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 Abstract 
  Background/Aims:  An association of genetic variants of homocysteine (Hcy) metabolic 
genes with type 2 diabetes mellitus (T2DM) has been reported. The objective of the present 
study was to investigate the relationship between the genetic variants in Hcy metabolism-
related genes and plasma Hcy levels and T2DM susceptibility in Han Chinese.  Methods:  A 
total of 774 patients with T2DM and 500 healthy individuals were recruited. Single-nucleotide 
polymorphism was determined by standard methods.  Results:    The Hcy-increasing allele 
score was positively associated with plasma Hcy levels in both T2DM patients and healthy 
subjects (r = 0.171 and 0.247, respectively). Subjects with the genotype CC of  MTHFR  (rs1801131) 
had a significantly higher likelihood of T2DM compared with subjects with the AA or AA+AC 
genotypes (OR = 1.93 for CC vs. AA, p = 0.041; OR = 3.13 for CC vs. AA+AC, p = 0.017, respec-
tively). Subjects with the genotype AA of the  MTHFD  variant (rs2236225) had a significantly 
lower likelihood of T2DM compared with subjects with the GG or GG+GA genotypes (OR = 
0.36 for AA vs. GG, p = 0.027; OR = 0.36 for AA vs. GG+GA, p = 0.017, respectively). In addi-
tion, the genotype CT+TT of the  PEMT  (rs4646356) variants displayed a significant association 
with an increased risk of T2DM (OR = 1.52 for CT+TT vs. CC, p = 0.042).  Conclusions:   MTHFR  
rs1801131 C allele and  PEMT  rs4646356 T allele were associated with a high risk of T2DM in 
these Han Chinese.  © 2014 S. Karger AG, Basel 
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 Introduction 

 Hyperhomocysteinemia (HHcy) is associated with cardiovascular disease and diabetic 
complications  [1, 2] . The etiology of HHcy involves both nutritional (e.g. folate, vitamin B 12 , 
or vitamin B 6 ) and genetic factors  [1] . Rare mutations of methylenetetrahydrofolate 
reductase  (MTHFR) , methionine synthase  (MS)  and cystathionine β-synthase  (CBS)  that 
control homocysteine (Hcy) concentrations can result in a complete loss of enzyme activity 
and consequent homocystinuria ( fig. 1 ). In particular, the  MTHFR  677C>T genotype influ-
ences folate and Hcy concentrations  [3, 4] . It has been suggested that other polymorphisms 
located in the genes coding for glutamate carboxypeptidase II ( GCP2  1561C>T; H475Y), 
methionine adenosyltransferase I, alpha  (MAT1A)  variants, and for reduced folate carrier 1 
( RFC1  80G>A; R27H) are associated with alterations in Hcy and folate metabolism  [5–7] . 
Furthermore, a polymorphism in the transcobalamin II gene  (TCN2)  (776C>G; P259R) 
affects the transcobalamin plasma concentration and, thus, may interfere with cellular 
vitamin B 12  availability and Hcy metabolism  [8] .  MTHFR  1298A>C and  MTHFR  677C>T 
were associated with plasma Hcy in Puerto Rican adults  [3] .  MAT1A  genotypes interact with 
plasma folate and vitamin B 6  status on plasma Hcy  [9] . Genetic polymorphisms  MTHFR  
677C>T,  FOLH1  1561C>T,  FOLH1  rs647370, and  PCFT  928A>G interacted significantly with 
smoking for Hcy  [10] .

  Cardiovascular complications are the leading cause of death in type 2 diabetes mellitus 
(T2DM). HHcy has been demonstrated to affect the clinical course, metabolic control, and 
possible complications of diabetes mainly by its influence on the development of macro- and 
microangiopathy  [11] , and by elicitation of oxidative stress, systemic inflammation, and/or 
endothelial dysfunction  [2] . These factors are known to promote insulin resistance and β-cell 
dysfunction, two important underlying causes of T2DM  [12] . The biological relevance of Hcy 
metabolism and its association with metabolic disorders makes it an important factor in the 
development of T2DM.

  The Chinese are at a high risk for metabolic disorders, as reflected by their high preva-
lence of T2DM and metabolic syndrome  [13, 14] . Furthermore, there is no evidence of an 
association between the genetic variants involved in Hcy metabolism and a risk of T2DM in 
the Chinese. The genetic causes of HHcy and the role of the genetic variants in the diabetes 
risk in the Chinese have not been fully explained yet.

  The aim of the present study was to assess the plasma Hcy concentration, genetic poly-
morphisms in the methionine metabolic pathway, and their possible contribution to T2DM 
susceptibility in Han Chinese.

  Research Design and Methods 

 Study Design and Participants 
 The study protocol was approved by the Ethics Committee, College of Biosystem Engineering and Food 

Science, Zhejiang University, China, and the Institutional Review Board of Huadong Hospital. All subjects 
were volunteers who gave their written consent prior to participation in the study. Diabetic patients were 
from the outpatient clinic. Participants were considered eligible if they met the WHO criteria for the diagnosis 
of diabetes mellitus (World Health Organization, 1999). Exclusion criteria included: (1) abnormal vitamin 
and mineral absorption due to gastrointestinal disease; (2) administration of vitamin and mineral supple-
ments for 3 months; (3) severe renal, liver, heart, or psychiatric diseases (apart from the complications of 
diabetes); (4) history of cancer, thyroid disease, or alcohol abuse, and (5) pregnancy or lactation. After careful 
screening, 774 T2DM outpatients (348 males, 426 females), aged 58.25 ± 12.31 years, with blood sugar levels 
stabilized between 7.0 and 10.0 mmol/l were recruited from 30 hospitals in 20 provinces in China.

  Healthy control subjects were recruited through a health check program during the period from March 
2011 through October 2011 in the Zhejiang Hospital, Hangzhou, China. After careful screening for hyper-
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tension, renal disease, hyperlipemia, hematological disorders, diabetes, a family history of cardiovascular 
disease and diabetes, excessive alcohol intake, and drug use, 500 healthy subjects (256 males, 244 females, 
aged 51.99 ± 8.41 years) were accepted.

  Blood Collection and Plasma Biochemical Parameters 
 Subjects attended the hospitals in the morning following an overnight fast. They were allowed to sit 

relaxed for 10 min, before their weight, height, waist-to-hip ratio and blood pressure were measured by a 
research assistant trained in standardized procedures. Then, venous blood was collected with 21-gauge 
needles in plain and EDTA vacuum tubes; plasma samples were prepared during the 2 h after blood had been 
drawn, aliquoted into separate tubes and stored at –20   °   C until analysis. Plasma total Hcy was measured using 
HPLC with fluorescence detection as described  [15] . Plasma folate and vitamin B 12  were measured using 
immulite chemiluminescent kits according to the manufacturer’s instructions (Diagnostic Products Corpo-
ration/Siemens, Los Angeles, Calif., USA).

  Genotyping 
 DNA was isolated from blood samples using QIAamp DNA Blood Mini kits according to the manufac-

turer’s instructions (Qiagen, Valencia, Calif., USA). We selected Hcy single nucleotide polymorphisms (SNPs) 
that were previously associated with plasma Hcy.  MTHFR  (rs1801131, rs1801133),  MAT1A  (rs4933327, 
rs3851059), phosphatidylethanolamine N-methyltransferase  (PEMT)  (rs4646356, rs4646406), methylene-
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  Fig. 1.  Hcy metabolism. Met = Methionine; MAT = methionine adenosyltransferase; SAHH = S-adenosylho-
mocysteine hydrolase; CBS = cystathionine β-synthase; CSE = cystathionine γ-lyase; MTHFR = methylenetet-
rahydrofolate reductase; BHMT = betaine-homocysteine methyltransferase; DMG = dimethylglycine; 5,10-
MTHF = 5,10-methylenetetrahydrofolate; 5-MTHF = 5-methyltetrahydrofolate; THF = tetrahydrofolate;
SH = serine hydroxymethyltransferase; MTR/MS = methionine synthetase; MTRR = methionine synthase re-
ductase; GAMT = guanidinoacetate N-methyltransferase; PEMT = phosphatidylethanolamine N-methyltrans-
ferase; GNMT = glycine N-methyltransferase; SHMT = serine hydroxymethyltransferase; MTHFS = 
5,10-methenyltetrahydrofolate synthetase; MTHFD1 = 5,10-methylenetetrahydrofolate dehydrogenase; 
TYMS = thymidylate synthase; DHFR = dihydrofolate reductase; SAM = S-adenosylmethionine; SAH = S-ade-
nosylhomocysteine; 10-CHO-THF = 10-formyltetrahydrofolate . 
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tetrahydrofolate dehydrogenase  (MTHFD)  (rs2236225, rs1950902), methionine synthase reductase  (MTRR)  
(rs1801394, rs1532268, rs162036), and methionine synthase  (MTR)  (rs16834521, rs1805087) which are 
involved in the Hcy metabolism pathway were genotyped using the TaqMan SNP genotyping kits with the 
ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Foster City, Calif., USA) ( fig. 1 )  [16] . The 
average genotyping success rate was 98%.

  Linkage Disequilibrium and Haplotype Analysis 
 Pair-wise linkage disequilibria among SNPs were estimated as correlation coefficients (r 2 ) using the 

haploview program. For haplotype analysis, the association between haplotypes and plasma Hcy, and esti-
mated haplotype frequencies, we used the R software (haplo.stats package).

  Statistical Analyses 
 Statistical analyses were performed using SAS 9.1. (Cary, N.C., USA). The power of the study was calculated 

assuming 10% disease risk under additive model using Quanto (http://hydra.usc.edu/gxe/). All continuous 
dependent variables that were not normally distributed were Box-Cox transformed prior to statistical analysis 
 [17] . To ensure adequate statistical power, men and women were analyzed together when there was no gender-
specific influence on phenotypes. The association of SNPs with T2DM was determined by logistic regression 
assuming additive model, recessive model and dominant model. The association of haplotypes with the genetic 
risk score with T2DM was determined by logistic regression. The analyses were adjusted for age and sex. Odds 
ratios (ORs) and 95% confidence intervals were calculated with respect to a homozygote wild type. χ 2  tests 
were conducted to examine whether genotype frequencies of the selected SNPs were in the Hardy-Weinberg 
equilibrium. Differences between groups were considered to be statistically significant at p  ≤  0.05.

  Results 

 Clinical Characteristics of Populations and Genetic Variants at MTHFR 
 All 13 SNPs, where the minor allele frequencies ranged from 0.16 to 0.49, were in Hardy-

Weinberg equilibrium (by χ 2  test) ( table 1 ). The distribution of the genotype and the frequency 
of alleles in T2DM and healthy subjects are reported in  table 2 . We did not observe a signif-
icant association of plasma Hcy with T2DM (data not shown).

  Genetic Variants and Haplotype Analysis 
 To examine the combined effect of genetic variants on plasma Hcy, we performed 

haplotype analysis based on the selected variants ( table 3 ). For these 13 SNPs in 6 genes, we 
observed the following: four haplotypes for SNPs of  MTHFD:  C-A (0.02), C-G (0.28), T-A (0.20), 

 Table 1.  Characteristics of the genotyped SNPs in the gene region

Gene SNP
accession

Chr mRNA ID No. Nucleotide 
change

Location Amino acid 
change

Common name HGVS name MAF

MTHFR rs1801131 1p36.3 NM_005957.3 1470 A>C exon 8 E429A MTHFR_E429A, A1298C NP_005948.3p.Glu429Ala 0.32
MTHFR rs1801133 1p36.3 NM_005957.3 849 C>T exon 5 A222V MTHFR_A222V, C677T NP_005948.3p.Ala222Val 0.26
MAT1A rs4933327 10q22 NM_000429.2 1341G>A intron 8 NA MAT1A_i15752 NM_000429.2c.1341 – 11G>A 0.48
MAT1A rs3851059 10q22 NM_000429.2 18777G>A downstream NA MAT1A_d18777 NT_030059.12g.779174G>A 0.48
PEMT rs4646356 17p11.2 NM_148172.1 NA intron 2 NA NA NM_007169.2:c.93 + 9059C>T 0.36
PEMT rs4646406 17p11.2 NM_148172.1 NA intron 3 NA NA NM_007169.2:c.210-1201A>T 0.16
MTHFD rs2236225 14q24 NM_005956.3 1958G>A NA Arg653Gln MTHFD 1958G>A NP_005947.3:p.Arg653Gln 0.31
MTHFD rs1950902 14q24 NM_005956.3 T401C intron 5 Lys134Arg MTHFD T401C NP_005947.3:p.Lys134Arg 0.37
MTRR rs1801394 5p15.31 NM_002454.2 66 A>G NA Ile22Met MTRR 66 A>G NP_002445.2:p.Ile22Met 0.32
MTRR rs1532268 5p15.31 NM_024010.2 524 C>T exon 9 Ser175Leu MTRR 524 C>T NP_002445.2:p.Ser175Leu 0.22
MTRR rs162036 5p15.31 NM_024010.2 1049 A>G NA Lys350Arg MTRR 1049 A>G NP_002445.2:p.Lys350Arg 0.26
MTR rs16834521 1q43 NM_0 00254.2 3144A>G NA Ala1048Ala MTR 3144A>G NT_167186.1:g.30572348A>G 0.49
MTR rs1805087 1q43 NM_000254.2 2756A>G NA Asp919Gly MTR 2756A>G NP_000245.2:p.Asp919Gly 0.16

All SNPs are in Hardy-Weinberg equilibrium (χ2 test). ID = Identification; MAF = minor allele frequency; NA = not available.
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T-G (0.49); two haplotypes for SNPs of  MAT1A:  A-A (0.47), G-G (0.51); three haplotypes for 
 MTHFR:  A-C (0.41), A-T (0.39), C-C (0.17); three haplotypes for SNPs of  MTR:  A-A (0.45), A-G 
(0.10), G-A (0.45); four haplotypes for SNPs of  PEMT:  C-A (0.66), C-T (0.03), T-A (0.23), T-T 
(0.06), and five haplotypes for SNPs of  MTRR:  A-A-A (0.07), A-G-A (0.09), G-A-A (0.49), G-A-G 
(0.19), G-G-A (0.17).

  Genetic Variants in Hcy Metabolism and Plasma Hcy Levels 
  MTHFR  (rs1801133) was significantly associated with plasma Hcy in T2DM patients 

( table 4 ). Participants homozygous for the T   allele ( MTHFR , rs1801133) had significantly 
higher plasma Hcy compared to carriers of the C allele.  MTR  (rs1805087, rs16834521) was 
also significantly associated with plasma Hcy in T2DM patients.  PEMT  (rs4646406) was signif-
icantly associated with plasma Hcy in a recessive model (i.e., 11 + 12 vs. 22) in T2DM patients.

   MTHFR  (rs1801133) was significantly associated with plasma Hcy in healthy subjects 
( table 4 ). Plasma Hcy concentrations were significantly higher in participants homozygous 
for the T allele ( MTHFR , rs1801133) compared to carriers of the C allele (p = 0.001).  MTRR  
(rs162036, rs1532268) was significantly associated with plasma Hcy in healthy subjects. 
 MTR  (rs16834521) was also significantly associated with plasma Hcy in healthy subjects. 
 MAT1A  (rs3851059, rs4933327) was significantly associated with plasma Hcy in a recessive 
model (i.e., 11 + 12 vs. 22) in healthy subjects ( table 4 ). Participants homozygous for the A 
allele   ( MTHFR , rs1801133) had significantly higher plasma Hcy compared to carriers of the 
G allele. However, we did not observe any associations of  PEMT  genotypes with plasma Hcy 
concentrations in healthy subjects.

  Association between Genotype and T2DM 
 Subjects with the genotype CC of  MTHFR  (rs1801131) had a significantly higher like-

lihood of T2DM compared with subjects with the AA or AA+AC genotypes ( table 5 , OR = 1.93 
for CC vs. AA, p = 0.041; OR = 3.13 for CC vs. AA+AC, p = 0.017, respectively). Participants 
homozygous for the minor allele (CC) had more than a 3-fold higher likelihood of T2DM than 
did carriers of the A allele (AA+AC). They had a 93% higher likelihood of having T2DM than 
did homozygotes (AA).

 Table 2. Distribution of the genotype and alleles in T2DM and healthy subjects

dbSNP Alleles (major/
minor) 1/2

SNP accession  Distribution of genotype

 11 12 22

MTHFR A1298C A/C rs1801131 521/256 (68) 203/108 (28) 30/10 (4)
MTHFR C677T C/T rs1801133 271/143 (37) 357/169 (47) 125/61 (16)
MAT1A i15752 G/A rs4933327 213/100 (28) 370/179 (49) 171/97 (23)
MAT1A d18777 G/A rs3851059 216/100 (28) 367/178 (48) 171/98 (24)
PEMT1 C/T rs4646356 379/178 (51) 293/144 (39) 80/33 (10)
PEMT2 A/T rs4646406 617/302 (81) 134/69 (18) 4/3 (1)
MTHFD G1958A G/A rs2236225 369/142 (56) 278/111 (43) 5/5 (1)
MTHFD T401C T/C rs1950902 332/129 (50) 255/108 (40) 68/29 (10)
MTRR A66G A/G rs1801394 368/146 (56) 234/100 (36) 53/17 (8)
MTRR C524T G/A rs1532268 473/194 (73) 158/63 (24) 24/6 (3)
MTRR A1049G A/G rs162036 434/175 (67) 188/78 (29) 31/9 (4)
MTR A3144G A/G rs16834521 203/70 (30) 321/137 (50) 129/56 (20)
MTR A2756G A/G rs1805087 538/204 (81) 112/56 (18) 5/3 (1)

The χ2 test was used to test the distribution of the genotype and alleles.
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  Subjects with the genotype AA of the  MTHFD  variant (rs2236225) had a significantly 
lower likelihood of T2DM compared with subjects with the GG or GG+GA genotypes (OR = 
0.36 for AA vs. GG, p = 0.027; OR = 0.36 for AA vs. GG+GA, p = 0.017, respectively). In addition, 
the genotype CT+TT of the  PEMT  (rs4646356) variants displayed a significant association 
with an increased risk of T2DM (OR = 1.52 for CT+TT vs. CC, p = 0.042). However, the genotype 
TT of the  PEMT  (rs4646406) variants was significantly associated with a decreased risk of 
T2DM (OR = 0.48 for TT vs. AA, p = 0.048). But other variants were not associated with T2DM.

   MTHFR  haplotypes correlated significantly with T2DM. Consistent with this, carriers of 
the haplotype A-T were associated with a higher likelihood of T2DM (OR = 1.73, p = 0.020). 
Moreover, carriers of the  PEMT  haplotypes C-A (OR = 2.71, p = 0.001) and T-A (OR = 2.71,
p = 0.001) had a significantly higher likelihood of T2DM (OR = 1.73, p = 0.029) when compared 
to noncarriers ( fig. 2 ).

 Table 3. The haplotypes of the critical gene involved in Hcy metabolism

Gene Haplotypes Carrier/
noncarrier, n

Genotypes Frequency

MTHFD1 rs2195090 rs2236225
C-A 13/490 C A 0.02
C-G 248/255 C G 0.28
T-A 206/297 T A 0.20
T-G 382/121 T G 0.49

MAT1A2 rs4933327 rs3851059
A-A 435/168 A A 0.47
G-G 471/131 G G 0.51

MTHFR3 rs1801131 rs1801133
A-C 396/207 A C 0.41
A-T 389/214 A T 0.39
C-C 176/427 C C 0.17

MTR4 rs16834521 rs1805087
A-A 348/155 A A 0.45
A-G 91/412 A G 0.10
G-A 349/154 G A 0.45

PEMT5 rs4646356 rs4646406
C-A 538/65 C A 0.66
C-T 30/573 C T 0.03
T-A 227/376 T A 0.23
T-T 84/519 T T 0.06

MTRR6 rs1532268 rs1801394 rs162036
A-A-A 56/447 A A A 0.07
A-G-A 96/407 A G A 0.09
G-A-A 371/132 G A A 0.49
G-A-G 174/329 G A G 0.19
G-G-A 134/369 G G A 0.17

1 MTHFD haplotypes were estimated based on two SNPs in the order: rs2195090, rs2236225.
2 MAT1A haplotypes were estimated based on two SNPs in the order: rs4933327, rs3851059.
3 MTHFR haplotypes were estimated based on two SNPs in the order: rs1801131, rs1801133.
4 MTR haplotypes were estimated based on two SNPs in the order: rs16834521, rs1805087.
5 PEMT haplotypes were estimated based on two SNPs in the order: rs4646356, rs4646406.
6 MTRR haplotypes were estimated based on three SNPs in the order: rs1532268, rs1801394, rs162036.
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  Discussion 

 The present study included a large consecutive series of patients with T2DM recruited at 
the time of clinical assessment. To the best of our knowledge, it evaluates most comprehen-
sively the associations of the variants of Hcy metabolic pathway genes with Hcy levels and 
T2DM. Our study showed that the Hcy-increasing allele score was positively associated with 
plasma Hcy levels in T2DM patients and healthy subjects. Subjects with the genotype CC of 

 Table 5. Association of gene variants with T2DM

Gene and SNP name OR (95% interval) for T2DM p1

additive model dominant model recessive model p2 p3 p4

MTRR (rs162036) 1.47 (0.68 – 3.17) 1.03 (0.76 – 1.40) 1.48 (0.69 – 3.17) 0.312 0.848 0.315
MTRR (rs1532268) 1.40 (0.56 – 3.51) 1.10 (0.79 – 1.53) 1.38 (0.55 – 3.44) 0.515 0.564 0.489
MTRR (rs1801394) 1.23 (0.68 – 2.20) 0.96 (0.71 – 1.28) 1.27 (0.72 – 2.26) 0.392 0.761 0.412
MTR (rs1805087) 0.60 (0.14 – 2.59) 0.77 (0.54 – 1.10) 0.62 (0.14 – 2.70) 0.598 0.154 0.527
MTHFR (rs1801131) 1.93 (0.85 – 3.42) 0.80 (0.48 – 1.33) 3.13 (0.65 – 5.17) 0.041 0.387 0.017
MTHFR (  rs1801133) 1.43 (0.67 – 3.02) 1.23 (0.76 – 2.01) 1.30 (0.65 – 2.60) 0.445 0.399 0.461
MTHFD (  rs1950902) 0.96 (0.59 – 1.57) 0.93 (0.69 – 1.24) 1.00 (0.63 – 1.60) 0.987 0.605 0.990
MTHFD (   rs2236225) 0.36 (0.10 – 1.27) 0.93 (0.70 – 1.25) 0.36 (0.10 – 1.29) 0.115 0.247 0.117
MAT1A (rs3851059) 0.79 (0.41 – 1.52) 1.02 (0.58 – 1.77) 0.71 (0.42 – 1.21) 0.261 0.953 0.206
MAT1A (  rs4933327) 0.85 (0.44 – 1.66) 1.08 (0.62 – 1.87) 0.75 (0.44 – 1.28) 0.357 0.797 0.291
PEMT (rs4646356) 1.18 (0.50 – 2.77) 1.52 (0.75 – 2.97) 1.08 (0.48 – 2.48) 0.877 0.042 0.848
PEMT (  rs4646406) 0.48 (0.10 – 2.22) 0.97 (0.70 – 1.36) 0.48 (0.10 – 2.22) 0.048 0.878 0.347

Bold values represent p value ≤0.05.
1 Adjusted for age and sex; 2 p for the additive model; 3 p for the dominant model (12 + 22 vs. 11); 4 p for the recessive model 

(22 vs. 11 + 12).
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  Fig. 2.  Association between hap-
lotypes and T2DM.  MTHFR  haplo-
type were estimated based on 
two SNPs in the order: rs1801131, 
rs1801133.  PEMT  haplotype 
were estimated based on two 
SNPs in the order: rs4646356, 
rs4646406. Logistical regression 
model was used to test the asso-
ciations of  MTHFR  and  PEMT  hap-
lotypes (noncarriers as referenc-
es) with T2DM adjusted for age, 
sex. 
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 MTHFR  (rs1801131) had a significantly higher likelihood of T2DM compared with subjects 
with the AA or AA+AC genotypes. Subjects with the genotype AA of the  MTHFD  variant 
(rs2236225) had a significantly lower likelihood of T2DM compared with subjects with the 
GG or GG+GA genotypes. In addition, the genotype CT+TT of the  PEMT  (rs4646356) variants 
displayed a significant association with an increased risk of T2DM.

  The metabolism of Hcy requires the contribution of a number of enzyme pathways and 
the availability of vitamin cofactors  [1] . HHcy is caused by a low intake of folate and other B 
vitamins and by genetic factors  [18, 19] , including polymorphisms of the genes encoding the 
enzymes involved in Hcy remethylation, such as  MTHFR ,  MTR ,  MTRR , and  CBS .

   MTHFR  C677T is a strong determinant of Hcy in individuals with impaired folate status 
 [20] . Previous studies   identified the  MTHFR  677TT genotype as being associated with 
increased plasma Hcy and decreased plasma folate.  MTHFR  1298A>C,  SLC19A1  intron 
5A>G, and  FPGS  2006A>G polymorphisms were associated with significantly altered 
plasma Hcy concentrations  [21] . In the present study, we have been able to confirm that 
 MTHFR  C677T and  MTHFR  1298A>C affect plasma Hcy levels in Chinese subjects with 
T2DM, while similar to our previous findings in Puerto Ricans, dietary PUFA intake may 
modulate the effect of two  MTHFR  variants on plasma Hcy  [3] . Furthermore,  MTR  
(rs1805087, rs16834521) was significantly associated with plasma Hcy in T2DM.  MTRR  
(rs162036, rs1532268) was significantly associated with plasma Hcy in healthy subjects. 
These findings are consistent with previous results  [19, 22] . It has previously been reported 
that the  MAT1A  3U1510 genotype was associated with plasma Hcy  [9] . Furthermore, 
 MAT1A  SNP i15173 also displayed an association with Hcy that narrowly failed to meet the 
significance criterion, but it should be borne in mind that these associations can be modu-
lated by plasma folate, vitamin B 6 , or vitamin B 12  status  [9] . Unfortunately, we did not 
measure these blood nutrients; however, in future studies this should be done to clarify 
their role in the development of T2DM. In the present study, we found that  MAT1A  
(rs3851059, rs4933327) was associated with plasma Hcy concentrations in T2DM patients 
and healthy subjects. Dietary fatty acids may modulate these effects of the  MAT1A  variants 
on plasma Hcy concentrations  [6] , while other lifestyle factors may also influence the 
effects of the genetic variants of the Hcy metabolism genes in affecting plasma Hcy concen-
trations  [10] .

  Elevated Hcy levels are associated with vascular complications in diabetic patients 
 [23, 24] . Of note, several studies have demonstrated that elevated Hcy levels predict the 
risk of death or coronary events in patients with T2DM  [25] . In recent years, elevated 
fasting serum Hcy levels have emerged as an independent risk factor for the development 
of diabetes. The proposed mechanism that was reported associated elevated Hcy levels 
with endothelial dysfunction, insulin resistance, the prothrombotic state, macroangio-
pathy, and nephropathy  [25] . However, plasma Hcy levels have been reported to be 
increased  [25–27] , unchanged  [28, 29] , or decreased  [30]  in patients with T2DM. In the 
present study, we found that the plasma Hcy level in T2DM patients was significantly 
lower than in healthy subjects (not shown), which is consistent with previous results  [30, 
31] . Wollesen et al.  [30]  found lower plasma Hcy and cysteine concentrations in 50 type 1 
diabetes mellitus and 30 T2DM patients than in nondiabetic subjects with a negative asso-
ciation with the glomerular filtration rate. Smulders et al.  [31]  found that the plasma Hcy 
level was lower in patients with complications, and the Hcy levels correlated with creat-
inine clearance. We speculated that the patients have been counseled (at diagnosis) to 
make diet/lifestyle changes, or to take a micronutrient supplement that would decrease 
the blood Hcy level. However, an animal study showed a 30% reduction of Hcy in untreated 
diabetic rats  [32]  and found an increase in the activities of hepatic transsulfuration 
enzymes in untreated diabetic rats. The decrease in Hcy was prevented when diabetic rats 
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received insulin. This confirms that insulin is involved in the regulation of the metabolism 
of the plasma Hcy concentration by affecting the hepatic transsulfuration pathway, which 
is involved in the catabolism of Hcy. This may be the reason why serum/plasma Hcy in 
diabetic patients is lower than in nondiabetic patients. Conflicting results regarding the 
circulating levels of Hcy in patients with diabetes may relate to the heterogeneity of the 
patients included, particularly with regard to their renal function status and the presence 
of vascular arterial disease.

  Mutations of the  MTHFR  gene together with an elevated plasma Hcy were shown to be 
associated with a predisposition to developing T2DM complications, including diabetic reti-
nopathy  [33]  and diabetic nephropathy  [34] . The latter association was exemplified by the 
finding that the increased frequency of the 677T allele and the CT and TT genotypes in 
T2DM patients correlated with a progression to renal failure  [35] . This prompted the 
conclusion that the  MTHFR  C677T gene polymorphism associated with a predisposition to 
increased plasma Hcy levels may represent a genetic risk factor for diabetic complications 
 [36] . Therefore, further investigation into the role of the genetic variants involved in Hcy 
metabolism in diabetes will help to elucidate the pathogenic physiological mechanism of 
diabetes.

  Previous studies demonstrated a significantly higher frequency of the  MTHFR  1298C 
allele in macroalbuminuric patients compared with normoalbuminuric patients  [37] . The 
 MTHFR  1298C allele increases the risk of macroalbuminuria 2.5-fold in T2DM patients 
carrying this allele. Also, the presence of this allele increases the risk of progression from 
microalbuminuria to macroalbuminuria 2.08-fold  [37] . Sun et al.  [38]  reported that among 
the Chinese population with T2DM,  MTHFR  C677T polymorphism may be a genetic risk factor 
for diabetic nephropathy. However, some studies did not demonstrate any association 
between diabetic nephropathy and  MTHFR  A1298C polymorphism  [36, 39] . Furthermore, it 
was demonstrated in Lebanese T2DM patients that the 677T allele but not the 1298C allele 
was a risk factor for diabetic nephropathy  [39] . In our study population,  MTHFR  A1298C 
showed a significant association with T2DM. Participants homozygous for the minor allele 
(CC) had more than a 3-fold higher likelihood of T2DM than did carriers of the allele A 
(AA+AC). Participants homozygous for the minor allele (CC) had a 93% higher likelihood of 
T2DM than did homozygotes (AA). However, we did not observe the association of  MTHFR  
C677T with T2DM in the Chinese. It should be noted here that the contribution of inherited 
and environmental risk factors may vary significantly according to ethnicity  [36] . In our 
study, some SNPs seem to confer protective effects against the risk of T2DM [ MTHFD  1958 
G>A (rs2236225) and  PEMT  (rs4646406) variant], whereas the  PEMT  (rs4646356) variant 
seems to be associated with a greater risk of T2DM.

  The present study has limitations in exposure assessment and consideration of potential 
confounding factors. We did not collect data on antidiabetic medication or the plasma status 
of folate, vitamins B 6  and B 12  that subjects took. The causes of T2DM are multifactorial, and 
in some populations a genetic makeup may be protective against the development of T2DM 
despite increased Hcy levels due to genetic mutations. In addition, the ethnic variations in 
terms of these relationships between either or both  MTHFR  mutations with T2DM have often 
yielded conflicting results about the role of these mutations, which further highlights the need 
for a careful assessment of any contributing lifestyle factors. It also demonstrated the necessity 
of follow-up studies of T2DM patients from different ethnic groups.

  In conclusion, our study provides evidence that these common variants in  MTHFR, MTR, 
MAT1A,   PEMT , and  MTRR  genes associated with alterations in plasma Hcy confer the risk for 
T2DM in the Han Chinese. Studies involving a larger sample size and different ethnic groups 
are required before ruling out the role of these important candidate genes in the development 
of T2DM.
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