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Abstract. In this paper, we consider the existence of positive solutions to a singular
semipositone boundary value problem of nonlinear fractional differential equations. By
applying the fixed point index theorem, some new results for the existence of positive solutions
are obtained. In addition, an example is presented to demonstrate the application of our main
results.
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1. Introduction

In this paper, we discuss the following singular semipositone system of nonlinear fractional
differential equations:

DE u(t) + ft,u@),v@) =0, 0<1<]1,

Dg v(®) + g(t,u(®),v(®) =0, 0<r<1, (1

u@)=u(l)=u"0)=u'(1) =0v0) =0v(l) =0v'(0)=0'(1) =0,

where 3 < a < 4 is a real number, Dg .
and f,g : (0,1) X [0,4+00) X [0, +00) = (—00, +00) are given continuous functions. f, g may

be singular at = 0 and/or t = 1 and may take negative values. By using the fixed point index

is the standard Riemann-Liouville fractional derivative,

theorem, some new results for the existence of positive solutions are established.

Singular boundary value problems arise from many fields in physics, biology, chemistry and
economics, and play a very important role in both theoretical development and application.
Recently, some work has been done to study the existence and multiplicity of solutions or
positive solutions of nonlinear singular semipositone boundary value problems by the use of
techniques of nonlinear analysis such as Leray-Schauder theory, Krasnoselskii’s fixed point
theorem, etc [1, 3,4, 7,9, 11, 12].
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In [7], by using the fixed point index theorem, Liu, Zhang and Wu have studied the existence
of positive solutions for a nonlinear singular semipositone system:

—x"(t) = f(t, (), x(1)) + p(1), 1€ (0, 1),
—y"'(1) = g(t, x(@), y(1)) + q(), 1 € (0, 1),
x(0) = x(1) =0,

¥(0) = ¥(1) =0,

where f,g : (0,1) X [0, +00) X [0, +0) — [0, +00) are continuous and may be singular at t = 0
and/ort =1,pandq : (0,1) - (—o0, 4+00) are Lebesgue integrable and may have finitely many
singularities in [0, 1].

In [12], Zhu, Liu and Wu have discussed the existence of positive solutions for the fourth-

order singular semipositone system:
—xW@) = ft, x(@0), y(@), x" (1), y" (1)), t€(0,1),
—y () = g(t, x(@), y(0), x" (1), y" (1), 1€ (0, 1),

x(0) = x(1) = x"(t) = y" (1) = 0,

¥(0) = y(1) =x"(@1) = y"(1) =0,

where f, g : (0,1)X[0, +00) X [0, +00) X (—0, 0] X (—00,0] = (—00, +00) are given continuous
functions. f, g may be singular at = 0 and/or t = 1 and may take negative values.
In [6], Henderson and Luca have considered the existence of positive solutions for the system

of nonlinear fractional differential equations:
Dy u(t) + Af@,u(m),v(@) =0, 1€(0,1),
D), v(t) + pg(tu(t), v(®) =0, 1€ (0,1),

with the coupled integral boundary conditions
1
w0 =u'(0)=--=u"20)=0, w'(l)= / v(s) dH(s),
0

1
v(0) = 0'(0) = --- = 0" 2(0) = 0, v'(1) = / u(s) dK(s),
0

where «a € (n — 1,n],p € (m - 1,ml,n,m € N,n,m > 3, D8‘+, Dg+ denote the standard
Riemann-Liouville fractional derivatives, f, g are sign-changing continuous functions and may
be nonsingular or singular at t = 0 and/or ¢ = 1.

Motivated by the above work, we consider the existence of positive solutions for the system
of the fractional order singular semipositone boundary value problem (1).
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This paper is organized as follows. In Section 2, we present some basic definitions and
properties from the fractional calculus theory. In Section 3, based on the fixed point index
theorem, we prove existence theorem of the positive solutions for boundary value problem (1).
In section 4, an example is presented to illustrate the main results.

2. Preliminaries

In this section, we present here the necessary definitions and properties from fractional calculus
theory. These definitions and properties can be found in the recent literature [2, 5, 8, 10, 11, 13].

Definition 2.1 (see [2]). The Riemann-Liouville fractional integral of order & > 0 of a function
y . (0,400) — R is given by

Ig+y(t)=$ /0 (t—s5)ys)ds, >0,

provided the right-hand side is pointwise defined on (0, +o0).

Definition 2.2 (see [2, 8]). The Riemann-Liouville fractional derivative of order @ > 0 for a
function y : (0,+00) — R is given by

= (L) (e = — L (4 [
D0+Y(t)—(dt> (15, y)(z)—r(n_a)<dt) /0 R —— ds, t>0,

where n = [a] + 1, [a] denotes the integer part of the number «, provided that the right-hand

side is pointwise defined on (0, +00).

Lemma 2.1 (see [13]). Let « > 0. If we assume u € C(0,1) n L(0, 1), then the fractional
differential equation

D u®)=0
has solutions u(t) = Clz")‘_1 + Czto‘_2 +-+Ct"CieR,i=1,2,....,n, n=[a] + 1.

Lemma 2.2 (see [13]). Assume that u € C(0, 1) n L(0, 1) with a fractional derivative of order
a(a > 0) that belongs to C(0,1) n L(0, 1), then

I8, DE u(t) = u(t) + Ct*" + Cy1* ™% 4 - + C1*™",

forsome C, eR,i=1,2,...,n, n=[a] + 1.

In the following, we present Green’s function of the fractional differential equation boundary
value problem.

Lemma 2.3 (see [10]). Let y € C[0, 1] and 3 < a < 4, the unique solution of problem

DEu(®+yn =0, 0<t<1,
()
u(0) = u(1) = u'(0) = u'(1) = 0,
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1
u(t):/ G(t,s)y(s)ds,
0

where
a—1 =2 a-2
(=) +A =) s =D+ @=DU=0s] (o
I'(a)
G(t.s) = . | 3)
AT s — D+ (@ =20 - 0s] 0<r<s<l
I'(a)

Here G(1, 5) is called the Green’s function of boundary value problem (2).

Lemma 2.4 (see [10, 11]). The function G(t, s) defined by (4) possesses the following proper-
ties:

(1) G(t,s) >0, fort,s € (0, 1);

2) Gt,s) =G(1 —s,1—1), fort,s € (0,1);

(3) 1°72(1 = 1)*q(s) < G(1,5) < (a — 1)q(s), for 1,5 € (0,1);

@) 1"7(1 = 1%q(s) < G(t,5) < ((a = (@ = DM(@)* (1 — 1), for t,s € (0,1),
where q(s) = (@ — 2/T(@)s*(1 — )",
Lemma 2.5. The function q(1 — t) has the property:

2>=4m—m*1

ma 1-1= (—
te(O,)f) a( V=4 a IN'a)a®

Proof. From the Lemma 2.4, we can easy get g(1 —¢) = I‘f(;j)t“_z(l —1)%. Let F(t) = t°72(1 —1)%,

since F'(f) = (1 — )13 [—at + (a — 2)], for t € (0, 1), let F'(¢) = 0, we get ty = ‘%2
Since 3 < @ < 4, we can know 0 < 7, < 1. So, the function F{(¢) achieve the maximum when
r= %2

Therefore

_ Ao —2 a=2
maxF(t)zF(a 2>= (a ) s
t€(0,1) a a%
thus,

max g(l —1¢) =
te(O,l)q( )=4q

_ Aya-l
()=

For convenience, throughout the rest of the paper, we make the following assumptions:
H)) f.g € C(0,1) x [0, +00) X [0, 400),(—00,+00)) and there exist functions p;,a;,k €
L' ((0, 1), [0, +00)) N C((0, 1), [0, +00)) and h € C([0, +0) X [0, +c0), [0, +00)) such that

a;(Dh(x,y) < f(t,x,y) + p, (1) < k(Dh(x, y),

a)(Dh(x, y) < g(t, x, ) + po(t) < k(Dh(x, y),
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where a;(t) > c;k(t)ae.t € (0,1), O0<¢; <1, i=1,2, V(,x,y) € (0,1)X[0, +00)X [0, +00).
(H,) There exists (a, b) C [0, 1] such that

n f(t’x’y)-l_pl(t) = +oo0

Iim mi , or
X,y—>+0o0 t€la,b] y
t,x,y)+ t
lim min w =400
X, y—>+0o0 t€la,b] y
(H;) Assume that
1
1" a
/ k(s)ds < (@a’r a—
0 Ya—Da=-2)""'M
where

x,y€[0,r

2
r=max{<a_1) (a—2)r[’i= 1,2.}.
¢l (a)

1 1
M = maX]/’l(x, y)’ re= / p](s) dS, r, = / pZ(s) dS,
0 0

]
Lemma 2.6. For functions p,(t),i = 1,2 in (H,), then the boundary value problem
Dy u(®) +p(1)=0, 0<t<I,
4)
u)=u()=u'0)=u'(1) =0,
has a unique solution w;(t) = /01 G(t, s)p;(s) ds with
1
w,(1) < (@ - Dg(1 = 1) / p(s)ds, € 0,11, i=1,2. )
0

Proof. By Lemma 2.3 and Lemma 2.4, we have w,(t) = fol G(1, s)p;(s) ds is the unique solution
of (3) and

1 1
w;(t) = / G(t, s)p;(s)ds < (a— 1)g(1 — t)/ pi(s)ds, i=1,2.
0 0

For any x € C[0, 1], we define a function [x(-)]* : [0, 1] = [0, +00) by

x(®), x(1) =20,
[x()]" =
0, x(1) < 0.
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In order to overcome the difficulty associated with semipositone, we consider the following
approximately singular nonlinear differential system:

DS u(®) + f (1, [u@®) — w, (O], [v@) — w,()]*) + py() =0, 0<1<]1,

DS v(0) + g (¢, [u(®) — w, (O], [0(1) — wy,(D]*) + p,(1) =0, 0<t<1, ©

u@)=u(l)=u"(0)=u'(1) =0v0) =0v(l) =0v'(0)=0'(1) =0,

where w;(t) (i = 1,2) are defined in Lemma 2.6.

It is well-known that the problem (6) can be written equivalently as the following nonlinear
system of integral equations

1
u(t) = / G(t,s) [f (5, [u(s) — w (], [v(s) — wy(H)]*) + py()] ds, 0<r <1,
0
1 (7
o(r) = / G(t,5) [g (5. [u(s) — wi()]*, [(s) = wy(H]*) + p,()] ds, 0<r <1
0

We consider the Banach space X = C[0, 1] with the norm ||u|| = max |u(t)|, and the Banach
<1<

space Y = X X X with the norm ||(u, v)|| = max {||u||, ||v]|}-
We define the cone PC Y by

¢ 1" 2(1 — 1)’ 1" 2(1 = 1)?

P= {(u, v) € Ylu(t) 2 a1 @, V)|, v(®) 2 I l(u, )|l .7 € [0, 1]} .

Define the operators T},7T, : Y — X and T : Y — Y as follows:
1
T, (u, 0)(1) = / G(t,5) [ (5.Tu(s) = wy (I, [0(s) = wr()T*) + p, (0] ds, 0<t<1,
0

1
Ty(u, 0)(0) = / G(t, ) [g (s, [u(s) = wy ()], [0(s) = w()I*) + py ()] ds, 0 <t <1,
0

and T(u,v) = (T1 (u, v), T,(u, v)) , (u, v) € Y. Thus, the solutions of our problem (6) are the fixed
points of the operator T'. O

Lemma 2.7 (see [5]). Let E be a real Banach space, P be a cone in E. Q be a bounded open
subset of E with 8 € Q,and T : QN P — P be a completely continuous operator, then the
following conclusions hold:

(1) Suppose that Tu # Au,Yu € 0Q N P,A > 1,theni(T,QN P, P) = 1.

(ii) Suppose that Tu £ u,Yu € 0Q N P, then i (T,QN P, P) = 0.
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3. Main Results and Proof

Lemma 3.1. T: P— P is a completely continuous operator.

Proof. Let (u,v) € P be an arbitrary element. From Lemma 2.4 and (H,), we can get

|7y, v)|| = &ltaSXl|Tl(u, V)@
< /Ol(a— Dg(s) [f (s, [u(s) = w,()I*, [v(s) = wy()]*) + p(1)] ds
< (@-1 /0 ko) ([u(s) = wi (I, [0(s) = wy(5)]*) ds,
|7, v)|| = max | T (u, v)(0)|
< /Ol(a— Da(s) [g (s, [u(s) = w (", [v(s) = wy($)]*) + py(1)] ds
< (e—-1) /0 | q($)k(s)h ([u(s) — w ()T, [v(s) = wy(s)]*) ds,

Hence, we obtain
1
I T(u, v)|| < (@ - 1)/ q(s) [k(s)h ([u(s) — w ()], [v(s) — wa(s)]*)] ds. ()
0

Applying (H,) and (8), we have

1
T, @, v)(1) 2 1°7(1 —t)z/ q(s) [f (s, [u(s) = wi ()T, [o(5) = wy()]*) + p;(0)] ds
0

1
> 17721 - 1) / a(s)a; ()h ([u(s) — wy ()], [V(s) — wy(s)]*) ds
0
1
> " (117 / a()k(s)h ([u(s) — w()1*, [v(s) — w,()]*) ds
0

e 1721 = 1)?
> L — [T, v).
a—1

In the similar manner, we deduce

eyt 2(1 — 1)?
Ty(u, v)(t) 2 ———— |[T(w, v)|| .
a—1
Thus T(u, v) € P, thatis T(P) C P.

According to the Arzela-Ascoli theorem, we can easily get that T : P — P is a completely
continuous operator. O

Theorem 3.1. If(H,)—(H;) hold, then the boundary value problem (1) has at least one positive
solution.
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Proof. Let P, = {(u,v) € P,||(u,v)|| < r}, we first prove T(u,v) # Au,v), for V(u,v) €
0P, A > 1, where the constant r is defined in (H;).

In fact, if not, there exist 4, > 1 and (u, v) € dP. such that 14(u, v) = T(u, v), then (u,v) =
%OT(u, v) and 0 < 1—10 < 1. Since

— t)2
1

e, 17 2(1 = 1)?
-

u() > —

Il @, )| = 1€ [0,1],

B

¢ 1*72(1

1" 2(1 = 1)?
-1

1" 2(1 — 1)?

@ vl = 2——

t € [0,1],

B

and

1
w (1) < (a — Dg(1 —t)/ pi(s)ds < (a — Dg(l = Dry,
0

1
w, (1) < (a — Dg(1 - l)/ pa(s)ds < (a — Dg(1 = 1),
0

for any ¢ € [0, 1], we get that

e 1" 2(1 —1)?

u®) —w, (1) = r—(a—Dg(1—-0r,
a—1
> [ﬂ—m— 1)r1] g1 -1 >0,
(a—1)(a—2)

e, 1" 2(1 = 1)?

a—1
:|

Hence by (u,v) = %T(u, v), we obtain that
0

\%

U(t) — w,(1) r—(a—Dg(l =1t)r,

e, I'(a)r

m_(a— 1)’”2] g(1=1) > 0.

1
u(t) = % / G(t,5) [/ (5,u(s) = 10,(5), 0(s) = wy(5)) + py(s)] ds
0JO

IA

1
/ G(1, )k(s)h (5,u(s) — w,(s), v(s) — w,(s)) ds
0

IA

1
(a— Dg(1 —1) /0 k(s)h (s, u(s) — w;(s), v(s) — wy(s)) ds

<

1
(a—1)g(1 — t)M/ k(s)ds.
0

Since (u,v) € dP., we know ||u|| = ror [|[v]| = r. If ||u|| = r, then from Lemma 2.5, we

1
{(a— 1)g(1 —t)M/ k(s)ds}
0

a—1 1
M / k(s)ds.
0

deduce

max

r = max u(r
@) t€[0,1]

t€(0,1]

4(ax— 1)(a—2)
IN'a)a

doi:10.11131/2017/101261

Page 8



Research in Applied Mathematics

Consequently

1 o
/ k(s)ds > T@ar ,
0 4a—=D(a=2)""'M

which is a contradiction to (H;). The proof will be similar when ||v|| = r. Therefore, applying
Lemma 2.7, we obtain i (T, P, P) =1.
On the other hand, choose a constant L. > 0 such that

(¢ —1Da”

L> R ©)
2¢,a%2(1 — b)*(a — 2)*7* [ q(s) ds
From (H,), there exists R, > r such that
[, x,y)+p (1) 2 Ly, Vi€labl.x,y>R,. (10)

Taking R > 2R, max { m,i = 1,2} . Obviously, R > 2R, > 2r, thus % < %
Let P = {(u,v) € P,||(u,v)|| < R}, we will show that T(u, v) £ (u, v), for V(u, v) € dPy.
In fact, otherwise, there exists (4, v) € dPg such that T(u, v) < (u, v). By proceeding as for

the proof to get (9) and (H;), we have, for any ¢ € [a, b],

t > u(t Dyg(1 > u(t al(@r 1
u(®) —w(t) > u(t) — (a— Dyg( —1)71_U()—m(I( )]
(t)_m > (t)—@ >l (t)
=u 3 r>u Rr_zu
a=201 _ 2 a=201 _ p)2
Zchlt (1-1 Zchla (1-b) >R, >0,
2 a—1 2 a—1
t H > Dg(1 = Hr, > v(t &l @r 11—t
v(t) — w, (1) > v(t) — (@ — Dg( —)Vz_U()—m61( —1)
= (t)_m > (t)—@ >l (t)
=v p— r>v Rr_2u
a=201 _ 2 a=201 _ B)2
> Lpal U= 1pad 7A=b7 g s
2 a—1 2 a—1

Therefore, we deduce

1
R>u(®) > T, 0)(t) = / G(t.5) [ (5, u(s) = wy ()T, [0(5) = wa()]) + py(1)] ds
0
b
> / G(t.5) [ (5.u(s) — w,(5). v(s) — wn(s)) + pr(1)] ds

b
> L / G(t, 5) (v(s) — wy(s)) ds

a—2 2 b
1-b
2 a—1 ;
c aa—2 1 _ b 2 b
> %LRLI)W‘Z(I - z)2/ q(s)ds, Vtel[0,1].
a— a
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Then from Lemma 2.5, we have

1 Czaa—Z(l _ b)2 b s 5
>-LR—— _
R > 2LR — i q(s)dstg% {r*2(1 =1}
a* 2 2 a—=2 b
1-5 -2
> 2LR ( J(@-2) q(s)ds.
(O.’ - l)aa a

Consequently, by (10) we obtain

a 2(1 b)Z(a _ 2)0!—2 b
R > 2LR q(s)ds > R.

(a—Da“

This is a contradiction. Thus from Lemma 2.7, we get i (T, Py, P) =0.
From the properties of the fixed point index, we have i (T, Pg \ P,, P) = —1. Therefore, T
has a fixed point (¢, vy) in Py \ P,, with ||(u0, UO)” > r. At the same time,

1@ 2 1=
up(1) — wy (1) Z a(— “(”0, Uo)“ —(a—=Dg(l = n)r,
cl'(a)r . 1 >0
[m—(a— )"1] q(l1 —1) >0,
a—2(1
vo(1) = wy(1) > T ||<u0, vp)|| = (@ = Dg(1 =1,

()
[m —(a- l)rz] g1 —1)>0.

Then, we known that (u,(?), vy(#)) is a solution of system (6) and w;(#)(i = 1, 2) are solutions
of system (3). Thus (uy(t)—w, (¢), vy (#)—w,(?)) is a positive solution of the singular semipositone

boundary value problem (1).

The proof of Theorem 3.1 is completed. U
Remark 3.1. The conclusion of Theorem 3.1 is valid if (H,) is replaced by
(H,)" There exists (a, b) C [0, 1] such that
t,x,y)+ t —
llm min M Z L’ or
Xx,y—+0o0 t€[a,b] X
LX) +p () —
lim min —g( X9+ n) >L,
Xx,y—+0 t€[a,b] X
where
— —Da®
L> @-Do .
2¢,a%2(1 — b)*(a — 2)*7* [ q(s) ds
Page 10
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4. Example

Now, we present an example to illustrate the main results

Example 4.1. Consider the following system of fractional differential equations

7 1
u(z)+it 5(|u(t)| + o) )_Et i=0, 0<t<l,
7 1
U(t)+—t < (lu®P + o)) - i “i=0, 0<t<]l, (1)
u@©)=u(l)=u'(0)=u'(1) = v(0) = v(1) ="' (0) =0’ (1) =0
In the system (11), a = % and
[t u,v) = —z =5 (Ju) P + o) )‘1_6’
1 L
g(t,u,v) = —t s (luP + lv®)?) = i
fort € [0,1],u,v > 0.
We deduce p;(1) = =175, py(t) = L3 k(1) = 175 a,(0) = i3, ¢ = Li= 1.2, hu,v) =

|u(@)]* + o@)]*.
Clearly, f, g satisfy conditions (H,) and (H,). Since

: 1 ! 1 : 1
ro= / pi(s)ds=—, r,= / py(s)ds = =, / k(s)ds = =.
0 0 3 0 4

14
_ (a=1)*@=2)r; . _ 5
We have r = max {W’ 1, 2} \/_ and consequently
a
ALl Nea”r ~ 171,

M_ ’
T Aa-D@-2)""'M

So

1
r
/ k(s)ds < (@a’r —.
0 4a-Da=-2)""M
It is thus clear that (H;) is satisfied. Hence it follows from Theorem 3.1 that system (11) has

at least one positive solution.
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