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Abstract
In this article, we study the existence and uniqueness of solutions for multi-strip
fractional q-integral boundary value problems of nonlinear fractional q-difference
equations. By using the Banach contraction principle, Krasnoselskii’s fixed point
theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder degree theory
some interesting results are obtained. Some examples are presented to illustrate the
results.
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1 Introduction
In this article, we investigate the following nonlinear fractional q-difference equation for
multi-strip fractional q-integral boundary condition:

⎧⎨
⎩Dα

qu(t) = f (t,u(t)), t ∈ (,T),

u() = , u(T) =
∑m

i= γi(I
βi
qi u)|ξiηi =

∑m
i= γi(I

βi
qi u(ξi) – Iβiqi u(ηi)),

(.)

where  < α ≤ ,  < q,qi < , βi > ,  ≤ ηi < ξi ≤ T , γi ∈ R for all i = , , . . . ,m are given
constants, Dα

q is the fractional q-derivative of Riemann-Liouville type of order α, Iβiqi is the
fractional qi-integral of order βi and f : [,T]×R →R is a continuous function.
q-Difference calculus or quantum calculus was initiated by Jackson []. Basic defini-

tions and properties of quantum calculus can be found in the book []. The fractional q-
difference calculus had its origin in the works by Al-Salam [] and Agarwal []. For some
recent work on the subject, we refer to [–] and the references cited therein.
Strip conditions appear in the mathematical modeling of certain real world problems.

Formotivation, discussion onmulti-strip boundary conditions, examples and a consistent
bibliography on these problems, we refer to the papers [–] and the references therein.
As it is pointed out in [], the boundary condition in (.) can be interpreted in the sense
that a controller at the right-end of the considered interval is influenced by a discrete
distribution of finite many nonintersecting strips of arbitrary length expressed in terms of
fractional integral boundary conditions.
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The significance of investigating problem (.) is that themulti-strip fractional q-integral
boundary condition is very general and includes many conditions as special cases. In par-
ticular, if βi =  for i = , , . . . ,m, then the condition of (.) is reduced to the multi-strip
q-integral condition as follows:

u() = , u(T) = γ

∫ ξ

η

u(s)dqs + γ

∫ ξ

η

u(s)dqs + · · · + γm

∫ ξm

ηm

u(s)dqms.

Moreover, we emphasize that we have different quantum numbers and as far as we know
this is new in the literature.
The rest of the paper is organized as follows. In Section we briefly give some basic nota-

tions, definitions and lemmas. In Section  we collect some auxiliary results needed in the
proofs of our main results. Section  contains the main results concerning existence and
uniqueness results for problem (.), which are shown by applying the Banach contraction
principle, Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear alternative and
Leray-Schauder degree theory. Some examples are presented in Section  to illustrate the
results.

2 Preliminaries
To make this paper self-contained, below we recall some known facts on fractional q-
calculus. The presentation here can be found in, for example, [, ].
For q ∈ (, ), define

[a]q =
 – qa

 – q
, a ∈R. (.)

The q-analogue of the power function (a – b)k with k ∈N := {, , , . . .} is

(a – b)() = , (a – b)(k) =
k–∏
i=

(
a – bqi

)
, k ∈N,a,b ∈ R. (.)

More generally, if γ ∈R, then

(a – b)(γ ) = aγ

∞∏
i=

 – (b/a)qi

 – (b/a)qγ+i , a �= . (.)

Note if b = , then a(γ ) = aγ . We also use the notation (γ ) =  for γ > . The q-gamma
function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R \ {,–,–, . . .}. (.)

Obviously, �q(x + ) = [x]q�q(x).
The q-derivative of a function h is defined by

(Dqh)(x) =
h(x) – h(qx)
( – q)x

for x �=  and (Dqh)() = lim
x→

(Dqh)(x), (.)
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and q-derivatives of higher order are given by

(
D

qh
)
(x) = h(x) and

(
Dk

qh
)
(x) =Dq

(
Dk–

q h
)
(x), k ∈N. (.)

The q-integral of a function h defined on the interval [,b] is given by

(Iqh)(x) =
∫ x


h(s)dqs = x( – q)

∞∑
i=

h
(
xqi

)
qi, x ∈ [,b]. (.)

If a ∈ [,b] and h is defined in the interval [,b], then its integral from a to b is defined by

∫ b

a
h(s)dqs =

∫ b


h(s)dqs –

∫ a


h(s)dqs. (.)

Similar to derivatives, an operator Ikq is given by

(
Iq h

)
(x) = h(x) and

(
Ikqh

)
(x) = Iq

(
Ik–q h

)
(x), k ∈N. (.)

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

(DqIqh)(x) = h(x), (.)

and if h is continuous at x = , then

(IqDqh)(x) = h(x) – h(). (.)

Definition . Let ν ≥  and h be a function defined on [,T]. The fractional q-integral
of Riemann-Liouville type is given by (Iq h)(x) = h(x) and

(
Iνqh

)
(x) =


�q(ν)

∫ x


(x – qs)(ν–)h(s)dqs, ν > ,x ∈ [,T]. (.)

Definition . The fractional q-derivative of Riemann-Liouville type of order ν ≥  is
defined by (D

qh)(x) = h(x) and

(
Dν

qh
)
(x) =

(
Dl

qI
l–ν
q h

)
(x), ν > , (.)

where l is the smallest integer greater than or equal to ν .

Definition . For any x, s > ,

Bq(x, s) =
∫ 


u(x–)( – qu)(s–) dqu (.)

is called the q-beta function.
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From [], the expression of q-beta function in terms of the q-gamma function can be writ-
ten as

Bq(x, s) =
�q(x)�q(s)
�q(x + s)

.

Lemma . [] Let α,β ≥  and f be a function defined in [,T]. Then the following for-
mulas hold:

() (Iβq Iαq f )(x) = (Iα+β
q f )(x),

() (Dα
q Iαq f )(x) = f (x).

Lemma . [] Let α >  and ν be a positive integer. Then the following equality holds:

(
Iαq D

ν
qf

)
(x) =

(
Dν

qI
α
q f

)
(x) –

ν–∑
k=

xα–ν+k

�q(α + k – ν + )
(
Dk

qf
)
(). (.)

3 Some auxiliary lemmas
Lemma . Let α,β >  and  < q < . Then we have

∫ η


(η – qs)(α–)s(β) dqs = ηα+βBq(α,β + ). (.)

Proof Using the definitions of q-analogue of power function and q-beta function, we have

∫ η


(η – qs)(α–)s(β) dqs = ( – q)η

∞∑
n=

qn
(
η – qηqn

)(α–)(
ηqn

)β

= ( – q)η
∞∑
n=

qnηα–( – qqn
)(α–)

ηβqnβ

= ( – q)ηα+β

∞∑
n=

qn
(
 – qqn

)(α–)qnβ

= ηα+β

∫ 


( – qs)(α–)s(β) dqs

= ηα+βBq(α,β + ).

The proof is complete. �

Lemma . Let α,β >  and  < p,q < . Then we have

∫ η



∫ x


(η – px)(α–)(x – qy)(β–) dqydpx =

ηα+β

[β]q
�p(α)�p(β + )
�p(α + β + )

. (.)

Proof Taking into account Lemma ., we have

∫ η



∫ x


(η – px)(α–)(x – qy)(β–) dqydpx

=
∫ η


(η – px)(α–)

∫ x


(x – qy)(β–) dqydpx
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=


[β]q

∫ η


(η – px)(α–)x(β) dpx

=


[β]q
ηα+βBp(α,β + )

=
ηα+β

[β]q
�p(α)�p(β + )
�p(α + β + )

.

This completes the proof. �

For convenience, we set a nonzero constant

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)
. (.)

Lemma . Let βi > ,  < q,qi < , γi ∈ R, ηi, ξi ∈ (,T) and ηi < ξi for all i = , , . . . ,m.
Then, for a given y ∈ C([, ],R), the unique solution of the linear q-difference equation

Dα
qu(t) = y(t), t ∈ (,T),  < α ≤ , (.)

subject to the multi-strip fractional q-integral condition

u() = , u(T) =
m∑
i=

γi
(
Iβiqi u

)|ξiηi =
m∑
i=

γi
(
Iβiqi u(ξi) – Iβiqi u(ηi)

)
, (.)

is given by

u(t) = –
tα–

	

{∫ T



(T – qs)(α–)

�q(α)
y(s)dqs

–
m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

)}

+
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs, (.)

where 	 is defined by (.).

Proof Since  < α ≤ , we take n = . In view of Definition . and Lemma ., the linear
q-difference equation (.) can be written as

(
Iαq D


qI

–α
q u

)
(t) =

(
Iαq y

)
(t).

Using Lemma ., we obtain

u(t) = ctα– + ctα– +
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs (.)

for some constants c, c ∈R. Since u() = , we get c = .
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Applying the Riemann-Liouville fractional qi-integral of order βi >  with c =  for (.)
and taking into account Lemma ., we have

Iβiqi u(ξi) =
∫ ξi



(ξi – qis)(βi–)

�qi (βi)

(
csα– +

∫ s



(s – qx)(α–)

�q(α)
y(x)dqx

)
dqi s

=


�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+
c

�qi (βi)

∫ ξi


(ξi – qis)(βi–)sα– dqi s

=


�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+ c
�qi (α)ξ

α+βi–
i

�qi (α + βi)
. (.)

Repeating the above process with t = ηi and using the second condition of (.), we get a
constant c as follows:

c =

	

{ m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

–
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

)

–
∫ T



(T – qs)(α–)

�q(α)
y(s)dqs

}
. (.)

Substituting the values of constants c and c in the linear solution (.), the desired result
in (.) is obtained. �

4 Main results
Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to R

endowedwith the supremumnormdefined by ‖u‖ = supt∈[,T] |u(t)|. In viewof Lemma.,
we define an operatorA : C → C by

(Au)(t) = –
tα–

	

{∫ T



(T – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs

–
m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

)}

+
∫ t



(t – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs, (.)

with 	 �= . It should be noticed that problem (.) has solutions if and only if the operator
A has fixed points.
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For the sake of convenience, we put


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )
. (.)

The first existence and uniqueness result is based on the Banach contraction mapping
principle.

Theorem . Let f : [,T]×R →R be a continuous function satisfying the assumption

(H) there exists a constant L >  such that |f (t,u) – f (t, v)| ≤ L|u – v| for each t ∈ [,T]
and u, v ∈R.

If

L
 < , (.)

where a constant 
 is given by (.), then the multi-strip boundary value problem (.) has
a unique solution on [,T].

Proof We transform problem (.) into a fixed point problem, u =Au, where the operator
A is defined by (.). Applying the Banach contraction mapping principle, we will show
that the operatorA has a fixed point which is a unique solution of problem (.).
Setting supt∈[,T] |f (t, )| =M < ∞ and choosing

r ≥ M


 – L

,

with L
 satisfying (.), we will show that ABr ⊂ Br , where the set Br = {u ∈ C : ‖u‖ ≤ r}.
For any u ∈ Br , and taking into account Lemma ., we have

‖Au‖ ≤ sup
t∈[,T]

{
tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ t



(t – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

}

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)dqs
+

m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

http://www.advancesindifferenceequations.com/content/2014/1/193
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× (∣∣f (x,u(x)) – f (x, )
∣∣ + ∣∣f (x, )∣∣)dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

× (∣∣f (x,u(x)) – f (x, )
∣∣ + ∣∣f (x, )∣∣)dqxdqi s

)}

+
∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)dqs
≤ (Lr +M)

{
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+

Tα

�q(α + )

}

= (Lr +M)
 ≤ r.

It follows thatABr ⊂ Br .
For u, v ∈ C and for each t ∈ [,T], we have

∣∣Au(t) –Av(t)
∣∣

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣)dqs
+

m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

× (∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣)dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

(∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣)dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣)dqs
≤ L‖u – v‖

{
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+

Tα

�q(α + )

}

= L
‖u – v‖.

The above result leads to ‖Au –Av‖ ≤ L
‖u – v‖. As L
 < , by (.), therefore A is a
contraction. Hence, by the Banach contraction mapping principle, we deduce that A has
a fixed point which is the unique solution of problem (.). �

Next, we prove the existence of at least one solution by using Krasnoselskii’s fixed point
theorem.
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Lemma . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Assume that f : [,T]×R →R is a continuous function satisfying assump-
tion (H). In addition, we suppose that

(H) |f (t,u)| ≤ ψ(t), ∀(t,u) ∈ [,T]×R and ψ ∈ C([,T],R+).

If the following condition holds

L
�q(α + )

(
Tα–

|	| + Tα

)
< , (.)

then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof We define supt∈[,T] |ψ(t)| = ‖ψ‖ and choose a suitable constant R such that

R ≥ ‖ψ‖
,

where 
 is defined by (.). Furthermore, we define the operatorsA andA on BR = {u ∈
C : ‖u‖ ≤ R} by

(Au)(t)

=
tα–

	

m∑
i=

γi

�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

–
tα–

	

m∑
i=

γi

�qi (βi)�q(α)

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s,

and

(Au)(t) = –
tα–

	

∫ T



(T – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs +

∫ t



(t – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs.

It should be noticed thatA =A +A.
For any u, v ∈ BR, we have

‖Au +Av‖ ≤ ‖ψ‖
{

Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i Bqi (βi,α + )
�qi (βi)

+
m∑
i=

|γi|ηβi+α

i Bqi (βi,α + )
�qi (βi)

)
+

Tα

�q(α + )

}

= ‖ψ‖

≤ R.

Therefore (Au) + (Av) ∈ BR. Obviously, condition (.) implies that A is a contraction
mapping.
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Finally, we will show that A is compact and continuous. The continuity of f coupled
with assumption (H) implies that the operatorA is continuous and uniformly bounded
on BR. We define sup(t,u)∈[,T]×BR |f (t,u)| = M∗ < ∞. For t, t ∈ [,T], t < t and u ∈ BR,
we have

∣∣(Au)(t) – (Au)(t)
∣∣

≤ |tα– – tα– |
|	|

m∑
i=

|γi|
�qi (βi)�q(α)

×
∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

|tα– – tα– |
|	|

m∑
i=

|γi|
�qi (βi)�q(α)

×
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
≤M∗ |tα– – tα– |

|	|�q(α + )

{ m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

}
.

Actually, as |t – t| →  the right-hand side of the above inequality tends to zero indepen-
dently of u. SoA is relatively compact on BR. Therefore, by theArzelá-Ascoli theorem,A

is compact on BR. Thus all the assumptions of Lemma. are satisfied. Thus, the boundary
value problem (.) has at least one solution on [,T]. The proof is complete. �

Remark . In the above theorem we can interchange the roles of the operators A and
A to obtain the second result replacing (.) by the following condition:

LTα–

|	|�q(α + )

( m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
< .

Now, our third existence result is based on Leray-Schauder’s nonlinear alternative.

Lemma. (Nonlinear alternative for single-valuedmaps []) Let E be aBanach space,C
be a closed, convex subset of E,U be an open subset of C and  ∈U . Suppose that F :U → C
is a continuous, compact (that is, F(U) is a relatively compact subset of C)map.Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume that f : [,T] × R → R is a continuous function. In addition we
suppose that:

(H) there exist a continuous nondecreasing function φ : [,∞) → (,∞) and a function
p ∈ C([,T],R+) such that

∣∣f (t,u)∣∣ ≤ p(t)φ
(|u|) for each (t,u) ∈ [,T]×R;
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(H) there exists a constant N >  such that

N
‖p‖φ(N)


> ,

where 
 is defined by (.).

Then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof Firstly, we will show that the operatorA defined by (.)maps bounded sets (balls)
into bounded sets in C . For a positive number ρ , let Bρ = {u ∈ C : ‖u‖ ≤ ρ} be a bounded
ball in C . Then, for t ∈ [,T], we have

∣∣Au(t)
∣∣ ≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

≤ Tα–

|	|�q(α + )

(
‖p‖φ(‖u‖)Tα + ‖p‖φ(‖u‖) m∑

i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+ ‖p‖φ(‖u‖) m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+ ‖p‖φ(‖u‖) Tα

�q(α + )

≤ ‖p‖φ(ρ)Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+ ‖p‖φ(ρ) Tα

�q(α + )
:= K .

Therefore, we deduce that ‖Au‖ ≤ K .
Secondly, we will show that A maps bounded sets into equicontinuous sets of C . Let

sup(t,u)∈[,T]×Bρ
|f (t,u)| = K∗ <∞, τ, τ ∈ [,T] with τ < τ and u ∈ Bρ . Then we have

∣∣(Au)(τ) – (Au)(τ)
∣∣

≤ |τα–
 – τα–

 |
|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∣∣∣∣
∫ τ



(τ – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs –

∫ τ



(τ – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

∣∣∣∣
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≤ |τα–
 – τα–

 |K∗

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
|τα–

 – τα–
 |K∗

�qi (α + )
.

Obviously, the right-hand side of the above inequality tends to zero independently of
x ∈ Bρ as τ → τ. Therefore it follows by the Arzelá-Ascoli theorem that A : C → C is
completely continuous.
Let u be a solution of problem (.). Then, for t ∈ [,T], and following similar compu-

tations as in the first step with (H), we have

‖u‖ ≤ Tα–

|	|�q(α + )

(
‖p‖φ(‖u‖)Tα + ‖p‖φ(‖u‖) m∑

i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+ ‖p‖φ(‖u‖) m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+ ‖p‖φ(‖u‖) Tα

�q(α + )

= ‖p‖φ(‖u‖)
.

Consequently, we have

‖u‖
‖p‖φ(‖u‖)
 ≤ .

In view of (H), there exists a constant N >  such that ‖u‖ �=N . Let us set

U =
{
x ∈ C : ‖u‖ <N

}
.

Note that the operator A : U → C is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = λAu for some λ ∈ (, ). Consequently, by
nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that A has a fixed
point in U , which is a solution of the boundary value problem (.). This completes the
proof. �

As the forth result, we prove the existence of solutions of (.) by using Leray-Schauder
degree theory.

Theorem . Let f : [,T]×R →R be a continuous function. Assume that

(H) there exist constants  ≤ ω < 
–, where 
 are given by (.), and � >  such that

∣∣f (t,u)∣∣ ≤ ω|u| +� for each (t,u) ∈ [,T]×R.

Then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof Let A be the operator defined by (.). We will prove that there exists at least one
solution u ∈ C of the operator equation u =Au.
Setting a ball Bρ∗ ⊂ C , where a constant radius ρ∗ > , by

Bρ∗ =
{
u ∈ C : sup

t∈[,T]

∣∣u(t)∣∣ < ρ∗
}
,
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it is sufficient to show that A : Bρ∗ → C satisfies

u �= θAu, ∀u ∈ ∂Bρ∗ ,∀θ ∈ [, ]. (.)

Now, we set

H(θ ,u) = θAu, u ∈ C, θ ∈ [, ].

As shown in Theorem ., we have that the operatorA is continuous, uniformly bounded
and equicontinuous. Then, by the Arzelá-Ascoli theorem, a continuous map hθ (u) =
u –H(θ ,u) = u – θAu is completely continuous. If (.) holds, then the following Leray-
Schauder degrees are well defined. From the homotopy invariance of topological degree,
it follows that

deg(hθ ,Bρ∗ , ) = deg(I – θA,Bρ∗ , ) = deg(h,Bρ∗ , )

= deg(h,Bρ∗ , ) = deg(I,Bρ∗ , ) =  �= ,  ∈ Bρ∗ ,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, we
have h(u) = u – Au =  for at least one u ∈ Bρ∗ . Let us assume that u = θAu for some
θ ∈ [, ]. Then, for all t ∈ [,T], we have

∣∣u(t)∣∣ = ∣∣θ (Au)(t)
∣∣

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

≤ (
ω|u| +�

){ Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i Bqi (βi,α + )
�qi (βi)

+
m∑
i=

|γi|ηβi+α

i Bqi (βi,α + )
�qi (βi)

)
+

Tα

�q(α + )

}

=
(
ω|u| +�

)

.

Taking norm supt∈[,T] |u(t)| = ‖u‖ and solving for ‖u‖, we get

‖u‖ ≤ �


 –ω

.

Choosing ρ∗ = �

–ω


+ , then we deduce that (.) holds. This completes the proof. �
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5 Examples
In this section, we present some examples to illustrate our results.

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D





u(t) = |u(t)|

(+t)(+|u(t)|) , t ∈ (, ),

u() = ,

u() = (I




u)|





+ 

 (I




u)| 


+ (I





u)|


.

(.)

Here α = /, q = /, T = , m = , γ = , γ = /, γ = , β = /, β = /, β = /,
q = /, q = /, q = /, ξ = /, ξ = /, ξ = , η = /, η = /, η = / and f (t,u) =
(|u(t)|)/(( + t)( + |u(t)|)). Since

∣∣f (t,u) – f (t, v)
∣∣ ≤ 


|u – v|,

then (H) is satisfied with L = /. Using the Maple program, we find that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ –.,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )

≈ ..

Therefore, we get

L
 =



(.) ≈ . < .

Hence, by Theorem ., the boundary value problem (.) has a unique solution on [, ].

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D




u(t) = 

u+π sin(πu
 ) + 

π
( + sin(π t)), t ∈ (, ),

u() = ,

u() = (I




u)| 


+ 

 (I




u)| – (I





u)|


+ 

 (I




u)| 


.

(.)

Here α = /, q = /, T = , m = , γ = , γ = /, γ = –, γ = /, β = /, β = /,
β = /, β = /, q = /, q = /, q = /, q = /, ξ = /, ξ = , ξ = , ξ = /, η =
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/, η = , η = /, η = / and f (t,u) = ((sin(πu/))/(u + π)) + (( + sin(π t))/(π )).
By using the Maple program, we find that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ .,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )

≈ ..

Clearly,

∣∣f (t,u)∣∣ = ∣∣∣∣ 
u + π sin

(
πu


)
+
 + sin(π t)

π

∣∣∣∣ ≤ (
 + sin(π t)

)(|u| + 
π

)
.

Choosing p(t) =  + sin(π t) and ψ(|u|) = (|u| + )/(π ), we can show that

N
()( N+

π
)(.)

> ,

which implies thatN > .. Hence, by Theorem., the boundary value problem
(.) has at least one solution on [, ].

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D




u(t) = 

π tan–(u) + |u(t)|
+|u(t)| , t ∈ (, ),

u() = ,

u() = –(I




u)| 


+ (I





u)| 


+ (  )(I





u)| 



+ (I




u)| 


+ (  )(I





u)|





.

(.)

Here α = /, q = /, T = , m = , γ = –, γ = , γ = /, γ = , γ = /, β = /,
β = /, β = /, β = /, β = /, q = /, q = /, q = /, q = /, q = /, ξ =
/, ξ = /, ξ = /, ξ = /, ξ = /, η = /, η = /, η = /, η = /, η = / and
f (t,u) = ((tan–(u))/(π )) + ((|u(t)|)/( + |u(t)|)). By using the Maple program, we find
that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ –.,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
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+
Tα

�q(α + )

≈ ..

We observe that

∣∣f (t,u)∣∣ = ∣∣∣∣ 
π

tan–(u) +
|u(t)|
 + |u(t)|

∣∣∣∣ ≤ |u|
π

+ .

Therefore, we have � =  and

ω = /π < 
– = ..

Hence, by Theorem ., the boundary value problem (.) has at least one solution
on [, ].
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