(i), we have

(X — AyAyy — 8, —v) >0, VYveC(,

and hence

t —
<v— ~— o +Ay,,> > 0. (3.36)

For simplicity, we assume that {y,} and {¢,} are also subsequences of {y,} and {t,} respec-
tively. Because of x, — y, — 0, x,, — £, > 0 and %, —W> u, we have y, —W> u and xt, —W> u.
By the monotonicity of A, (3.35), and (3.36), we obtain

(v—t,w) > (v—t,,Av)

bty — Xy
An

> (v —t,,Av) —<v—t,,, +Ay,,>

tn —Xn
=(v—t,Av—-At,) + (v—t,, AL, — Ay,) — <v— ty, Y >

n

tn_ n
= (V_ tn:Atn _Ayn) - <V_tny X x >

n

Hence, we obtain (v — u,w — 0) > 0 as n — oo. Since T is maximal monotone, we have
0 € Tu and so u € VI(C,A).
Simply stated, u € D. We get W(x,,) C D.
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Step 5. x,, — Ppx as n — 0.

Let po = Ppx, Yu € W (x,), from step 4, we have u € D. Suppose x, ~ U as n— 0o,
where {x,} is looked as a subsequence of {x,} for simplicity. From the definition of the
metric projection and the weak lower semi-continuity of || - ||, we have

llpo — %Il = llu - x|l < liminf [lx, — x| < limsup [lx, — x|l < l|po —x|.
n—o0

So, we obtain

lim |x, — x| = l|lu - x]|.
n—00

w
From x, — x — u — x and the Kadec-Klee property, we have x, — x — u# — x and hence
Xy —> U.

Since &, = Pq, %, po € D C C, N Q,, C Q, and Lemma 2.1(i), we have

—||P0 _xn”Z = <P0 — Xy Xn _x) + <P0 —xn,x—Po) = (1”0 —xn,X—P0>-

As n — oo, we get —||po — ul|> > (po — u,x — po) > 0. Hence u = py. This implies that
%X, — po = Ppx as n — oo. From step 3, it is easy to see y,, — Ppx, z, — Ppx and w,, — Ppx
as 1 — oo.

This completes the proof. g

From Theorem 3.1, we can get some strong convergence theorems.

Theorem 3.2 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset

of H, A : C — H be a monotone and p-Lipschitz-continuous mapping, A;,B; (i =1,2,...,k;

j=12,...,1): C — C be two families of finite maximal monotone mappings such that D =
(N, A7 10 ﬂ] 1 Bi10) N VI(C, A) is nonempty. Suppose

AAg_1--A Ak TAk— A B B B
St A A AL T = aol v+ a4+ gt

with Ji = (I + r,A;) 1,]5, (I +r,B)7, S am=1and a, < (0,1).

m=0

The sequences {x,}, {yu}, {zn} and {w,} are generated by

xo=x€C,
Yn = Pc(xy — LuAxy),
zy = Pc(x, — MuAyn),

= (L= Bu = Ya)2n + BuSr Ny 1y, T, 2,
Ch={zeC:|lw,—2z| < llxn —zll},
Qu={zeC:{(xy-z,x~x,) >0},

Xn1 = Pc,ng,%

if {Bu}, {vu}> {Mu} and {r,} satisfy the following conditions:
() O<c=pu=1;
(i) 0<d <y, <1, ﬂn+yn§1
(i) 0<p<in<q<l;
(iv) 0<n <r,<+00,



Qiu et al. Fixed Point Theory and Applications (2015) 2015:180 Page 14 of 18

foreveryn=0,1,2,..., where ¢, d, p, q and n are constants, then the sequences {x,}, {y,},
{zu}, and {w,} converge strongly to Ppx.

Proof Put S=1and «,, =0 for all = 0,1,2,.... By Theorem 3.1, we get the desired re-
sults. 0

Theorem 3.3 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset of
H,S:C — C beanonexpansive mapping, A;, B; (i=1,2,...,kj=1,2,...,1): C— C be two

families of finite maximal monotone mappings such that D = (ﬂleAi‘lO) N (ﬂ]l.zl B]TIO) N
F(S) is nonempty. Suppose
SiA A AR T ol v P s a® v agh,
with Ji = (I +r,A) T = (I + raBj)™, Zlm=0 an =1anda,, €(0,1).
The sequences {x,}, {z,}, and {w,} are generated by
Xo =X € C,
Zy = 0pXy + (1 — &) SPcxy,
Ap 1A
wp=0-8,- yn)zn + ﬂnszrtk = lzn + VnTran
Cu={zeC:llw,—zll < llxa —zl},
Q,={zeC: {(x,—z,x—x,) >0},
KXnl = Pcann‘x}
if {an}, {Bu}s {vu), and {r,} satisfy the following conditions:
(i) 0<a,<b<l;
(i) 0<c=<B, <1
(i) 0<d <y <1, Bu+yu <1
(iv) 0<n <r,<+o0,
foreveryn=0,1,2,..., where b, ¢, d and n are constants, then the sequences {x,}, {z,} and
{w,.} converge strongly to Ppx.
Proof Let A =0 in Theorem 3.1, we obtain the result. O

Theorem 3.4 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H,A;,Bj (i=1,2,...,k;j=1,2,...,1) : C = C be two families of finite maximal monotone
mappings such that D = (-, A710) N (ﬁll,:1 B;'0) is nonempty. Suppose

ArAr 1Al _ pAx A LA B B B
STt = LR R L Ty, =aol +aJ;! +a).? + - +al,’,

with Jii = (I + r,A)7Y, ]fn’ = +r,B)7, Zf«n:O an =1 and a,, € (0,1). The sequences {x,)
and {y,} are generated by

xo=x€C,

Yn = (1-8,- Vn)xn + ﬁnsﬁqkAk_
Co={zeC:llyn—2zll < llwun—2zll},
Qu={zeC:{x,—z,x~x,) >0},

A
1 1
Xn + VuLy, %0,

Xn+l = PCnﬁan;
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if {Bu}, {yu}, and {r,} satisfy the following conditions:
(i) 0<c<B, <1
(i) 0<d <y, <L Bu+va =1
(iii) 0 <n <r, <+o0,
forevery n=0,1,2,..., where ¢, d, and n are constants, then the sequences {x,} and {y,}

converge strongly to Ppx.

Proof Let A=0,S=Ianda, =0foralln=0,1,2,...in Theorem 3.1, we obtain the result.

IfA;,B; (i=1,2,....,kj=12,....0): H— 21 gre set-valued mappings, the resolvent op-
erator JT (r>0) of T, is defined by JTx = {z€ H :x € z + rTz} = (I + rT)'x, Vx € H, where
I denote the identity mapping on H. As is well known, /T : H — H is a single valued map-

ping. We have the following strong convergence theorem. O

Theorem 3.5 Let H be a real Hilbert space, A : H— H be a monotone and p-Lipschitz-
continuous mapping, S : H — H be a nonexpansive mapping, A, B; (i = 1,2,...,k;
j=12,....,0): H— 2" be two families of finite set-valued maximal monotone mappings
such that D = (-, A710) N (ﬂ]l‘=1 B;'0) N F(S) N A™'0 is nonempty. Suppose

Spitere 2 Uikt R T, = aol + anp) + @i e a),
. Aj -1 7P -1 I

with J,' = (I + r,A;) ,]i = +1.B)™ Y 0 4m =1 and a,, € (0,1).
The sequences {x,}, {y,} and {z,} are generated by

xo=x€H,

Yn = OpXy + (I —a,)S(x, — ApA(xy, — AAXx,)),
zp=01- Bu— Vn)yn + lgnSqunkAkilA“Alyn + Vn Trnym
Cu={zeC:llzy~z| < % - 2|},
Qu={zeC: {x,—z,x—x,) >0},

Xn1 = Pc,ng,%

if {an}, {Buls {vu)s (M}, and {r,} satisfy the following conditions in Theorem 3.1, then the

sequences {x,}, {y,} and {z,} converge strongly to Ppx.

Proof Asiswell known, Py = I and VI(H,A) = A™10. Using the similar arguments to those
in the proof of Theorem 3.1, we get the desired result immediately. O

Remark 3.1 Theorems 3.1-3.5 greatly improve and extend the previous work in the fol-
lowing respects:

(1) We study the problem of finding a common element of the set of common zeros of
two families of finite maximal monotone mappings, the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality problem
for a monotone, Lipschitz-continuous mapping, i.e., (ﬂf.;lAl.‘lO) N (ﬂ;=1 B]TIO) N
F(S) N VI(C,A). The problems of finding common elements of [7], Theorem 2.2 and
[17], Theorems 3.1 and 4.1 are all special cases of our problem.

(2) The hybrid iterative Algorithm 1.1 greatly generalizes and extends some

corresponding algorithms in [4, 6, 10, 14, 19]. It is first used for finding common
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zeros of two families of finite maximal monotone mappings. The method of proof is
also different from the earlier ones.

(3) All parameter sequences {a,}, {Bn}, {vu}, {An} and {r,} satisfy weaker restrictions in
our theorems than those in the theorems of [3, 4]. For example, 0 <o, <b <1,
neither ) 77| oty — oty < +00, nor o, — 0 as n — oo.

4 Applications
In this section, we will give several examples from the practice with numerical analysis
with their new algorithms.

Let H be a real Hilbert space, ¢ : H — RU {+00} be a proper, convex, lower semicontin-
uous functional. The subdifferentiable operator of ¢, denoted by d¢ : H — 2%, is defined
atx € H by

dpx)={ueH:0() = o&) + (y—x,u),Vy € H}.

Foreachx € H, d¢(x) is called the subgradient of ¢ at x. Using different methods, Rockafel-
lar [20] and Alves and Svaiter [21] proved that the subdifferentiable operator is a maximal
monotone mapping, respectively. Thus, from Theorem 3.5, we get the following result
immediately.

Theorem 4.1 Let H be a real Hilbert space, A : H — H be a monotone and p-Lipschitz-
continuous mapping, S : H — H be a nonexpansive mapping, g1,y (i =1,2,...,k
j=12,...,0): H— RU {+00} be two finite families of proper, convex, lower semicontin-
uous functionals, 0¢1; and ¢y be their subdifferentiable operators, respectively, such that
D=(N%, dg;10)N (ﬂ]l,=1 3951 0) N A0 is nonempty. Suppose

001k091k-1"0911 _ 10¢1x 1091k-1 3 3 3 d
Sy =L Y Ty =aol +an], P + an, P -+ al, P,

n

with ],afi = +r,0¢)7, Z;:O ay, =1and a,, € (0,1). The sequences {x,}, {y,} and {z,} are
generated by

xo=x€H,

Vi = Xy + (1= ) S, — ApAlxy — LyAx,)),

2= (L= By = Yu)yn + BuSy KO0y T, Yo
Co={z€C:illzy—2z| <%, —zll},

Qu=1{z€C: {xy—z,x—x,) >0},

%Xns1 = Pc,no, %

if {an}, {Bu}, {vu} {An}, and {r,} satisfy the conditions in Theorem 3.1, then the sequences
{x1}, {yu}, and {z,,} converge strongly to Ppx.

We also know a mapping T : C — C is called pseudocontractive if

2
17— Tyll> < llx =yl + [T - T)x = (T - Ty,

Vx,y € C.
It is equivalent to the following definition:

(Tx - Ty, x—y) < lx—ylI>, VxyeC.



Qiu et al. Fixed Point Theory and Applications (2015) 2015:180 Page 17 of 18

If T is a pseudocontractive, p-Lipschitz-continuous mapping, then A = I — T is monotone
and (p + 1)-Lipschitz-continuous mapping, and F(T) = VI(C, A), more details see [14, 19].
So, by Theorem 3.1, we have the following result immediately.

Theorem 4.2 Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H, T : C — C be a pseudocontractive and p-Lipschitz-continuous mapping, S : C — C
be a nonexpansive mapping, A;,B; (i =1,2,...,k;j =1,2,...,1) : C — C be two families of
finite maximal monotone mappings such that D = (ﬂleAi‘IO) al (ﬂjzl B}.‘10) NF(S)NF(T)
is nonempty. Suppose

ApAj_q--A Ap TAj— A B B: B
St AL JAgAC AL T 2ol v a P+ ag 4+ P

with Ji = (I + AN T = (I + raBj)™, anzo am =1and a,, € (0,1).
The sequences {x,}, {yu}, {zn}, and {w,} are generated by

xo=x€C,

Yn = Pc(xy — An(xn — Ty)),

Zp = Xy + (1 — 0t,)SPc (%, — )\n()’n - Tyn))’

Wy = (1 - ﬁn - yn)zn + ﬁnsélkAkilMAlzn + Vn Trnznr
Co={zeC:llw,—z| <%, -2},
Qu={zeC: (s -2z, —x,) =0},

Xn41 = Pc,ng,%

foreveryn=0,1,2,....If{on}, {Bu}, {vu}s {Au}), and {r,} satisfy the following conditions:
) 0<a,<b<l;
(11) 0<C§ﬁn <1

(i) 0<d <y <1, Bu+yu <1
(iv) O<p=<ir,<gc< ﬁ;

V) 0<n<r,<+00,
where b, ¢, d, p, q and n are constants, then the sequences {x,}, {y.}, {z.}, and {w,} converge

strongly to Ppx.
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