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Abstract

ABCG2 is one of three human ATP binding cassette transporters that are functionally capable of exporting a diverse range of
substrates from cells. The physiological consequence of ABCG2 multidrug transport activity in leukaemia, and some solid
tumours is the acquisition of cancer multidrug resistance. ABCG2 has a primary structure that infers that a minimal
functional transporting unit would be a homodimer. Here we investigated the ability of a bimolecular fluorescence
complementation approach to examine ABCG2 dimers, and to probe the role of individual amino acid substitutions in dimer
formation. ABCG2 was tagged with fragments of venus fluorescent protein (vYFP), and this tagging did not perturb
trafficking or function. Co-expression of two proteins bearing N-terminal and C-terminal fragments of YFP resulted in their
association and detection of dimerization by fluorescence microscopy and flow cytometry. Point mutations in ABCG2 which
may affect dimer formation were examined for alterations in the magnitude of fluorescence complementation signal.
Bimolecular fluorescence complementation (BiFC) demonstrated specific ABCG2 dimer formation, but no changes in dimer
formation, resulting from single amino acid substitutions, were detected by BiFC analysis.
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Introduction

Resistance of cancers to a chemically broad spectrum of drugs is

referred to as multidrug resistance (MDR). Among the many

factors influencing MDR in humans are three members of the

ATP binding cassette (ABC) transporter family [1]. The ABCB1

(P-glycoprotein) and ABCC1 (multidrug resistance protein-1) are

both likely to act as monomeric proteins since they contain the

four domains expected of a canonical ABC transporter in a single,

long polypeptide [2]. For ABCG2 (breast cancer resistance

protein) the situation is more complicated – the cDNA encodes

a 655 amino acid protein comprising a single N-terminal

nucleotide binding domain (NBD) and a single C-terminal

transmembrane domain (TMD) [3]. Dimerization of ABCG2

would be the simplest form of a functional transporter, and the

protein forms a disulphide linked homodimer, but higher order

aggregation states have been identified (reviewed in [4,5].

The dimerization of ABCG2 is a critical step in its functional

transport capacity [6]. Dimerization of NBDs to form a closed

structure is a pre-requisite for ATP binding and hydrolysis, and

pharmacological evidence has demonstrated that these steps are

essential to drive affinity changes in the drug binding sites [7,8].

Therefore, understanding the dimerization of ABCG2 is impor-

tant for two reasons. Firstly, it will enable us to understand the

inter-domain communication in ABCG family transporters, which

are poorly understood presently [9], and which cannot be simply

modelled on the better understood ABCB family transporters from

mammals, and their bacterial homologues (see [1] for a

discussion). Secondly, the potential of agents that prevent ABCG2

dimerization as specific inhibitors of the pump offers an avenue

into drug discovery processes.

Previous studies of ABCG2 dimerization have had two principal

foci. The first has been on the cysteine residues in the extracellular

loop between predicted transmembrane (TM) helices 5 and 6

[10,11,12,13,14,15]. The three cysteines in this loop have all been

mutated individually, or together, and the results of these

investigations demonstrated that the protein contains a single

disulphide-linkage between C603 in each of two ABCG2 protomers

[13,14]. However, the disruption of this disulphide by mutation has

no functional effect on the protein [10,13,15]. The second series of

studies have aimed to identify, from bioinformatics analysis,

sequence motifs in the ABCG2 TM domains that might be

implicated in dimerization. For example, a GXXXG motif (where X

is any amino acid, and which is a common dimerization motif in TM

helices [16]) has been identified in predicted TM helix 1 but neither

this, nor a more extended motif has been shown to be necessary for

the formation of the ABCG2 dimer [17,18,19]. Additionally, a

conserved residue in TM5 of ABCG2 (G553) has been found to have

no role in the formation of the ABCG2 dimer [18].

In the current study we investigated whether the technique of

bimolecular fluorescence complementation (BiFC) can enable

insights into the ABCG2 dimer. The BiFC principle (Figure 1A) is

that interacting proteins tagged with molecular fragments of a b-

barrel fluorescent protein (YFP etc) enable the fragments of the

YFP to associate and refold, leading to the acquisition of a

fluorescent entity [20]. Typically, the N-terminal fragment

encodes the first 7-8 b-strands of YFP (including the tripeptide

that undergoes oxidation to generate the fluorophore), whilst the
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C-terminal fragment encodes the latter 3-4 b-strands [21,22].

Here, we show that ABCG2 was trafficked to the cell membrane

and functional when tagged N-terminally with half-molecules of a

variant form of YFP with efficient refolding kinetics (venus-YFP;

vYFP [23,24,25,26], and that co-expression of 2 ABCG2

constructs bearing complementing fragments of vYFP resulted in

gain of vYFP fluorescence. The sensitivity of this assay was

investigated by examination of ABCG2 isoforms containing point

mutations that are potentially involved in dimerization. No

significant differences in fluorescence complementation were

observed, leading to the suggestion that the single point mutations

engineered are not sufficiently altering the ABCG2 dimer to be

detected, or that the BiFC technique lacks the sensitivity to detect

any changes imparted by the mutations.

Methods

Cell culture and transfection
All tissue culture reagents were from Sigma, except for linear

polyethyleneimine (PEI, from Polysciences Inc). HEK293T cells

(ATCC code CRC-1573) were maintained in T75 flasks at 37uC/

5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM,

4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium

bicarbonate) supplemented with 10% (v/v) foetal calf serum and

100U/ml penicillin and 100 mg/ml streptomycin. Cells were

passaged at 80% confluence by trypsinization. Cells were seeded

24 hours prior to transfection on 6-well (26105 cells) or 96-well

(16104 cells), in reduced serum media (2-5% v/v). For

immunofluorescence, cells were seeded at a slightly lower density

onto poly-lysine coated glass cover slips in 6-well dishes. Cells were

transfected at approximately 50% confluence using linear PEI at a

PEI nitrogen : DNA phosphorus ratio of 10:1, by addition of

preformed PEI:DNA complexes to the growth media [27,28].

Twenty-four hours after transfection media was replaced by media

containing 10% v/v serum.

Construct generation
Molecular biology reagents were from New England Biolabs

unless stated. The construction of vectors encoding fragments of

vYFP has been described previously [21,23] and, in this study,

ABCG2 cDNA was incorporated into these vectors by conven-

tional restriction enzyme based cloning. ABCG2 cDNA was

amplified from a pre-existing vector containing an N-terminal

dodecahistidine tag, resulting in the removal of this affinity tag

(primers listed in Table 1). The constructs generated are depicted

schematically in Figure 1 and the following descriptors are used

throughout the manuscript; vYN refers to residues 2-173 (b-

strands 1–8) of venus YFP, vYC refers to residues 156–239 (b-

strands 8–11)of venus YFP, vYFP refers to entire venus YFP

[23,25] and eYFP is the entirety of enhanced YFP [29].

Point mutations in vYFP-ABCG2 plasmids were introduced

with pairs of oligonucleotide primers (Table 1) encoding the amino

acid substitution required. Reactions conditions were as above, but

contained 20 ng of template DNA, and PCR proceeded for 14–16

cycles. PCR products were treated with DpnI (10 units) by

incubation for one hour at 37uC before transformation into

chemically competent E. coli DH5a (Invitrogen). DNA sequencing

validated the fidelity of mutagenesis.

Figure 1. BiFC principle and ABCG2 BiFC constructs employed. A The underlying principle of BiFC is the refolding and maturation of a
chromophore (here vYFP) that occurs upon the interaction of two proteins (here shown as cylinders) bearing complementary fragments of the YFP
protein (red and blue interlocking shapes). B In the current manuscript, ABCG2 comprised of a N-terminal nucleotide binding domain (orange) and a
C-terminal TMD (olive green) is tagged with either full length YFP variants (yellow circles), or with complementing fragments of YFP variants, shown
as red and blue hemispheres. The tagging of YFP and fragments was at either the 59 (N-terminus) or the 39 (C-terminus) of the ABCG2 cDNA.
doi:10.1371/journal.pone.0025818.g001

BiFC Analysis of ABCG2 Dimers

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e25818



SDS-PAGE and western blotting
Cells were harvested by rinsing tissue culture plates twice with

ice-cold phosphate buffered saline (PBS) supplemented with 2 mM

EDTA and then collected by gentle pipetting into 1.5 ml tubes.

Cells were pelleted by centrifugation at 1000 g for 5 minutes,

resuspended in 250–500 ml of ice-cold PBS/2 mM EDTA

containing EDTA-free protease inhibitor cocktail set III (Calbio-

chem) and then lysed by sonication (2610 second bursts, 40%

output Microsonics Instruments). Protein concentration was

determined by a modified Lowry assay (Bio-Rad) and equal

quantities of protein were loaded onto 10% w/v polyacrylamide

gels as previously described. Protein gels were stained with

Coomassie stain (0.01% (w/v) Coomassie blue R250, 10% (v/v)

acetic acid, 40% (v/v) methanol) and de-stained in acetic acid/

methanol (both 10% v/v) overnight. For western blotting, proteins

were transferred onto nitrocellulose membrane (Amersham) by

electrophoresis in 25 mM Tris, 192 mM glycine. Membranes

were then incubated in a blocking solution, (5% skimmed milk

powder (w/v) in TBST (25 mM Tris, 0.15 M NaCl, pH 7.6, 0.1%

(v/v) Tween 20)) for one hour at room temperature. Membranes

were then incubated with primary antibody (BXP-21 (Calbio-

chem) at 1:2000 or anti-GFP (Roche) at 1:1000 dilutions) prepared

in the same blocking solution overnight at 4uC. After washing,

membranes were incubated in secondary antibody, (rabbit anti-

mouse horseradish peroxidase (DAKO) diluted at 1:2000 in

blocking solution) for 1 hour at room temperature. The mem-

branes were then washed and developed using Enhanced

Chemiluminescence, ECL (Supersignal West Pico; Thermo

Scientific).

Flow cytometry
Transiently transfected HEK293T cells were analysed by flow

cytometry for both protein expression and protein function in

accordance with previous protocols [30]. Cells were washed twice

then harvested in sterile, ice-cold PBS and collected into 15 ml

Falcon tubes. Cells were pelleted by centrifugation at 150 g for

5 min at 4uC then washed with ice-cold PBS and re-centrifuged.

Pellets were resuspended in flow cytometry buffer (1% (v/v) foetal

calf serum in phenol red-free DMEM) and aliquotted into facs

tubes as 100 ml aliquots at a cell density of 1–26107 cells per ml.

For detection of cell surface ABCG2 expression, transfected

HEK293T cells were incubated with 1:100 dilution of a

phycoerythrin (PE; lEX 546 nm; lEM 578 nm) conjugated

monoclonal antibody (5D3; R&D systems). An isotype control

antibody IgG-PE (Abcam) was employed in parallel experiments

to validate the specificity of 5D3 binding. For analysis of function,

cells were incubated with mitoxantrone (lEX 635 nm; lEM

670 nm; 5 mM; Sigma) in the presence or absence of fumitre-

morgin C (FTC, a gift of the NIH, Maryland; 1–5 mM).

Substrates and inhibitors were added from DMSO stocks so that

the final solvent concentration was below 0.5% v/v. After 30

minutes incubation at 37uC with occasional inversion cells were

pelleted by centrifugation, washed twice with ice-cold flow

cytometry buffer and finally resuspended in 300–400 ml of flow

cytometry buffer. The tubes were then analysed by Beckman-

Coulter XL-MCL Flow cytometer. Flow cytometry data were

analysed using WEASEL v.2 (The Walter and Eliza Hall Institute

of Medical Research). Cells were gated using forward scatter (FS)

and side scatter (SS) to exclude dead cells, cellular debris etc.

Gated cells were then quantified as histograms representing the

number of cell events with a particular fluorescence.

Immunofluorescence
HEK293T cells transfected with required constructs were fixed

on cover slips with 4% (w/v) paraformaldehyde (PFA) in PBS for a

maximum of 5 minutes at room temperature before being washed

twice with PBS and incubated in 3% (w/v) BSA in PBS (blocking

solution) for one hour at room temperature. For cells that need

permeabilization (to allow entry of an antibody that recognizes an

intracellular epitope, e.g. BXP-21) a 5 minute incubation in 0.05%

(v/v) TritonX-100 in PBS was included before the blocking step.

Following blocking, cells were incubated for 1 hour with primary

antibody (BXP-21; Calbiochem, or 5D3; Millipore) prepared at

1:2000 dilution in incubation buffer (0.3% w/v BSA in PBS). The

primary antibody solution was removed and the cells were washed

thrice with incubation buffer. Cells were then incubated in

secondary antibody (goat anti-mouse monoclonal antibody

conjugated to AlexaFluor 488 green fluorescent dye; Invitrogen),

at a 1:1000 dilution in incubation buffer. Cells were then washed

thrice with incubation buffer and then mounted onto microscopic

slides with 20–40 ml of Vectashield Mounting Medium with DAPI

(Vector labs).

Confocal microscopy
Greiner Bio-one ‘mclear’ black-sided 96-well plates (655090)

were coated with poly-L-lysine for an hour at room temperature,

before seeding HEK293T cells at a density of 1.0–1.56104 cells

per 100 ml of medium per well. Cells were transiently transfected,

as described earlier, and 48 hours subsequently, cells were washed

twice with sterile HEPES buffered saline (HBS) and then

maintained in HBS with membrane permeant Hoechst 33342

dye (0.4 mM) added to stain nuclei before being analysed on an

ImageXpress Micro imaging system, using a Nikon 40x NA 0.6

Extra Long Working Distance objective (Molecular Devices, Inc.

Table 1. Oligonucleotide primers employed.

Primer Sequence 59-39 Restriction site Purpose

EYFPG2F CCTGTATTTTCAGGAATTCTATGTCTTCCAG EcoRI Generation of ABCG2 tagged N-terminally with complete eYFP

YFPG2R GCTTGGTACCGATCTAGAATCCAATTTAAGAATA XbaI Common reverse primer for tagging ABCG2 N-terminally with
fragments of vYFP or with complete eYFP

VYFPG2F CCTGTATTTTCAGGAATTCATGTCTTCCAG EcoRI Generation of ABCG2 tagged N-terminally with vYFP fragments

G2YFPF CCTGTATTTTCAGGGATCCATGTCTTCCAG BamHI Generation of ABCG2 with C-terminal vYFP fragments

G2YFPR GAGCTCGGATCCCTCGAGAGAATATTTTTTAAG XhoI Generation of ABCG2 with C-terminal vYFP fragments

E211QF ATCTTGTTCTTGGATCAACCTACAACAGGCTTAGACTCAAG n/a Mutating E211Q

C603AF ACAGGAAACAATCCGGCCAACTATGCAACATGTACT n/a Mutating C603A

doi:10.1371/journal.pone.0025818.t001
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USA, [23]). Cells were imaged (9 sites/well) using the following

excitation (lex) and emission (lem) filter sets to detect (i) Hoechst

33342 lex 377 nm (bandpass; BP 50 nm) and lem 447 nm (BP

60 nm) and (ii) YFP BiFC, lex 482 nm (BP 35 nm) and lem

536 nm (BP 40 nm). An automated cell scoring algorithm applied

to each image (MetaXpress 2.0, Molecular Devices) identified the

total number of cells by nuclear count (Hoescht staining), and the

percentage of BiFC ‘‘positive’’ cells, based on a manual minimum

threshold for average cytoplasmic intensity of YFP BiFC

fluorescence (set with reference to positive/negative plate controls).

The individual cell data was then filtered by AcuityXpress 1.0

(Molecular Devices) to obtain the average cytoplasmic BiFC

intensity for the ‘‘positive’’ transfected population. Typically,

several thousand cells were identified and quantified for each

condition in each independent experiment.

Statistical analysis
Data were analyzed with Prism5 (Graph Pad) and/or Microsoft

Excel, using ANOVA and Student’s t-tests, with P-values of less

than 0.05 being considered significant for any set of data.

Results and Discussion

N-terminal but not C-terminal tagging of ABCG2 with
YFP fragments supports protein localization and function

The dimerization of ABCG2 was investigated using bimolec-

ular fluorescence complementation, a protein:protein interaction

technique that relies on the ability of molecular fragments of

YFP to re-associate and refold into a fluorescent structure

(Figure 1A [31]). Here we employed the vYFP isoform as its

BiFC fragments can refold at 37uC with fast folding kinetics

[22,23,24,26]. ABCG2 has both its N-terminus and its C-

terminus exposed to the intracellular surface [32] and thus 6

constructs were required for use in this study (Figure 1B). Two of

these, YFP-ABCG2 and ABCG2-YFP, are controls in which the

full length YFP is tagged to the N- or C-terminus respectively of

ABCG2. For convenience in these control constructs, the N-

terminal full length construct employed was eYFP, rather than

vYFP. The other 4 constructs represent proteins in which

residues 2–173 (vYN) and residues 156–239 (vYC) are tagged to

the N-terminus of ABCG2, and the same two fragments fused to

the C-terminus of ABCG2. All constructs are shown diagram-

matically in Figure 1B, and the associated nomenclature is also

given in this figure.

All constructs were examined for expression following transient

transfection of single constructs into HEK293T cells and, using

polyethyleneimine (PEI) as the transfection reagent [27], the

percentage transfection efficiency was routinely greater than 50%,

in accordance with previous results on other ABC proteins

expressed in HE293T cells [33]. To validate the cell surface

expression of ABCG2 isoforms carrying vYFP fragments at the N-

terminus we performed immunofluorescence on fixed, but

unpermeabilized cells with the monoclonal antibody 5D3, which

recognizes an extracellular epitope ([34], Figure 2A). Parallel flow

cytometry with the same antibody again revealed the surface

expression of ABCG2 and confirmed the high percentage

transfection efficiency. Western blotting under denaturing condi-

tions using the BXP-21 antibody [35] revealed the presence of

proteins with the expected molecular weights (vYN-ABCG2 at

approximately 90 kDa; and vYC-ABCG2 at approximately 80

Figure 2. N-terminal tagging with K YFP molecules does not
affect expression and targeting of the ABCG2 protein to the
plasma membrane. A HEK293T cells were transfected as described
and 48 hours later were fixed and incubated with monoclonal 5D3
antibody directed towards an extracellular epitope in ABCG2, and a
secondary antibody coupled to AlexaFluor 488, before being counter-
stained with DAPI and mounted for fluorescence microscopy. Top
panels show the presence of ABCG2 at the plasma membrane, and the
lower panel is a merged image of the 5D3 and DAPI. B Cells were
transfected and analysed by flow cytometry as described following
incubation with phycoerythrin (PE) conjugated control antibody (IgG-
PE; green filled distribution) or PE-conjugated 5D3 (unfilled distribution)
which recognizes an extracellular epitope of ABCG2 In A and B the left
hand column represents ABCG2 tagged N-terminally with vYN (residues
2–173 of vYFP), the right hand panel represents ABCG2 tagged N-
terminally with vYC (residues 156–239 of vYFP). Scale bars are 10 mm,
and the data are representative of at least 4 independent transfections.
C Cells were transfected and 20 mg of whole cell lysate was analysed by
SDS-PAGE and western blotting, using BXP-21 to identify ABCG2 fusion
proteins. The expression level of the three constructs is comparable. A
number of lower molecular weight breakdown products were observed
for the fusion with the C-terminus of vYFP, although the extent of this

was variable. A parallel Coomassie stained gel was employed to verify
equal protein loading (data not shown).
doi:10.1371/journal.pone.0025818.g002
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kDa), with evidence of lower molecular weight breakdown

products, presumably reflecting the increased protease sensitivity

of ABCG2 when tagged with partially unfolded protein fragments

of vYFP (as discussed at length in [26]).

The effect of tagging ABCG2 at the N-terminus has been

previously investigated with poly-histidine [8,36] and full length

green fluorescent protein [6] and in both cases the tagged protein

retained function. However, the effect of tagging with fragments of

YFP has not previously been described. We examined the ability

of vYN-ABCG2 and vYC-ABCG2 to export mitoxantrone in

transiently transfected cells using flow cytometry (Figure 3), using

the other tagged proteins mentioned previously as internal

controls. Both constructs displayed an export of mitoxantrone

from cells that was inhibited by fumitremorgin C (FTC), a specific

inhibitor of ABCG2 [37]. Although in these experiments the

inhibitory effect of FTC is modest in comparison to other studies

of ABCG2 isoforms [38], we have shown here that data obtained

with our YFP and half-YFP tagged constructs (Figure 3 C-E) is

similar to that of the wild type ABCG2 construct (Figure 3B),

supporting the conclusion that that the N-terminal tagging of

ABCG2 with half molecules of YFP does not negatively impact on

the function of the protein.

In contrast to the data shown in Figure 2 and 3, the tagging of

ABCG2 at the C-terminus with half molecules of YFP (or with full

length YFP) resulted in poor trafficking, increased intracellular

retention, and no convincing functional mitoxantrone export (data

not shown). Previously, the final few C-terminal residues of

ABCG2 have been shown to be sensitive to mutation (in terms of

protein trafficking [39]) and this further indicates that the C-

terminus contains the sequence motifs that are recognized by

cellular processing machinery.

Co-expression of ABCG2 bearing complementing halves
of venus YFP results in BiFC at the plasma membrane

Having compared the effects of N-terminal and C-terminal

tagging of ABCG2, only N-terminal tagged isoforms of ABCG2

were investigated for their ability to promote vYFP fragment

association and refolding. To validate BiFC we performed both

single transfections and co-transfections with vYN-ABCG2 and

vYC-ABCG2 (Figure 4). As expected, single transfections into

HEK293T cells did not result in the detection of a YFP fluorescent

signal (Figure 4A,B, middle and right hand panels), although protein

expression was confirmed in both cases (Figure 4A, left panel). The

co-transfection of both constructs resulted in protein expression at

the membrane as detected by 5D3 antibody (Figure 4C, left panel),

and in the formation of a fluorescence complementation signal

detectable by both flow cytometry and by fluorescence microscopy

(Figure 4C, middle and right panels). Time course experiments

revealed that this complementation could be observed as early as

16 hours post-transfection at 37uC, but that optimal signals were

obtained 36–48 hours post-transfection.

ABCG2 BiFC with other non-specific partner proteins
results in aggregations of BiFC complexes

The interaction of vYN and vYC to form a fluorescent complex

is essentially irreversible, as numerous hydrogen bonds are formed

during the association, and the strand arrangement of the YFP b-

barrel precludes a simple dissociation of the two fragments

[21,22,23]. Consequently, it is important in BiFC studies to

determine whether the driving force for complementation is the

interaction of the protein partners, or whether the vYN:vYC

interaction is the driving force [22,23,24,26]. To address this

issue we performed co-expression studies in which the cognate

Figure 3. N-terminal tagging with K YFP molecules does not
affect function of the ABCG2 protein. HEK293T cells were
transiently transfected with YFP_ABCG2 constructs (C-E) or negative
control (empty pcDNA vector; A) and positive control (His12-ABCG2) as
described in Methods and Materials. Following transfection aliquots of
cells were incubated with the ABCG2 substrate mitoxantrone in the
presence or absence of the inhibitor fumitremorgin C (FTC) and cellular
fluorescence determined by flow cytometry. Blue filled histograms
represent the cellular fluorescence in the absence of FTC, and the
rightward shift in the presence of the inhibitor (black lines)
demonstrates functional competence at a level similar to those of the
characterized control His12-ABCG2 (B). The apparent large number of
cells with zero fluorescence in the eYFP-ABCG2 panel (C) is a
fluorescence artefact due to interference from the YFP fluorescence
of this construct. The graphs are representative of .5 independent
experiments.
doi:10.1371/journal.pone.0025818.g003

BiFC Analysis of ABCG2 Dimers
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interaction of two ABCG2 proteins (i.e. vYN-ABCG2 and vYC-

ABCG2) was examined in parallel with co-transfections in which

vYN-ABCG2 was expressed together with a non-specific partner

protein, namely the b2 adrenergic receptor (b2-AR, [21]). Co-

expression of vYN-ABCG2 and vYC-ABCG2 resulted in a

fluorescence complementation signal that was at the cellular surface

(Figure 5B, middle and right hand panel), indicating that the BiFC

interaction did not detract from the effective trafficking of ABCG2.

Conversely, the interaction of vYN-ABCG2 and b2-AR-vYC

resulted in the observation of dense cytoplasmic fluorescence foci,

and the retention of ABCG2 within the cell (Figure 5C, middle and

right hand panel; this non-specific BiFC was also associated with

increased cell death). Thus, although there is evidence of a BiFC

interaction observed in these latter transfectants, the interaction of

ABCG2: b2AR is not conducive to efficient protein trafficking. This

type of observation has been made previously in studies of B cell

receptor oligomers [40], where specific protein:protein interactions

between partner proteins resulted in membrane localized BiFC,

whereas non-specific interactions resulted in cellular accumulation

of BiFC fluorescence.

Analysis of predicted ABCG2 dimer interface mutations
by BiFC

Understanding the dimer interface of ABCG2 is central to

understanding its mechanism. We investigated whether residues in

ABCG2, which are likely to participate in interactions between

two monomers in a dimer, could result in a change in the

dimerization reported by BiFC. Mutation of the conserved

Walker-B glutamate residues (in ABCG2 this corresponds to the

mutation E211Q) has been shown in numerous in vitro and

structural investigations of other ABC proteins to result in the

tighter apposition of the 2 NBDs with concomitant, irreversible

Figure 4. Complementation of YFP-ABCG2 constructs occurs at the plasma membrane. Constructs expressing half-tagged vYFP-ABCG2
individually (A, B) or together (C) were transfected into HEK293T cells as indicated schematically to the left. Constructs reached the plasma
membrane as confirmed by immuno-staining with 5D3 antibodies (left hand panel). No fluorescence could be detected at 515 nm by flow cytometry
of cells transfected with the vYN-ABCG2 or vYC-ABCG2 construct, but in co-transfected cells a YFP fluorescence was detected (middle panel).
Confirmation of the BiFC interaction was obtained from imaging fixed cells by fluorescence microscopy (right hand panel). DAPI was employed as a
nuclear counter-stain. Individual transfections resulted in only DAPI labelled nuclei in such experiments. Data are representative of at least 4
independent experiments.
doi:10.1371/journal.pone.0025818.g004

BiFC Analysis of ABCG2 Dimers
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trapping of the nucleotide substrate [41,42,43,44,45]. A second

mutation, C603A, was introduced to prevent the inter-dimer

disulphide bond that has been shown to be necessary for

homodimer formation on non-denaturing SDS-PAGE, but which

is not required for function [13,15].

We co-transfected ABCG2 wild type and mutant isoforms

tagged with N- and C-terminal fragments of vYFP (Figure 6A-D).

All three constructs (WT, E211Q and C603A) showed BiFC

(Figure 6B-D respectively) producing a fluorescence signal far in

excess of the background observed with a single transfection

(Figure 6A). The use of 96-well plate transfections and quantitative

image analysis software (see Methods) enabled us to determine two

parameters that could reflect altered dimerization between wild

type ABCG2 and mutant isoforms. Firstly, we determined the

percentage of cells with fluorescence above a background

threshold (Figure 6E). Although the percentage of cells showing

BiFC was greater for the E211Q mutant – which might be

expected to form a stronger dimer – this was not statistically

significant by ANOVA. Secondly, we quantified the mean

fluorescence intensity signal as a measure of the strength of the

BiFC interaction (Figure 6F). Again, analysis of several thousand

cells in several independent transfections showed that there was no

difference in the fluorescence intensity for either mutant ABCG2

isoform, compared to the wild type.

This data indicates that the initial association of the interacting

monomers – which is the event that BiFC ‘‘captures’’ - is not

sufficiently altered by either of the mutations we introduced to be

detected. For the Walker-B mutation, structural data on related

ABC proteins places the Walker-B glutamate residues within 8 Å

of the opposite NBD [46], and it has been shown on several

occasions that the mutation of the conserved glutamate to

glutamine produces an NBD protein that in vitro is able to

associate into a stable dimeric state in the presence of ATP, which

occludes ATP (see references in [46]) It may be that in the current

experiments in intact cells this tight NBD dimerization is not

recapitulated. For cysteine-603, which is located in the extracel-

lular loop between TM5 and TM6, it is arguable that our data is

consistent with the hypothesis that the residue is not essential for

dimerization [13,15] [38].

It seems probable that our inability to detect changes in BiFC

signal with these two mutations reflects both a combination of the

irreversibility of BiFC following initial association, which has been

discussed previously [21,26], and the potentially minor alterations

to ABC2 dimer status that a single amino acid change on a large

protein:protein interaction surface would engender. Despite recent

improvements to the specificity of the BiFC interaction which may

reduce false positive interactions (e.g. [24,26]), the irreversibility is

still unaddressed, precluding us from being able to use BiFC to

further investigate the structural basis of ABCG2 homodimeriza-

tion, i.e. identifying individual residues at the dimer interface.

However, it remains possible that the effects of multiple mutations

to a predicted interfacial site could be detected by BiFC, e.g. the

surface of helix TM1 which contains a T402L/G406L/G410L

dimerization motif [17].

Bimolecular fluorescence complementation is a powerful

technique for the detection of protein:protein interactions which

may be homo- and/or hetero-dimeric in nature, including

previous studies of cuticular lipid ABCG-type transporters in

plants [47]. We have demonstrated here that a BiFC signal,

specific to homodimeric ABCG2 interaction at the plasma

Figure 5. ABCG2 bimolecular fluorescence complementation is specific. HEK293T cells were transfected with constructs expressing either
eYFP-ABCG2 (as a positive fluorescence control, A), complementing halves of vYFP tagged to ABCG2 (B) or with vYN-ABCG2 and a non-specific
interaction partner b2 adrenergic receptor (b2AR) with a C-terminal vYC fragment (C). Live cell imaging (left hand panel) shows that all three
transfections result in cellular fluorescence indicating the complementation of both the cognate (ABCG2:ABCG2) and non cognate (ABCG2: b2AR)
protein pairs. However, cells fixed and counter stained with DAPI (middle panel) show that the BiFC signal arising from ABCG2:ABCG2 interaction is
membrane localized, in contrast to the BiFC signal from the ABCG2: b2AR interaction which shows cytoplasmic retention. Immunofluorescence of
cells with anti ABCG2 antibodies (right panel) further demonstrates that the ABCG2: b2AR interaction results in intracellular retention of ABCG2. Data
are representative of at least 4 independent experiments.
doi:10.1371/journal.pone.0025818.g005
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membrane, was observed and, importantly, that tagging ABCG2

with molecular fragments of vYFP did not perturb function or

localization. Our work, and the recent demonstration that ABCG2

can also be studied by Förster resonance energy transfer (FRET;

[38]), should promote further studies to examine heteromeric

interactions of ABCG2, such as those with the regulatory PIM1

kinase [48], using these fluorescence technologies.
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