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Abstract

In this paper, a class of second-order Hamiltonian systems with impulsive effects are
considered. By using critical point theory, we obtain some existence theorems of
solutions for the nonlinear impulsive problem. We extend and improve some recent
results.
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1 Introduction and main results

Consider the second-order Hamiltonian systems with impulsive effects

ii(t) = VF(t,u(t)), ae.tel0,T],
u(0) — u(T) = i1(0) — i(T) = 0, (L.1)
A () = L' (t), i=12,...,N;j=1,2,...,p,

where 0 =tg <ty <fp <+ <y < by = T, u(t) = (&), u?(8),...,uN(®)), L : R —> R (i =
1,2,...,N;j=1,2,...,p) are continuous and F : [0, T] x R" — R satisfies the following as-
sumption:
(A) F(t,x) is measurable in ¢ for every x € R" and continuously differentiable in x for
a.e. t € [0, T] and there exist a € C(R*,R*), b € L'(0, T; R*) such that

|F(t,x)| <a(lx)b(®),  |VE(tx)| < a(]x])b(t)

forallx e R” and a.e. £ € [0, T].
When [;;=0(i=12,...,N;j=12,...,p), (11) is the Hamiltonian system

i(t) = VE(t,u(t)), ae.tel0,T],
u(0) — u(T) = (0) — &(T) = 0.

(1.2)

In the past years, the existence of solutions for the second-order Hamiltonian systems
(1.2) has been studied extensively via modern variational methods by many authors (see
[1-13]).
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When the gradient VF(¢,x) is bounded, that is, there exists g € L}(0, T; R*) such that
’VF(t,x)| <g(®)

for all x € RN and a.e. t € [0, T], Mawhin-Willem in [1] proved the existence of solutions
for problem (1.2) under the condition

|x|—+00

T
lim / F(t,x)dt = +00
0

or

T
lim F(t,x) dt = —o0.

lx]—>+00 Jo

When the gradient VF(¢,x) is bounded sublinearly, that is, there exist f,g € L(0, T; R*)
and « € [0,1) such that

|VE(t,x)| <f(@)x] +g(t)

for all x € RN and a.e. t € [0, T], Tang [2] proved the existence of solutions for problem
(1.2) under the condition

T
lim ||~ / F(t,x)dt = +00
0

|x|—+00

or

|%|—+00

T
lim |x|’2"‘/ F(t,x)dt = —o0,
0

which generalizes Mawhin-Willem’s results.
For I; # 0, problem (1.1) gives less results (see [14—16]). In [14], Zhou and Li extended
the results of [2] to impulsive problem (1.1); they proved the following theorems.

Theorem A [14] Assume that (A) and the following conditions are satisfied:
(h1) There exist f,g € L}(0, T;R*) and « € [0,1) such that

|VE(t,2)| <f@)x" +g(0)
forallx e R" and a.e. t €[0,T].
(h2) 1imygys o0 |27 [ F(t,%) dt = +00.
(h3) Foranyi=1,2,...,N;j=12,...,p,
t]ij(t) >0, VteR

Then problem (1.1) has at least one weak solution.

Theorem B [14] Suppose that (A) and the condition (hl) of Theorem A hold. Assume that:
(hd) Timyy s yoo |12 [, F(t,5) dt = —00.
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(h5) Foranyi=1,2,...,N;j=1,2,...,p,
tlj(t) <0, VteR
(h6) There exist a;, by > 0 and B; € (0,1) such that
;)| < ay +bylt|Pi, VteR,i=12,...,N;j=12,...,p.
Then problem (1.1) has at least one weak solution.

Let

F(t,x) = f(t)|x]"* + C(x) — %|x|2 + (h(2),x), (1.3)

where C(x) is convex in RN (e.g, C(x) = 5(ja'* + [&[* + -+ + [xN[?)), & < 47%2,]" €
L'[0, T] satisfying fOTf(t) dt>0 (eg, f(t) =3 —1),0<a <1, h e N0, T;RY) and x =
(x,x2,...,xN) € RN, It is easy to see that F(t,x) satisfies the condition (h2) but does not
satisfy the condition (hl). The above example shows that it is valuable to further improve
Theorem A.

Let
F(t,x) = f(t)|x]"* + C(x) — %|x|2 + (h(2), %), (1.4)

where C(x) satisfies that the gradient VC(x) is Lipschitz continuous and monotone in RN
(g, C(x) = 5(Ix' + &2 + -+ + [xV]?), 0 < A < %,f e L'[0, T] satisfies fon(t)dt >0
(eg,f(t) =L -1),0<a <1, he L0, T;RY) and x = (", %%,..., ") € RN. It is easy to see
that F(¢,x) satisfies the condition (h4) but does not satisfy the condition (hl). The above
example shows that it is valuable to further improve Theorem B.

In this paper, we further study the existence of solutions for impulsive problem (1.1). Our
main results are the following theorems.

Theorem 1.1 Suppose that F(t,x) = H(t,x) + G(x) satisfies assumption (A) and the follow-
ing conditions hold:
(H1) There exist f,g € L (0, T; R*) and « € [0,1) such that

|VH(t,x)| <f(0)]x]* +g(2) (1.5)

forallx € RN and a.e.t € [0,T].
(H2) There exists a positive number X\ < ‘LTLZZ such that

(VG) - VG(),x—y) = -Alx —yI? (L6)

forall x,y € R".
(H3)

T
lim |x|’2”‘/ F(t,x)dt = +o0. (1.7)
0

|x|]— +00
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(H4) Foranyi=1,2,...,N;j=12,...,p,
tly(t) >0, VteR. (1.8)
Then impulsive problem (1.1) has at least one weak solution.

Remark 1.1 Theorem 1.1 generalizes Theorem A, which is a special case of our Theo-
rem 1.1 corresponding to G(x) = 0.

Example 1.1 Let N =3, p =1. Consider the following impulsive problem:

i(t) = VF(t,u(t)), a.e.te[0,T],
u(0) —u(T) = u(0) —u(T) = 0,
A (n) = (W' (t)), i=1,2,3,

where
F(t,x) = (% - t) lx|2 — A cosxl + (h(2),x),
hel'(0,T5R%),  Iyt)=t5 (i=1,2,3).
Take
G(x) = -Acosx', x=(x',2%4%) € R?,

which is bounded and
2T
H(t’x) = (? - t) |x|% + (h(t);x);

o= %,f(t) = %(% —t), g(t) = |h(¢)|. Then all the conditions of Theorem 1.1 are satisfied.
According to Theorem 1.1, the above problem has at least one weak solution. However,
F does not satisfy the condition (hl) in Theorem A. Therefore, our result improves and

generalizes the Theorem A.

Theorem 1.2 Suppose that F(t,x) = H(t,x) + G(x) satisfies assumption (A) and the condi-
tion (H1) of Theorem 1.1. Furthermore, assume that
(H5) There exist 0 <A < 4TL22, B > 0 such that

|VGx) - VG()| <Alx-y|+B (1.9)

forallx € R".
(He)

T
lim ||~ / F(t,x)dt = —oo. (1.10)
0

|x|—+00
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(H7) Foranyi=1,2,...,N;j=12,...,p,

tlj(t) <0, VteR (1.11)
(H8) There exist a;j, by > 0 and i € (0,1) such that

|I;(0)| < ay + bylt|*Pi (1.12)

foreveryteR,i=12,...,N;j=12,...,p.
Then impulsive problem (1.1) has at least one weak solution.

Remark 1.2 Theorem 1.2 generalizes Theorem B, which is a special case of our Theo-

rem 1.2 corresponding to G(x) = 0.
Example 1.2 Let N =3, p = 1. Consider the following impulsive problem:
it(t) = VF(t,u(t)), ae.te[0,T],

u(0) —u(T) =u(0) —u(T) = 0,
Ai'(t) =In(W' (1)), i=1,2,3,

where

F(t,x) = (g - t> |5 — %lel2 + (h(t),x),

he 0, T;R?),  In(t)=—-t5 (i=1,2,3).
Take
Ao 1.2 .3 3
G(x)=—§|x1| ;o x=(xa%2%) e R,
which is bounded from above, and
T
H(th) = (E - t) |x|% + (h(t)¢x)1

a=1,7(t)=2(£-1),g(t) = |h(0)],an = by =1, B = & (i =1,2,3). Then all the conditions of
Theorem 1.2 are satisfied. According to Theorem 1.2, the above problem has at least one
weak solution. However, F does not satisfy the condition (h4) in Theorem B. Therefore,

our result improves and generalizes Theorem B.

Theorem 1.3 Suppose that F(t,x) = H(t,x) + G(x) and 1;(t) satisfy the assumptions (A),
(H1), (H2), (H7) and (H8). Furthermore, assume that
(H9)

lim |x|2*F(t,x) = —oc0 (1.13)

|x|—+00

uniformly for all t € [0, T].
Then impulsive problem (1.1) has at least one weak solution.

Page 5 of 17
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Example 1.3 Let N =3, p = 1. Consider the following impulsive problem:

i(t) = VF(t,u(t)), ae.tel0,T],
u(0) —u(T) =u(0) —u(T) =0,
A () = (W' (t), i=1,2,3,

where

e M2 a . 4r*
F(t,x) = —|x| _§|xl|’ Ii(t) = —t3 (1:1,2,3),0<a<1,0<A<F.

Take

A
H(t,x) = —|x|"*%, G(x) = —§|x1|2, x= (xl,xZ,xB) €R3.

Then all the conditions of Theorem 1.3 are satisfied. According to Theorem 1.3, the above
problem has at least one weak solution. However, F(t,x) is neither superquadratic in X
nor subquadratic in X.

2 Preliminaries
Let H} = {u: [0,T] — RN : u is absolutely continuous, #(0) = #(T) and & € L*(0, T;RN)}
with the inner product

T

T
(u,v) = / (u(t), V(t)) dt + / (zl(t), f/(t)) dt, Yu,ve H%w,
0 0

inducing the norm

T ) T ) 3
||u||:(/ o e+ [t dt) . VueH.
0 0

The corresponding functional ¢ on HY. given by

1 LI T PN dy)
) =2 /O |iv(e)|” dt + /O F(t,u(t))dt+ Yy > /0 I(t)dt (21)

j=1 i=1

is continuously differentiable and weakly lower semi-continuous on H}. For the sake of

convenience, we denote
d(u) = ¢1(u) + P2 (us),
where
1 /7 5 T
¢>1(u):—/ |in(t)| dt+/ F(t,u()) dt
2 Jo 0

and

PN uy)
AOEDSDS /0 I;(0) dt.

j=1 =1

Page 6 of 17
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For any u,v € Hy., we have

(¢’ ), )=f (iu(t), v(t)) dt+ZZL, i(t))v'()

j=1 i=1

T
+ f (VE(t,u(0), v(2)) dt. (2.2)
0

Definition 2.1 We say that a function u € H}. is a weak solution of (1.1) if the identity

T
f (iu(t), (1)) dt+ZZL, N)V(E) + f (VE(t,u(t)),v(t)) dt = 0
0 0

j=1 i=1
holds for any v € Hy..

It is well known that the solutions of impulsive problem (1.1) correspond to the critical

point of ¢.

Definition 2.2 [1] Let X be a Banach space, ¢ € C}(X,R) and c € R.
(1) ¢ issaid to satisfy the (PS).-condition on X if the existence of a sequence {x,} € X
such that ¢(x,) — ¢ and ¢'(x,,) — 0 as n — oo implies that c is a critical value of ¢.
(2) ¢ is said to satisfy the P.S. condition on X if any sequence {x,} € X for which ¢(x,)
is bounded and ¢'(x,) — 0 as n — 0o possesses a convergent subsequence in X.

Remark 2.1 It is clear that the P.S. condition implies the (PS).-condition for each ¢ € R.
Lemma 2.1 [1] If ¢ is weakly lower semi-continuous on a reflexive Banach space X (i.e.,
if ux — u, then liminfy_, o ¢(ur) > ¢(u)) and has a bounded minimizing sequence, then ¢

has a minimum on X.

Remark 2.2 The existence of a bounded minimizing sequence will be in particular en-

sured when ¢ is coercive, i.e., such that
o(u) — +o00 if ||ul| — +oo.

Lemma 2.2 [1] Let X be a Banach space and let ¢ € C*(X,R). Assume that X splits into a
direct sum of closed subspaces X = X~ @ X* with dim X~ < oo and

s%p¢<i)(11f¢>,
where

S = {u e X :|lul =R}.
Let

Br={ueX :|lull <R}, M={heC(BgX):hls)=sif s€Bg}
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and

¢ = inf max ¢ (h(s)).

heM seBp
Then if ¢ satisfies the (PS).-condition, c is a critical value of ¢.

Lemma 2.3 [1] If the sequence {u;} converges weakly to u in H, then {ui} converges uni-
formly to u on [0, T].

Lemma 2.4 [1] Ifu € H} and [, u(t)dt =0, then

T 2 T2 T 9
/ |u(t)| dt < —2/ |it(t)| dt  (Wirtinger’s inequality)
0 4m* Jo
and

T

2
<
Il o < D)

‘/0T|1}t(t)|2dt (Sobolev’s inequality).
Lemma 2.5 There exists C, > 0 such that ifu € H L then
lulloo < Cillull.
Moreover, iffoT u(t)dt = 0, then
lulloe < Cillieliz25

T 1
where |[ulloo = maxeqo,r) (@) and llull2 = (fy 1u(@)? dt)?.

3 Proof of main results
For u € Hy, let it = L [ u(t) dt and iu(t) = u(t) - @

Proof of Theorem 1.1 1t follows from (H1) and Sobolev’s inequality that

T
/ [H(tu(®)) - H(t, )] dt’
0

T 1
/ f (VH(t,it+sﬁ(t)),ﬁ(t))dsdt‘
0 0
T 1 T 1
5/0 /0f(t)|ﬁ+sﬁ(t)|°‘|ﬁ(t)|dsdt+/0 /Og(t)|iz(t)|dsdt
T T
5/ 21 (6)(12)* + |ﬁ(t)|“)|£¢(t)|dt+/ g(®)|a(e)| dt
0 0

T T
<2(jal" + naugo)naum/o F)de+ ||»7||m/0 a0 dt

34 -AT?) ., ax’T T 2
< — PR —— o t)dt
S =7 ll2ll5 + 3(4712—AT2)|M| (/0 f@®
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T T
et [ f@de+ il / a(t)dt
0 0
a+l

4 2—)\.T2 T T 5
5”72/ |z'4(t)|2dt+C1|Zt|2°‘+C2(/ |it(t)|2dt)
16 0 0

r )
+c3</ |it(t)|2dt>
0

(3.1)

for all u € H}. and some positive constants C;, C; and Cs. By (H2) and Wirtinger’s inequal-

ity, we have

T
f [G(u) - G@)] 4 / / (VG (@ + siu(t)) - VG(@), it)) ds dt
0

= / / ;(VG(ﬁ+Sﬁ(t))—VG(ﬁ)’Sﬁ(t))det
0 0

T 1
~ 2
> /0 /0 (0)sae) > ds de
T
- -5/ ()| de
>_—/ (o) de

for all u € HY..
From (H4), we obtain

da(u) =0

for all u € H}.. Therefore we have

T T T
P(u) = %/0 }it(t)|2dt+/0 [F(t u(t)) - dt+/0 F(t,u)dt + ¢ ()
IR PN r T
- 5/0 |in(t)| dt+/0 [H (2 u() - dt+/0 G(@)] dt
T
+/0 F(t,u)dt + ¢ (u)
1 (7. r ) T )
=5 fo |ine)|” dt + /0 [H(t,u(0)) - H(t, w)] dt + /0 [G(u(®)) - G(@)] dt
T
+/0 F(t,u)dt
1 T . 5 472 - \T? T ) 5 o
> 5‘/0 iu(t)| dt—mT/(; |M(t)| dt — G|

T. 2 El T- 2 :
_c2</0 )| dt> _cg(/o )| dt) _—/ o) de

T
+/ F(t,u)dt
0

(3.2)
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4 2—)\T2 T T
= niz/ ()| it + Iﬁlza(lﬁl‘z“/ F(t,it)dt—Cl)
l6m 0 o

e E L :
—c2< /0 |in(t) | dt) —C3< /0 |in(t)| dt) (3.3)

for all u € Hy.. As ||| — oo if and only if (|u|* + ||it(t)||i2)% — 00, (3.3) and (H3) imply
that

¢(u) - +o0  as |lul| — oc.

By Lemma 2.1 and Remark 2.1, ¢ has a minimum point on HIT, which is a critical point

of ¢. Therefore, we complete the proof of Theorem 1.1. d

Lemma 3.1 Assume that the conditions of Theorem 1.2 hold. Then ¢ satisfies the P.S. con-
dition.

Proof Let {¢(u,)} be bounded and ¢’(u,) — 0 as n — co. From (H1) and Lemma 2.4, we
have

/ T(VH (& un(0)), i1n(0)) dt’
0

T
5/0 |VH (2, un(t))||a(t)| dt
T T
iy + 1(2) | |4 (2)] d i, (t)| d.
5/0 @)t + w(0)|* | (0)] t+f0 2()|it(0)| dt

T T
2(Jinl” + N |) i o f £ dt + oo f a0y dt
0 0

3(4m? - AT?)  _ 22T a 2
_27” il m (/ f(t)dt)

T T
2 [ e+ f g0)dt
0

471 - AT?
- 82

T s T 1
+c5</ |itn(t)|2dt> +c6(/ |it,,(t)|2dt> (3.4)
0 0

for all large n and some positive constants C4, C5 and Ce. It follows from (H5) and
Lemma 2.4 that

/ A t)| dt + Calit,|**

/OT(VG(”n(t))’ﬁn(t)) dt‘ -

T
[ (56(0) - V6@, 0) dt‘
0
T
< / VG (1n(8)) - VGlii)| || di
0

T
< / (Alun(t) = 1| + B) |1 (2)| dt
0
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T T
_ ~ 2 ~
= A/o |7, (2)| dt+B/0 |ita(2)| At

r ~ 2 T ~ 2 %
§A/0 |it,(2)] dt+Bﬁ</o |2, (2)] dt>

BTJ_ 2
< 2/ |ita (@[ dt + (/0 |un(t)|2dt) . (35)

By (3.4), (3.5), (H8) and Young’s inequality, we have

.|l > <¢/(un)r Ijln)

T ) T p N , ’
= /0 |it,(8)|” dt + /0 (VE(t,un(t)), it(8)) dt + Y Y " I (1 (0)) it (8)

j=1 =1

T T T
/ i 0) 2t + / (VH (b, un(0)), in(0) it + / (VG (10n(0)), (1)) dt
0 0 0

y» N ) )
+ Z 215,(%(:))@;@)
j=1 i=1

— AT?
8712

BTVT T ;3 2N )
O T =

j=1 i=1

a+l

T
/ Jitn (1) dt — Cality > - 5( !un(t)lzdt> 2
0

| \/

aﬂu)

i,(1)]

a+l

T 2

%/ it (0)” it = Ca ity ~ C (/ Ll dt)
T

<C6+B f)(/| ok dt> - apNit o

y N
=53 2(1al + Natalln”) il
j=1 i=1
2472 T T il
%[ |L't,,(t)|2dt—C4|ﬁ,,|2“—C5(/ |itn(t)|2dt> '
0 0
p 1 - 1
_(c6+BTﬁ)(/ \u,,(t)\zdt>2 —apN\/z(/ |i¢n(t)|2dt)2
o 12\,

—bZZﬂulunl —%ZZ ﬂ"n 5

v

v

j=1 i=1 j=1 i=1
—ZbZZn e’
j=1 i=1
A2 T al
zu/ it (8)|* dt - Ca i - c5<f |z‘4n(t)|2dt> ’
82

(e 2 ([t dt> _apN\f( ol )
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1

p N p N T T ) =
—bZZﬂulftnI”"bzz(z‘ﬁ”)<ﬁfo | (2)) dt)

j=1 i=1 j=1 i=1
aﬂﬁ+1

p N T 5
JbZZ(%/O |i¢n(t)|2dt) : (3.6)

j=1 =1

where a = max{a;,i = 1,2,...,N;j = 1,2,...,p}, b = max{b;;,i = 1,2,...,N;j = 1,2,...,p}.

From Wirtinger’s inequality, we obtain

T . . T2 T )
/o |un<t)|2dtsnun||25(1+m) /0 it (0)* . (3.7)

The inequalities (3.6) and (3.7) imply that
1

T 2
Gyl |* = (/ !an(t)|2dt) -G (3.8)
0

for all large n and some positive constants C; and Cg. It follows from (H5), Cauchy-

Schwarz’s inequality and Wirtinger’s inequality that

T T 1
/ [G(un(t))—G(Zz,,)]dt‘z / f (VG (@t + siint)) — VGlitn), (1)) dsdlt
0 0 0

T pl
S/O [) (AS‘L{,,(L‘)‘ +B)’Mn(t)’dsdt
A T T
= EA |Mn(t)|2dt+BA }Mn(t”dt
AT T :
< 5/0 |un(t)|2dt+Bﬁ</0 |Mn(t)\2dt>

T T %
<AT2/ Iitn(t)lzdt+BTﬁ(f |it,,(t)|2dt) . (3.9)
0 0

~ 82 2w
Like in the proof of Theorem 1.1, we get

4% — AT?
1672

T T
/ [H (2, un(t)) - H(t, i) ] dt‘ < f |ia ()| dt + C >
0 0

a+l

T 2
+c2<f0 |it,,(t)|2dt)
T 3
+c3< / yu,,(t)]zdt) . (3.10)
0

From (H7), we have

ha(u) <0
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for all u € H}.. Since {¢(u,)} is bounded, from (3.9) and (3.10), there exists a constant C
such that

C < ¢(un)

T
0

T T
%/O |L'tn(t)|2dt+/ [F(t,un(t))—F(t,Ztn)]dt+/o F(t, i) dt + ¢o(u,)

A

IR r )

<5 /0 ity e + /0 [H (6, 1n(0) — H(t. )]
T T

+/0 [G(u,,(t))—G(un)] dt+/0 F(t,ii,,) dt

12 2 ATZ T T T+
5”16—+2/ ’L‘t,,(t)’zdt+C1|it,,|2“+C2</ yun(t)yzdt)
T 0 0

T 3 1 T
+cg(f |itn(t)|2dt> +BTﬁ(|un(t)|2dt)2+/ E(t, i) dt
0 0

2

T
< |an|2”(|ﬁn|—2“ / E(t,it,) dt + C0> (3.11)
0

for all large n and some constant Cy. By the above inequality and (H6), we know that
{|u,|} is bounded. In fact, if not, without loss of generality, we may assume that |u%,| — oo
as n — 00. Then, from (3.8) and the above inequality, we have

n—00

T
lim inf i, |~ / F(t,it,) dt > —o0,
0

which contradicts (H6). Hence {|u#,|} is bounded. Furthermore, {u,} is bounded from (3.7)
and (3.8). Hence, there exists a subsequence of u,, defined by u, such that

ut —u inH}.
By Lemma 2.3, we have
u;,—u inC[0,T].

On the other hand, we get
T 2
(aS/(uZ) - ¢ (u),u; - u) = / |z'4fl(t) - b't(t)| dt
0
T
+ f (VE(t,u(2)) — VE(t,u(0)), u(t) — u(t)) dt
0

V4 N
Y D [l @) - ()| (@) - @) (312)

j=1 i=1
It follows from the above equality, (A) and the continuity of I;; that
u—u inHj.

Thus, we conclude that ¢ satisfies the P.S. condition. O
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Now, we give the proof of our Theorem 1.2.

Proof of Theorem 1.2 Let W be the subspace of H}. given by
W ={u e Hylu=0}.
Then H}. = W @ RN. Firstly, we show that
o(u) —> +00 asue W, |u| - occ. (3.13)

In fact, for u € W, then u = 0, by the proof of Theorem 1.1, we have
T AT2 Tﬂ
/ [H(tu(t)) - H(t,0)] dt‘ et / |u(t)| dt + C, </ |u(t)| dt)
0

T i
+c3< / |u(t){2dt> . (3.14)
0

Like in the proof of Lemma 3.1, we obtain

1
(VG(su) - VG(0),u) ds dt‘

T
/ [G(u(t))—G(O)]dt’ =
0 0 0
A [T T
55/0 |u(t)|2dt+B/ |u(t)| dt
f it (2)|* it + (/ |2 (8] dt) . (315)

By (H8) and Lemma 2.5, we find

|2 ()| =

Z Z / I;(t) dt

j=1 i=1

P N euy)
<> > / (@ + bylt|P7) dt
=1 i=1 Y0

afii+l
<apN||u||m+bZZn llse”"

j=1 i=1

aﬂy+1

T 2 » N T 2
< apNC, @) dt) +b | i) ae (3.16)
J, tiw |

j=1 =1

for all u € W. By (3.14), (3.15) and (3.16), we have

1 T . 2 T T
o) 5/0 |ia(t)] dt+/0 [F(t,u(t))—F(t,O)]dt+/o F(t,0) dt + ¢o(u)

1 T . T T
5/0 |u(t)|2dt+/0 [H(t,u(t))—H(t,O)]dt+/0 [G(u(r)) - G(0)] dt
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T
+/ F(t,0)dt + ¢y (u)
0
am? —AT?\ [T, “+
r } BT
_c3</ |it(t)|2dt) - f(/ (8] dt)
0 2
p , % » N zxﬁgﬂ
—apNC*</ |iu(t)| dt) wZZ( / |a(@)|” dt) dt
0 j=1 i=1
T
+/ F(t,0)dt (3.17)
0
forallu e W.
By Lemma 2.4, we have |u| — oo < ||it];2 — oo on W. Hence (3.13) follows from

(3.17).
On the other hand, by (H7), we get

¢$a(u) <0 (3.18)

for all u € Hy.. Therefore, from (3.18) and (H6), we obtain

T T
o (u) :/O F(t,u)dt + ¢po(u) < |Lt|2"‘<|u|_2‘)‘/0 F(t, u)dt) — —00

as |u| — oo in RN, It follows from Lemma 2.2 and Lemma 3.1 that problem (1.1) has at

least one weak solution. O

Proof of Theorem 1.3 First we prove that ¢ satisfies the P.S. condition. Suppose that U/, is
a P.S. sequence for ¢, that is, ¢'(u,) — 0 as n — oo and ¢(u,,) is bounded. In a way similar
to the proof of Theorem 1.1, we have

T a2
/(VH(t,u,,(t)),iz,,(t))dt‘_%/ i (0| dit + Cal
0

T ol T 3
+C2<f ]zzn(t)]zdt) +C3</ \it,,(t)\zdt)
0 0

and

T . )"TZ T . 9
/o (VG(ua(0), 20 dt =~ /0 i (0) [ dt
for all u € H}.. Hence we have
.|l > <¢/(un)r ﬁn)

T 5 T r N , ,
= /0 |, (8| dt + /0 (VE(t,un(t)), itn(8)) dt + Y Y " I (1 (0)) it (8)

j=1 =1
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T T
L/MNW&+/(W¢¢N»%th
0 0

r p N ’ ’
+ [ (VG0 o) e+ 3o 31, 0)0

j=1 i=1

a+l

3(4n2-AT? [T, . T, E

= T/ {Mn(t)}zdt—cﬂuﬂz —Cz(/ |”n(t)|2dt>
0 0 0

T ) % T T . %
_Cg(/o |un(t)|2dt) —apN\/g</(; |u,,(t)|2dt)

p N p N T (T ) ﬁ
—bZZﬂgwm—bZZe—ﬁ,j)(ﬁfo it (0 dt)

j=1 =1 j=1 =1
» N T apjj+1
-21922(1[ |it,,(t)|2dt>
j=1 =1 12 Jo

From (3.7) and the above inequalities, we obtain

T 3
cg|an|“z( / \un(t)\zdt> ~Cio (3.19)
0

for some positive constants Cy and Cyg.
By (H9) there exists M > 0 such that

2 F(t%) < 0

for all |x| > M and ¢ € [0, T'], which implies that
F(t,x) <0

for all |x| > M and ¢ € [0, T]. It follows from assumption (A) that
F(t,x) < aob(t)

for all |x|] <M and ¢ € [0, T], where ag = maxo<s<as a(s).
Lety (t) = aob(t) € L}(0, T), then

F(t,x) < y(t)

forallx € RN and ¢ € [0, T].
By the boundedness of ¢(u,), (H7) and (3.19), there exists a constant Cy; such that

1 T 9 T
Ci = blan) = 5 /0 i 0) [t + /0 (b, un(0)) dt + ()

T T T
f% f i (®)]” it + / F(t,un(8)) dt < (Colitn|* + Cio)” + / y(0)dt,
0 0 o
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which implies that |i, | is bounded. Like in the proof of Lemma 3.1, we know that ¢ satisfies
the P.S. condition.

Furthermore, we can prove Theorem 1.3 using the same way as in the proof of Theo-
rem 1.2. Here, we omit it. O
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