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Abstract

Introduction: Exercise segmentation, the process of isolating individual repetitions from continuous time series meas-
urement of human motion, is key to providing online feedback to patients during rehabilitation and enables the com-
putation of useful metrics such as joint velocity and range of motion that are otherwise difficult to measure in the clinical
setting.

Methods: This paper proposes a classifier-based approach, where the motion segmentation problem is formulated as a
two-class classification problem, classifying between segment and non-segment points. The proposed approach does not
require domain knowledge of the exercises and generalizes to groups of participants and exercises that were not part of
the training set, allowing for more robustness in clinical applications.

Results: Using only data from healthy participants for training, the proposed algorithm achieves an average segmentation
accuracy of 92% on a 30-participant healthy dataset and 87% on a 44-patient rehabilitation dataset.

Conclusion: A real-time approach for segmentation of rehabilitation exercises is proposed, based on two-class clas-
sification approach. The method is validated on both healthy and rehabilitation motion datasets and generalizes to a

variety of demographics and exercises not part of the training set.
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Introduction

Temporal segmentation, the process of dividing a con-
tinuous sequence of motion data into individual repe-
titions or motion primitives, allows an automated
rehabilitation system to provide real-time feedback on
the performance of each exercise repetition. The seg-
mented data can then be used by clinicians to perform
diagnosis and progress monitoring with automatically
collected quantitative data.’

To meet the requirements of the rehabilitation clinic,
a suitable segmentation algorithm must be able to
handle intra- and inter-participant variability. 4 priori
movement data for a new patient are not likely to be
available and thus any supervised algorithm must rely
on healthy or other patient data for training. In com-
parison to healthy participants, patients may exhibit
smaller range of motion, inconsistent velocity and com-
pensatory movements, where, as a result of redundancy
within the neuromusculoskeletal system, patients
may utilize alternate muscles and joints to perform

a prescribed motion they find difficult® (Figure 1).
However, few of the existing segmentation algorithms
have been tested on patient data.’

A segmentation algorithm should be able to handle
both known exercises (motions in the training set) as
well as generalize to novel exercises, since exercise regi-
mens are often customized for each patient.

Current solutions to the motion segmentation prob-
lem?® can be divided into two classes: (1) approaches
that model the exercises using a template library
and (2) approaches that model the segment edge
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Figure 1. Joint angle and velocity data of healthy (left) and rehabilitation (right) participants performing a knee extension exercise,
illustrating hip extension (hip ext), hip abduction (hip abd), knee extension (knee ext) and the manual segments (man seg). These
figures, with both vertical and horizontal axes at equal scaling, illustrate motions performed by a rehabilitation patient that are slower,
have smaller velocities, and smaller range of motion. Some evidence of compensatory movement can also be seen here, where the
patient motion in the knee is accompanied by hip extension. These variations mean techniques that are not validated with patient data
may not necessarily generalize. Note that the manual segment definitions also differ slightly. In the healthy data, the manual segments
(blue boxes) tend to lag velocity crossings due to human labelling reaction speed, while for the rehabilitation data, the manual
segments tend to be on the velocity crossing due to the slower pace of motion. (a) Healthy participant data. (b) Rehabilitation patient

data.

points by assuming segment boundaries share common
characteristics.

Among template-based methods, hidden Markov
models (HMMs)* © are commonly used for motion seg-
mentation, where each segment is considered to be a
hidden state and the state sequence is recovered using
the Viterbi algorithm. Regression-based techniques,
where a piecewise linear fit is applied to the observation
data and a segment declared when the error between
the regression line and the data exceeds a threshold,”®
have also been used. A third category of approaches
uses dynamic time warping (DTW), where temporal
and spatial variations between the template and the
observed data are minimized by selectively altering
the time scale to minimize the error, and segment on
threshold.”'° Lastly, classifier-based approaches have
been applied, by extracting sequences of discretized
data as segments.'!

Approaches that use template libraries can provide
accurate segments. Some methods account for temporal
and spatial variability by either modelling them sto-
chastically or manipulate the time scale so that two
sets of data can be compared, allowing these methods
to handle human motion variability. However, these
methods tend to be offline®*!° and cannot account
for novel primitive types.

Segment edge point modelling methods learn or
assume that data at segment boundaries will have cer-
tain characteristics, which are utilized to perform seg-
mentation. Kinematic zero crossings (KZC) methods
declare segments on velocity,'*'? acceleration,'® jerk'>
or curvature'® zero crossings as they denote turning
points in the motion. These methods serve as a simple
way to perform segmentation. Derived metrics, such as
Euclidean'”'® and Mahalanobis distance,'? signal vari-
ance,”*! and likelihood tests'® can also be used, where
segments are declared when the metric distance between
two subsequent data windows exceeds a given
threshold.

Segment edge models tend to be defined based on
heuristics, and rely on specific domain knowledge of
the underlying data. There is often no mechanism to
reject false positives, necessitating further post-proces-
sing. These algorithms can be employed online but may
require offline training.'?

Proposed approach

This paper proposes a classifier approach for segmen-
tation, where machine learning techniques are used to
automatically extract segment edge characteristics.
Normalization techniques are applied to improve
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similarity and generalizability between healthy training
data and patient testing data and improve the segmen-
tation accuracy.'

All data points are classified as either a segment point
(p1) or a non-segment point (po). This converts the task
of temporal segmentation into a data classification
task. If segment edge points share common features
which are equivalent between different exercises, such
as changes in velocity directions or changes in contact
conditions, classifying all data points into either a p; or
po point allows the algorithm to handle motions and
participants that have not been observed before. Rather
than specifying features similar to the KZC-based
methods,”” the characteristics of a segment point are
learned from the training data, the training data are
annotated as either p; and pg points (Figure 2).

The proposed algorithm is illustrated in Figure 3.
After pre-processing, principal component analysis
(PCA)* is used to reduce the dimensionality and the
computational cost. The dimensionally reduced data
are used to train a support vector machine (SVM).
The trained classifier is then used to classify the obser-
vation data.
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Figure 2. A time-series waveform of joint angles during a
squatting exercise. This figure denotes the hip extension

(hip ext), hip abduction (hip abd), knee extension (knee ext),
the manual segments (man seg) and p,/po ground truth data
generated from the manual segments (truth). The segments
provided by a human observer (blue boxes) are expanded into
multiple segment edge points (top blue lines) and non-segment
points (bottom blue lines).

Pre-processing

Normalizing. To reduce sensitivity to the starting pose,
the initial value of each time-series can be removed such
that the resting pose is always at zero, by applying an
offset calculated from the mean value of the first 10
samples of each trajectory.

The data can also be rectified. Taking the absolute
value of the joint angle data would allow motions that
involve the same joints but moving in opposite direc-
tions to be recognized as one exercise, improving
generalization.

Magnitude scaling, by dividing by the mean of the
absolute peak values over all the segments in the time-
series data, compensates for the varying joint angle
ranges between healthy and patient data, as well as
enables exercise generalization. However, the determin-
ation of this value requires the full observation set,
which is impractical in clinical applications because
the full observation sequence is not available a priori.
For training, the scaling factor is calculated from
the full dataset, while for testing, the scaling factor is
calculated from only the first segment.

Temporal. Data points are interpolated to ensure even
temporal spacing between time points; then the data
points that are ng,,. around the time point being exam-
ined (t,) are concatenated into the current data point to
incorporate temporal information before and after ¢,
into the classifier.

Balancing. Imbalanced datasets can skew the classifier
towards the class that has the most samples. To min-
imize this problem, data points 7., around manual
segment points, as well as the data points between seg-
ments, are converted into p; points, as they are similar
to the manual segment point. Downsampling is
also applied to po to further balance the dataset.
A Gaussian sampling method was employed, where p
points closer to p; points have a higher chance of being
sampled than p, points that are not close to any p;
points. This is to include more data points that are
close to the segmentation boundaries and thus are
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Figure 3. Flow diagram of the algorithm.
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more likely to be misclassified (Figure 4). During test-
ing, no downsampling is applied.

Feature extraction

After the pre-processing steps, a feature extraction
technique can be applied, to reduce the feature space
dimensionality and decrease computational time. To
achieve this, PCA is used. PCA is an orthogonal trans-
formation algorithm that finds a projection to a new
feature space, consisting of principal components (PCs)
which are constructed to capture the maximum amount
of variance and constrained such that all subsequent
PCs are orthogonal to the previous ones. PCA is com-
monly used in conjunction with the scree plot
method,”® which is a plot that denotes the fraction of
total variance in the data represented by each PC. By
selecting a threshold in the amount of variance to be
captured by the resulting projection and using only the
PCs that explain the required level of variance, dimen-
sional reduction is achieved.

Discriminative classifier

The data can now be used for training and classifica-
tion. For the purposes of this paper, SVM?* is used.
SVM is a two-class classification algorithm where the
training data are mapped to a higher dimensional
kernel space, and a decision hyperplane is generated
between the classes. SVM forms its decision hyperplane
by selecting key training points, or support vectors, that
form the hyperplane, such that the margins between the
two classes are maximized. The SVM parameters are
the slack variable C and the selection of the kernel. For
this paper, the radial kernel is used.
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Figure 4. Knee extension training data, denoting the hip
extension (hip ext), hip abduction (hip abd), knee extension
(knee ext) and the sampled data for training (sampled). The blue
points at y =0 denote the training data selected for py, sampled
by Gaussian resampling, favouring non-segment points closer to
the boundary. The blue points at y=1 denote the training data
selected for p;, which has no downsampling. The Gaussian
covariance coefficient is reduced to show this effect more clearly.

Experimental validation

While many algorithms were designed with clinical
applications in mind, few to date have been tested
against patient populations or report specific segmen-
tation results.’ Three different datasets are used to val-
idate the proposed approach: One collected from
healthy participants and two from rehabilitation par-
ticipants undergoing knee or hip total-joint replace-
ment surgery. Two types of validations were
performed: (1) cross-validation, to validate inter-parti-
cipant generalization and (2) validation with known
and novel exercises, to test for inter-exercise
generalization.

Datasets

All three datasets were collected using three Shimmer
accelerometer and gyroscope sensors> worn on the hip,
knee and ankle. Using the measured accelerometer and
gyroscope data, joint angles were estimated via the
extended Kalman filter,>® using a five-joint kinematic
model, where the hip is modelled as a three-joint
system with flexion/extension, abduction and internal
rotation, and the knee is modelled as a two-joint
system with flexion/extension and internal rotation.
Poorly reconstructed data were removed from
consideration.

The first dataset is a 30-healthy participant dataset
(I7M, 13 F, pgee = 24.4)"? collected from the University
of Waterloo (UW) student population, with 10 to 20
repetitions per exercise type. All participants were
healthy and had no lower-body injuries for the six
months prior to the data collection. Prior to data col-
lection, participants were instructed on how to perform
each motion. Motion capture data were collected sim-
ultaneously. The supine exercises collected were hip
abduction, hip flexion, knee extension and knee/hip
flexion. The seated exercises collected were knee exten-
sion and sit to stand. The standing exercises collected
were gait, hip abduction, hip extension, marching,
lunges and squats.

The second dataset is an 18-patient dataset (4 M,
14F, /¢C,gp:73.8)12 collected from the Toronto
Rehabilitation Institute (TRI) musculoskeletal in-
patient ward. All patients had undergone a hip or
knee replacement surgery and were in TRI for post-
surgical rehabilitation. These patients were tracked
from the first day of admission until discharge, and
had daily rehabilitation sessions, with an average stay
length of two weeks. All the exercises collected were
part of their prescribed routine; no exercises were mod-
ified or added for the data collection. The supine exer-
cises collected were hip abduction, hip flexion, knee
extension and knee/hip flexion. The seated exercises
collected were knee extension and sit to stand.
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The standing exercises collected were gait, hip abduc-
tion, hip extension, knee flexion, marching, lunges and
squats.

The third dataset is a 26-patient dataset (10 M, 16 F,
,ugg€=66.7)1 collected from the St. Joseph’s Health
Centre Guelph (SJHC) rehabilitation out-patient
ward. All patients had undergone hip or knee replace-
ment surgery and were in SJHC for rehabilitation.
Patients were in SJHC for a six-week rehabilitation
program. Patients were approached in their third to
sixth week, and data were collected for a single exercise
session for each patient. All the exercises collected were
part of their prescribed routine, but each patient per-
formed half of the exercises while using an exercise
feedback monitor.! The supine exercises collected
were knee extension and knee/hip flexion. The seated
exercises collected were stationary bicycling, knee
extension and sit to stand. The standing exercises col-
lected were gait, hip abduction, hip extension, knee flex-
ion, marching, lunges and squats.

The healthy data were collected with the approval of
the University of Waterloo Research Ethics Board
(REB). The TRI dataset was approved by both the
UW REB and the University Health Network REB.
The SJHC dataset was approved by both the UW
REB and the STHC REB. Signed consent was obtained
from all participants.

Many of the exercises performed by the STHC and
TRI patients were modified in some way: springs,
slings, weights and other physical devices were added
to modify the exercise difficulty, providing test cases for

of inter-exercise generalization. The main difference
between the two patient datasets was the health status
of the patients. In-patients were being treated in hos-
pital due to additional health concerns or co-morbid-
ities that prevented discharge, while out-patients were
healthy enough to recover at home.

For the UW dataset, manual segment points were
generated by using the motion capture data. The
motion capture marker positions were used produce a
video of the Cartesian data and the segments were
denoted based on the observer’s perception of when a
repetition had begun or ended. For the TRI and STHC
dataset, manual segmentations were annotated on the
recovered joint angle data, as motion capture data were
not available. The accelerometer and joint angle data
were plotted as a time-series plot and the segments were
denoted based on the observer’s perception.

Implementation

Only the healthy data were used for training, while
both healthy and rehabilitation data were used for test-
ing. The use of healthy data only for training is pre-
ferred, to avoid the need for manual labelling of
clinical data. In all experiments, no training data over-
lap with the testing data. The exercises used for training
were selected by totalling the amount of rehabilita-
tion data available and selecting the top five exercises
that had exercise examples from all three datasets.
A list of these exercises is labelled as known exercises
in Table 1.

Table I. Known (exercises used in algorithm training) and novel (exercises not used in algorithm training) exercises with their
corresponding active joints, direction of movement, typical initial postures and the total amount of data collected.

Names Characteristics Data collected (s)
Long®’ Short Joints Direction Posture uw SJHC TRI
Known
Standing hip abduction HAAO-STD Hip Abd Std 832 976 3535
Standing hip extension HEFO-STD Hip Ext Std 799 1945 7734
Seated knee extension KEFO-SIT Knee Ext Sit 1207 1327 8119
Marching KHEF-STD Knee/hip Ext/Flex Std 836 1934 6892
Supine heel slides KHEF-SUP Knee/hip Ext/Flex Sup 952 515 21277
4625 6697 47558
Novel
Standing hip flexion HFEO-STD Hip Flex Std 799 - 3817
Quad over roll KEFO-SUP Knee Ext Sup - 238 10954
Standing hamstring curls KFEO-STD Knee Flex Std - 2921 7118
Resisted knee flexion over roll KFEO-SUP Knee Flex Sup 733 - 6102
Squats SQUA-STD Knee/hip Ext/Flex Std 1370 - 6002
2902 3159 33993

The directions of motion include extension (ext), flexion (flex) and abduction (abd). The initial postures include supine (sup), sitting (sit) and

standing (std).
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All data were resampled to 50Hz. Both joint
angle and joint velocity data were used as classifier
input. All processing and algorithm implementation
were done in MATLAB 8.0, along with the LIBSVM
toolbox®® and the Toolbox for Dimensionality
Reduction.” n,, was set to 15, while Neyp Was set
to 10, based on previous testing.’® For PCA, a scree
plot threshold of 80% was used. For SVM, two-class
soft margin radial SVM was used. C was set to 1.
For the radial kernel function, y was set to the inverse
of the number of degrees of freedom (DOFs) post-
PCA. The same settings as reported in Lin et al.*® are
used, where a detailed analysis of parameter sensitivity
is provided.

A four-fold cross validation was utilized to test inter-
participant generalization. For training, 10 healthy par-
ticipants from UW were randomly selected, another set
of 10 UW participants were used for testing, as well as
all of the TRI and SJHC patient data. All reported
accuracy values were averaged over the four folds.

Validation metric

The segmentation accuracy was assessed by comparing
the algorithmic p; and p, labels against the manually
generated ground truth. The total number of correctly
identified points, the p; true positives (TP) and p, true
negatives (TIN), as well as the false positives (FP) and
false negatives (FN) are reported together as the
balanced accuracy Accpy

TP +1 TN
2 TP+FN 2 TN+ FP

Accpa =

Table 2. Classifier performance for known and novel exercises.

This measure combines both the sensitivity and the
specificity scores and limits inflated accuracy scores in
imbalanced dataset cases.

Results

While the proposed method is designed to automatic-
ally extract segment edge features, machine learning
approaches can be sensitive to input feature scaling.
The results show that the normalization allows the
healthy and the rehabilitation data to appear more
similar, and the temporal stacking and PCA selected
a suitable linear combination of features that provide
good separability for high segmentation accuracy.

Known exercises

First, this paper considers known exercises, where the
same exercises are in the training and test sets to evalu-
ate inter-participant generalization (Table 2). The same
classifiers, trained only on healthy data, were used to
test both the healthy and rehabilitation datasets, using
different pre-processing methods.

For healthy participants, removing the offset signifi-
cantly improves the accuracy, moving from
74% +26% to 91% = 6%, an increase of 15% in accur-
acy and a drop of factor of 4 in the standard deviation.
The offset removal allows motions that start at different
postures to appear more similar, thus improving accur-
acy. Normalizing without using the scaling factor pro-
vided the best performance.

The preprocessing techniques also resulted in a simi-
lar outcome for the SJHC dataset, where the offset nor-
malization significantly improves the segmentation
accuracy. Applying the rectification alone led to per-
formance degradation, but when combined with the

Pre-processing uw STJIC TRI

Off Sca Abs Known Novel Known Novel Known Novel

N N N 0.744 +0.260 0.691 +0.164 0.760+0.164 0.836+0.118 0.607 +0.223 0.5124+0.213
N N Y 0.751 +0.260 0.638 +0.160 0.7194+0.170 0.695 +0.121 0.580 +0.208 0.456 +0.159
N Y N 0.774 +0.255 0.697 +0.149 0.781 +0.168 0.709 £ 0.089 0.621 £0.210 0.569 +0.109
N Y Y 0.776 +0.255 0.669 +0.139 0.784 +0.161 0.692 +0.085 0.614+0.198 0.545 +0.083
Y N N 0.909 +0.061 0.838+0.115 0.856 +0.124 0.879 +0.064 0.647 £0.163 0.598 +0.153
Y N Y 0.916 +0.054 0.858+0.101 0.830+0.133 0.889 +0.060 0.670+0.161 0.583 +0.136
Y Y N 0.889+0.103 0.869 +0.082 0.870+0.122 0.864+0.068 0.813+0.147 0.830+0.152
Y Y Y 0.906 +0.072 0.870+0.080 0.886+0.107 0.884 £ 0.050 0.853+0.118 0.828+0.144

The reported results are the mean and standard deviation of the four-fold cross-validation in the training data. Three types of normalizations were
examined: offset value removal (off), magnitude scaling (sca) and rectification of the joint angle (abs). Bolded value denote maximum in each section.
The results are separated into known and novel exercises, as denoted by Table I.
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other normalization methods, up to 17% improvement
can be observed.

The preprocessing techniques have the strongest
impact on the TRI dataset. Rectifying the data
improved performance, but not as significantly as mag-
nitude scaling the data. Magnitude scaling allows the
patient datasets to look more similar to the training set,
allowing for improvements of over 17% in accuracy for
some configurations. Combining all three preprocessing
steps improves performance on the TRI dataset to
85%. Offset removal alone improves accuracy from
60% to 65%.

Novel exercises

This paper next considers novel exercises, where the
test exercises were not included in the training set
to test inter-exercise generalization (Table 2). This
test is important for clinical application because if the
algorithm can successfully generalize to exercises that
were not explicitly included in the training dataset, it
reduces the amount of training data that must be pro-
vided. Table 2 shows that, without pre-processing,
the novel exercises do not perform as well as the
known ones.

For healthy participants, the offset value removal is
the most influential factor, improving the accuracy by
13%. However, scaling and rectification alone did not
seem to impact the accuracy significantly. However,
with all three normalizations active, the accuracy is
improved by 18%.

For patient data, without normalization, the segmen-
tation performance declines significantly, but with offset
value removal, scaling and rectification, the TRI novel
exercise approaches performance with the known exer-
cises, at 85% to 83% for the known and novel datasets,
respectively. The most influential normalization is the
offset and the scaling, which allowed the TRI data to
appear more similar to the healthy training data. Similar

(b) -

1.5 15

results can be observed for the STHC novel exercises,
where the reported accuracy was 89% and 88% for the
known and novel motions, respectively.

PCA mapping

The PCA mapping of the data shows that the top PCs
are composed of the knee sagittal joint angle, the knee
sagittal joint velocity, the hip sagittal joint angle, the
hip sagittal joint velocity, the hip abduction joint angle
and finally the hip abduction joint velocity, which are
the main features that change over time over all the
datasets. These PCs, under different configurations,
can be seen in Figure 5.

For ng,. =0, the first PC contains the knee sagittal
and hip sagittal joint velocity. The second PC contains
the knee sagittal and hip sagittal joint angles. These two
PCs effectively form a phase plot of these two different
joints, emphasizing the cyclic characteristics of the exer-
cise movements.

For ng, =15, PCA generates a similar looking pro-
jection, even though the input feature has been
embedded with temporally offset data. This indicates
that PCA is constructing linear combinations of the
different joint angles and velocities, generating a space
analogous to the phase plot, but automatically incor-
porating multiple joints and short-term temporal
information.

Table 3 shows the classification accuracy of different
Ngaer Values. Smaller ng,,.. values, corresponding to less
temporal information embedded at each timestep, led
to a decrease in accuracy. The accuracy difference
between 7y, =15 used in the Known and Novel
Exercises Results sections and larger ng,.. values does
not vary significantly, due to the wider windows cover-
ing components of the trajectory that are both moving
and not moving. These suggest that for the dataset
examined, the window of 0.6s provided by 7y, =15
is a suitable choice.

Figure 5. Four plots of the training data, projected onto a 2D plane via PCA using the projection matrix generated by the offset
value removal and scaled training data. These plots show the different PCs at different ng, values and rectification state. Note that
the scale between the left two figures and the right two figures are different. In all configurations, the first four PCs heavily weigh the
knee sagittal and hip sagittal joint angles and velocities, due to their high variance in the trajectories examined. Although not shown
here, the subsequent PCs weigh the hip abduction joint angle and velocity more heavily. (a) Unrectified data, ng, =0. (b) Rectified
data, ngge =0. (c) Unrectified data, ngeq = 15. (d) Rectified data, nggq = 15.
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Table 3. Classification accuracy of testing data using classifiers that have been normalized by using offset value removal, magnitude
scaling and rectification.

uw SJHC TRI
N stack Known Novel Known Novel Known Novel
0 0.862 +0.077 0.860 £ 0.083 0.865 +0.107 0.858 +0.048 0.830+0.130 0.817+0.156
5 0.890 4 0.066 0.869 +0.079 0.870+0.110 0.865 1+ 0.046 0.844 4+0.120 0.823 +£0.151
10 0.902 4+ 0.066 0.870 +0.078 0.877 £0.111 0.871 +0.048 0.849 +0.120 0.827 +0.144
15 0.907 +0.071 0.870+0.078 0.887 +0.105 0.884 +0.050 0.853+0.118 0.828 +0.144
30 0.89540.108 0.875 4+0.082 0.861 £0.127 0.863 £ 0.085 0.848 £0.124 0.833+0.144

The baseline is bolded and denoted as ng,q = 15. Different ng,. parameters are examined. The results are separated into known and novel exercises,

as denoted by Table I.

Discussion

The contributions of this paper are three-fold: (1) the
segmentation problem is recast as a two-class classifi-

Table 4. Classification accuracy of the proposed algorithm,
compared against two other methods, the velocity feature HMM
(VfHMM) and the zero-velocity crossing (ZVC), using known
exercises.

: _ , ‘ Algorithm  UW SJHC TRI
cation problem, allowing standard machine learning ”
methods to learn the optimal classification boundary ZVC 0.707+0.113 0731 £0.146  0.711+0.192
without the need for hand selected features; (2) the dif-  vfHMM'? 0.710+£0.118  0.7094+0.148  0.730+0.180

ferences between healthy and rehabilitation movement
patterns and the impact of feature normalization tech-
niques on algorithm performance and generalization
are investigated and (3) the algorithm is validated
with one healthy and two patient datasets, demonstrat-
ing that the algorithm can generalize to both motions
and individuals that were not seen during training and
that normalization can be used to allow the algorithm
to be trained using only healthy data, which can be
more easily collected and labelled. The proposed
method can be applied to the clinical environment
and perform online motion segmentation.

Comparison to existing work

The velocity feature HMM (vfHMM)'? was imple-
mented as a comparison work against the proposed
algorithm. It uses velocity crossing and peaks to iden-
tify potential segments, then selects them based on
HMM identification. In addition, a zero-velocity cross-
ing (ZVC) algorithm®* was also implemented, where
velocity crossings indicated direction change and thus
segment points. The HMM and ZVC methods were
selected due to their wide-spread use for motion seg-
mentation. DTW?'* is another common method but
has heavy computation requirements, making it unsuit-
able for online clinical deployment.

Joint angle data that had discontinuities, integration
drift or noisy recovery were removed, as they caused
the training algorithm'? to diverge. For the ZVC algo-
rithm,?* every second identified ZVC was used to create
the segments. The single point segments declared by the

PCA SVM 0.906 +0.072 0.886+0.107 0.853+0.118

The proposed method is bolded.

comparison algorithms were converted into py and p;
points such that the balanced accuracy metric can be
used for all algorithms. For this section, the training
and testing data of all three algorithms were normalized
by offset removal and magnitude normalization.

Table 4 indicates that the proposed algorithm out-
performs both of the comparison algorithms. Both
vfHMM and ZVC methods assume segment points
only occur on velocity crossings, rather than learning
the segment point locations from expert-labelled data.
Figure 1 shows that human observers may define
segments to lead or lag the velocity crossing. These
variations in the manual segments highlight the import-
ance of segment definition flexibility, where the pro-
posed algorithm outperforms the two comparison
works. In addition, the proposed approach can gener-
alize to unseen exercises, while vViHMM'? requires a
template for each motion.

With suitable pre-processing, the classifier can gen-
eralize both to patient data and to novel exercises,
based on only a healthy participant training dataset.

Differences between healthy and rehabilitation data

The results show that normalization plays a key role in
enabling generalization to novel participants and that
validation on patient populations are important. In
Figure 6, intra-participant variance is shown to be
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Figure 6. Eight phase plots of seated knee extension (KEFO-SIT), where the x axis denotes knee sagittal joint angle and the y axis
denotes knee sagittal joint velocity. The left figures denote the same UW participant performing the exercise at different times within
the same hour, illustrating intra-participant variation. The right figures show the same TRI patient performing the exercise at different
times over a two-week span, illustrating significant magnitude differences as the patient improves over time. The top figures show the
data without magnitude scaling, while the bottom figures show the data after scaling. (a) UW 5, session |, no scaling. (b) UW 5, session
2, no scaling. (c) TRI 2, session |, no scaling. (d) TRI 2, session 10, no scaling. () UW 5, session |, with scaling. (f) UW 5, session 2,
with scaling. (g) TRI 2, session |, with scaling. (h) TRI 2, session 10, with scaling.

significant, even within the same healthy participant
when the data are collected within a short time period
(Figure 6(a) and (b)). In the datasets evaluated here, this
difference is magnified between healthy and orthopaedic
patient data as the exercises were performed under dif-
ferent conditions. For accelerometers, joint angle recov-
ery with the Kalman filter*® assumes that the sensors are
rigidly attached to the limb. While this is generally not a
problem for healthy participants, the sensors cannot be
attached as tightly to joint replacement patients due to
concerns about pain. Sensor placements are also less
exact due to the need to avoid surgical sites, bandages,
weights and slings, and may be displaced during move-
ment. Many of the total joint replacement patients who
participated in the experiments also suffer from compli-
cations that impact movement and stability, such as
osteoarthritis in the non-operated limbs, obesity or
post-surgical swelling.” Compensatory movement due
to pain or soreness is another source of variability.
Patient data also vary widely due to prescribed patient-
specific exercise modifications such as support slings or
weights. These differences emphasize the need for nor-
malization to be robust to patient motion variability, as
well as highlight the need to perform data validation
against both healthy and rehabilitation data.
Reformulating segmentation as a classification
problem simplifies the task and allows for machine
learning techniques to be used to automatically extract
segmentation boundaries without hand crafted
features. The various normalization techniques

investigated allowed for the healthy template to gener-
alize to both participants and exercises unseen during
training, even though the healthy and rehabilitation
participants were observed to have very different move-
ment patterns.

Clinical considerations

In the clinic, segmentation misclassification can lead to
a misrepresentation of patient health. Under-segment-
ing may lead the patient perform more repetitions than
prescribed, as well as lead the physiotherapist to believe
that the patient is less capable. Over-segmenting may
lead the patient to perform fewer repetitions and
lead the physiotherapist to overestimate the patient’s
capability.

Lam et al." used vfHMM'? as the segmentation algo-
rithm in a clinical study where online computer-based
feedback was given to patients on their movements. In
Lam et al.’s study,' the patients’ peak velocity and exer-
cise duration improved with feedback, as well as
reducing compensatory movement. This suggests that
vfHMM'? is sufficiently accurate to improve patient
metrics. The F, accuracy for vfHMM'? for patient
knee extension data was 73%, while the F; for the pro-
posed approach on the same exercise is 80%. Since the
proposed method outperforms viHMM,'? the proposed
algorithm should also be suitable for clinical usage.

While the segmentation accuracy outperforms prior
work, several limitations of the algorithm should be
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considered. The current method assumes that the first
manual segment of all observed data is known to per-
form normalization, requiring physiotherapist input to
specify. Although the algorithm would be more flexible
if it did not require explicit physiotherapist input, it is
reasonable to expect a physiotherapist to observe their
patients to ensure that the first repetition of any pre-
scribed exercise is completed properly. However, this
supervision process may be cumbersome in group exer-
cise sessions.

Another limitation is if the range of motion changes
dramatically over the span of a given observation
sequence, the classifier may not be able to sufficiently
segment the data since the normalization factors are
calculated from the first segment. That is, if the patient
improves or degrades significantly from the first seg-
ment, the algorithm may not perform as well. The pro-
posed algorithm also relies joint angles reported from
body-worn sensors, which may be difficult for all
patients to put on unassisted due to limited mobility.'
Only orthopaedic rehabilitation exercises of the lower
body are considered in this paper. To verify clinical
feasibility, different population types and wider exercise
sets should be considered.

In this paper, only kinematic data of the lower body
were examined, which may limit clinical applications.
However, earlier versions of this technique have been
applied to complex full body kinematic data of healthy
participants,®’ as well as to joint torque** and electro-
myogram™ data, demonstrating that the technique suit-
able for a variety of input features.

Another limitation of any supervised learning algo-
rithm is the need for manually labelled training data.
Manual segments in this paper were obtained by video
playback of motion capture marker locations or by
annotation on a time-series graph, and may suffer
from inter-rater variability. A possible way to alleviate
this issue is to collect manual segments from several
labellers.

Conclusion

In this paper, an algorithm for motion segmentation
was developed and validated with both healthy
and patient data. The proposed algorithm converts
time-series motion segmentation into a two-class clas-
sification problem. The algorithm was tested for both
inter-participant generalizability and inter-exercise
generalizability and was shown to segment with
92%, 87% and 85% accuracy on healthy, out-patient
rehabilitation and in-patient rehabilitation data,
respectively, while using only healthy data for
training.

For future work, a wider variety of exercises will be
examined, including gait and functional tasks.
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