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A B S T R A C T

Because food intake exerts its rewarding effect by increasing dopamine (DA) signaling in reward circuit-
ry, it theoretically follows that individuals with a greater number of genotypes putatively associated with
high DA signaling capacity are at increased risk for overeating and subsequent weight gain. We tested
the association between the multilocus genetic composite risk score, defined by the total number of geno-
types putatively associated with greater DA signaling capacity (i.e. TaqIA A2 allele, DRD2-141C Ins/Del
and Del/Del genotypes, DRD4-S allele, DAT1-S allele, and COMT Val/Val genotype), and future increases
in Body Mass Index (BMI) in three prospective studies. Participants in Study 1 (N = 30; M age = 15.2; M
baseline BMI = 26.9), Study 2 (N = 34; M age = 20.9; M baseline BMI = 28.2), and Study 3 (N = 162; M
age = 15.3, M baseline BMI = 20.8) provided saliva samples from which epithelial cells were collected, per-
mitting DNA extraction. The multilocus genetic composite risk score was associated with future increases
in BMI in all three studies (Study 1, r = 0.37; Study 2, r = 0.22; Study 3, r = 0.14) and the overall sample
(r = 0.19). DRD4-S was associated with increases in BMI in Study 1 (r = 0.42), Study 2 (r = 0.27), and in
the overall sample (r = 0.17). DAT1-S was associated with increases in BMI in Study 3 (r = 0.17) and in
the overall sample (r = 0.12). There were no associations between the other genotypes (TaqIA, COMT, and
DRD2-141C) and change in BMI over 2-year follow-up. Data suggest that individuals with a genetic pro-
pensity for greater DA signaling capacity are at risk for future weight gain and that combining alleles
that theoretically have a similar function may provide a more reliable method of modeling genetic risk
associated with future weight gain than individual genotypes.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

During the past three decades the prevalence of obesity in the
US adult population has risen from below 20% to 35.7% (Centers for
Disease Control, 2012). During the same period, childhood obesity
has tripled to 17% (Ogden, Carroll, Kit, & Flegal, 2012). Unfortu-
nately, treatments almost never result in lasting weight loss and
virtually all obesity prevention programs have not reduced future
obesity onset (Stice, Shaw, & Marti, 2006; Turk et al., 2009). An im-
proved understanding of the risk processes that give rise to weight
gain should guide the design of more efficacious prevention and
treatment interventions, as well as inform the populations to be tar-
geted in prevention programs. The predisposition to obesity is
partially genetically determined (Elks et al., 2010; Mei et al., 2012;
Warrington et al., 2013). The FTO gene has shown the strongest and
most consistent associations with adiposity and weight gain
(Speliotes et al., 2010); associations that have been confirmed across

age groups and ethnically diverse samples (Loos & Yeo, 2014). Re-
search has also explored the association between specific candidate
genes that influence dopamine (DA) signaling capacity and risk for
obesity.

DA signaling in the reward circuitry and weight gain

DA is the predominant catecholamine neurotransmitter in reward
circuitry and is thought to play a role in obesity. Consumption of
high-sugar or high-fat food results in DA release in the reward cir-
cuitry (ventral striatum) in animal experiments (Avena, Rada, &
Hoebel, 2009). In humans, consumption of palatable food causes
increased activation in the reward circuitry, including the dorsal-
and ventral striatum and orbitofrontal cortex (Small, Zatorre, Dagher,
Evans, & Jones-Gotman, 2001; Stice, Burger, & Yokum, 2013)
and increased DA release in the dorsal striatum, with the amount
released correlating with meal pleasantness ratings (Small,
Jones-Gotman, & Dagher, 2003) and energy density (Ferreira, Tellez,
Ren, Yeckel, & de Araujo, 2012).

Several findings suggest that greater DA signaling capacity may
increase risk for future weight gain. A PET study with humans
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(Kessler, Zald, Ansari, Li, & Cowan, 2014) found a positive correla-
tion between BMI and DA release in the dorsal striatum and
substantia nigra in response to amphetamine. Lean youth at risk for
future obesity by virtue of parental obesity show hyper-responsivity
of reward regions to palatable food receipt (Stice, Yokum, Burger,
Epstein, & Small, 2011). Critically, hyper-responsivity of reward
regions to food intake (Geha, Aschenbrenner, Felsted, O’Malley, &
Small, 2013), food images (Demos, Heatherton, & Kelley, 2012), and
food commercials (Yokum, Gearhardt, Harris, Brownell, & Stice, 2014)
is associated with future weight gain. These findings are consis-
tent with the reward surfeit theory of obesity (Stice, Spoor, Bohon,
Veldhuizen, & Small, 2008), which posits that individuals who show
greater innate reward responsivity to food intake are at elevated risk
for overeating and consequent weight gain. The findings are also
consistent with the incentive sensitization model (Berridge, Ho,
Richard, & DiFeliceantonio, 2010), which posits that repeated intake
of palatable foods results in an elevated responsivity of reward val-
uation regions to cues that are repeatedly associated with palatable
food intake via conditioning, which prompts elevated food intake
when these cues are encountered.

Genes associated with DA signaling in the reward circuitry and
weight gain

Several genes appear to correlate with DA signaling capacity,
among which are the TaqIA SNP (rs1800497) in the DRD2, the −141C
Insertion/Deletion (Ins/Del) polymorphism (rs1799732) in DA re-
ceptor D2 (DRD2-141C), the Catechol-O-methyltransferase (COMT
Val158Met), the DRD4 third exon 48 bp VNTR (DRD4) gene, and the
SLC6A3 DAT1 VNTR (DAT1). Data suggest that individuals with the
TaqIA A2/A2 allele, DRD2-141C Ins/Del and Del/Del allele, COMT Val/
Val allele, DRD4 shorter than 7 repeat allele (DRD4-S), and DAT1
9-repeat allele (DAT1-S) have greater DA signaling in the reward cir-
cuitry than those with the TaqIA A1/A1 allele, DRD2-141CIns/Ins
allele, COMT Met/Met allele, DRD4 7-repeat or longer allele (DRD4-
L), and DAT1 10-repeat/10-repeat allele (DAT1-L) (Asghari et al., 1995;
Heinz et al., 2000; Jonsson et al., 1999; Seeger, Schloss, & Schmidt,
2001). Yet, findings have been somewhat inconsistent regarding the
relations of these genotypes to risk for future weight gain. For in-
stance, TaqIA A1 allele was found to be associated with greater future
weight gain (Muller et al., 2012; Winkler et al., 2012). However, other
studies reported null findings (Fuemmeler et al., 2008; Hardman,
Rogers, Timpson, & Munafo, 2014; Stice, Spoor, Bohon, & Small, 2008).
Fuemmeler and colleagues (Fuemmeler et al., 2008) found a trend
relation between the DRD4-S genotype and future increases in BMI
in adolescents, though Stice and colleagues (Stice, Yokum, Bohon,
Marti, & Smolen, 2010) found no main effect of DRD4 on future
weight gain.

A possible explanation for the mixed findings is that the above
mentioned studies focused on the effects of individual genotypes,
which theoretically explain only a small proportion of variance.
Further, multiple genotypes most likely differ in their effects on
weight gain in different samples due to allele heterogeneity. Re-
cently, two studies (Nikolova, Ferrell, Manuck, & Hariri, 2011; Stice,
Yokum, Burger, Epstein, & Smolen, 2012) found that the total number
of alleles putatively associated with high DA signaling, as indexed
by a multilocus genetic composite score reflecting high DA signal-
ing capacity, correlated more strongly with elevated fMRI-assessed
reward region responsivity than the individual genotypes consid-
ered independently. It is possible that a multilocus profiling approach
will also account for greater variance in future weight gain as it may
capture the cumulative impact of polymorphisms whose individ-
ual effects may otherwise go undetected. However, no prospective
research has examined the association between the multilocus
genetic composite score that reflects DA signaling capacity and future
weight gain.

Accordingly, we examined the associations between the multilocus
genetic composite reflecting high DA signaling capacity and future in-
creases in BMI. Testing these associations will provide a direct test of
the reward surfeit theory of obesity (Stice, Spoor, Bohon, Veldhuizen
et al., 2008). Because studies have found that such a multilocus genetic
composite score correlates more strongly with elevated reward region
responsivity than the individual genotypes that contribute to this score
(Nikolova et al., 2011; Stice et al., 2012), and because hyper-responsivity
of reward regions in response to food intake (Geha et al., 2013) and food
cues (Demos et al., 2012; Yokum et al., 2014) has predicted future weight
gain, we hypothesized that individuals with more alleles associated with
greater DA signaling capacity would show elevated future weight gain.
We tested the association between the multilocus genetic composite
risk score and weight gain in three different prospective studies to de-
termine if this relation consistently replicates across various samples
varying in baseline BMI and demographics. This is important as (a) no
prospective research has examined the association between the
multilocus genetic composite risk score that reflects DA signaling ca-
pacity and future weight gain and (b) previous studies have found mixed
effects of individual genotypes on future weight gain. Replication of the
relation of the multilocus genetic composite risk score on future in-
creases in BMI across different samples will improve our knowledge
on genetic risk profiles for future weight gain.

Because individuals in one of the three studies were random-
ized to either a behavioral weight loss treatment or a control condition,
it provided an opportunity for exploratory analyses to test if the
multilocus genetic composite risk score moderates the effects of the
intervention on future change in BMI in this study. We hypoth-
esized that individuals carrying the highest number of alleles
associated with greater DA signaling capacity would show less weight
loss in response to the treatment than those with fewer of these
alleles.

Methods and procedures

Participants

In Study 1, participants were 30 adolescents varying in weight from
lean to obese (17 females; M baseline age = 15.2 ± 1.1; M baseline
BMI = 26.9 ± 5.4; M BMI 2-year follow-up = 27.2 ± 6.7; 20% Hispanic, 3.3%
Native Americans, 63.3% European Americans, and 33.3% mixed race/
ethnicity) who were recruited for a pilot study assessing biological and
psychological risk factors for adverse effects of food advertisement.

In Study 2, participants were 34 overweight and obese young
women (M baseline age = 20.9 ± 1.2; M baseline BMI = 28.2 ± 3.0; M
BMI 2-year follow-up = 27.9 ± 3.1; 2.9% Hispanic, 2.9% Native Ameri-
cans, 11.8% Asian, 73.5% European Americans, 11.8% mixed race/
ethnicity), that were drawn from a pilot study evaluating the efficacy
of a behavioral weight loss treatment.

In Study 3, participants were 162 lean adolescents (82 females;
M age = 15.3 ± 1.07, M baseline BMI = 20.8 ± 1.9; M BMI 2-year follow-
up = 21.9 ± 2.3; 11.2% Hispanic, 0.6% Native Americans, 0.6% Asian,
78.4% European American, 20.4% mixed race/ethnicity) that were
recruited for an obesity risk factor study.

Those who reported any current use of psychotropic medications
or illicit drugs, or current Axis I psychiatric disorder per Diagnostic and
Statistical Manual of Mental Disorders, 4th edition criteria (American
Psychiatric Association, 1994) were excluded. Participants and parents
(in case of a minor) provided written informed consent. The Oregon
Research Institute Institutional Review Board approved these studies.

Measures

Body mass index
The body mass index (BMI = kg/m2) was used as a proxy measure

for adiposity. Height was measured to the nearest millimeter and
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weight was assessed to the nearest 0.1 kg (after removal of shoes
and coats). In Study 1 and Study 3, BMI was assessed at baseline
and 1- and 2-year follow-up. In Study 2, BMI was assessed at base-
line, and at 3-month, 6-month, 1-year, and 2-year follow-ups.
Although BMI does not distinguish between increased mass in the
form of fat, lean tissue or bone and hence can lead to significant
misclassification (McCarthy, Cole, Fry, Jebb, & Prentice, 2006; Prentice
& Jebb, 2001), BMI correlates with direct measures of total body fat
such as dual energy X-ray absorptiometry (r = 0.80 to 0.90) and with
health measures including blood pressure, adverse lipoprotein pro-
files, atherosclerotic lesions, serum insulin levels, and diabetes
mellitus in adolescent samples (Dietz & Robinson, 1998; Mei et al.,
2002; Steinberger et al., 2005). Further, raw BMI scores are supe-
rior to age- and sex-adjusted percentiles or BMIz scores for modeling
change over time in longitudinal data analyses (Berkey & Colditz,
2007).

Genotyping
Participants were asked to provide saliva, from which epitheli-

al cells were collected, using a commercial product (Oragene,
DNAgenotek). One participant was unable to provide a saliva sample
and was excluded from all analyses. DNA was extracted from the
samples using standard salting-out and solvent precipitation
methods, yielding an average of 45 g of DNA. Stice et al. (2012)
provide greater details about the genotyping. The following geno-
type groups were defined: (a) TaqIA: A1 homozygotes, A1/A2
heterozygotes, and A2 homozygotes; (b) COMT val158met assay: Met
homozygotes, Val/Met heterozygotes, and Val homozygotes, (c)
DRD2-141C Ins/Del assay: Ins homozygotes, Ins/Del heterozy-
gotes, and Del homozygotes, (d) DRD4: DRD4 7-repeat or longer allele
(DRD4-L) versus shorter alleles (DRD4-S) (20), and (e) DAT1 assay:
10-repeat/10-repeat homozygotes (10R/10R), 10-repeat/9-repeat het-
erozygotes (9R/10R), and 9-repeat/9-repeat homozygotes (9R/9R).

Statistical analysis

Multilocus genetic composite risk score
We calculated a multilocus genetic composite reflecting the total

number of the five genotypes, paralleling the general approach used
by previous studies (Nikolova et al., 2011; Stice et al., 2012). Geno-
types putatively associated with high DA signaling received a score
of 1 and those putatively associated with low DA signaling received
a score of 0. Further, genotypes associated with intermediate sig-
naling strength received a score of 0.5. Specifically, TaqIA A2/A2, COMT
Val/Val genotypes, DRD2-141C Ins/Del and Del/Del, DRD4-S, and
DAT1-S were assigned a score of 1 (‘high’); TaqIA A1/A1, COMT Met/
Met genotypes, DRD2-141C Ins/Ins, DRD4-L, and DAT1-L were assigned
a score of 0 (‘low’), and TaqIA A1/A2 (Noble, Blum, Ritchie,
Montgomery, & Sheridan, 1991) and COMT Met/Val genotypes (Egan
et al., 2001) received a score of 0.5. The scores were then summed
to create the multilocus composite risk score (Study 1: M = 2.65 ± 0.87;
Study 2: M = 2.49 ± 0.97; Study 3: 2.53 ± 0.91).

Model building
All models were fit with linear mixed effects models using the

lme function in the nlme package from the R project (Pinheiro,
Bates, DebRoy, Sarkar, & R Core Team, 2013). Linear mixed models
accommodate multilevel data structures (i.e., time points nested
within individuals) and are ideal for growth curve modeling when
assessments occur at uneven intervals and not all participants com-
plete each assessment, both characteristics of the present data. Time
was represented with a linear natural-log representation of time
in months from the baseline assessment that included BMI at 3-
(Study 2), 6- (Study 2), 12- (Study 1–3), and 24-month (Studies 1–3)
follow-ups as the outcomes. All models controlled for baseline
BMI and sex (only in Study 1 and Study 3). We also controlled for

intervention (0 = no, 1 = yes) in Study 2 as participants in this study
were randomized to either a behavioral weight loss treatment
(n = 16) or a control condition (n = 18). Independent variables in-
cluded baseline BMI, sex, intervention, multilocus genetic composite
risk score and time as well as all two-way interactions between the
independent variables and time. For each model reported herein,
we followed recommendations from Singer and Willet (2003) in
which unconditional linear and nonlinear growth models are fit to
determine the best model of change prior to adding other inde-
pendent variables to the model. The best unconditional model was
selected using Akaike Information Criterion (AIC) values following
criterion from Burnham and Anderson (2002). After establishing an
unconditional growth model, we fit models with the multilocus
genetic composite risk score and the multilocus genetic compos-
ite risk score × time interaction to examine the association between
the multilocus genetic composite risk score and future weight gain
in each study. In Study 2, we also fit a second model with the
multilocus genetic composite risk score × condition (weight loss in-
tervention vs control) interaction and the multilocus genetic
composite risk score × condition × time interaction to examine the
moderating effects of the multilocus genetic composite risk score
on the relation between intervention condition and change in BMI.
Intercept coefficients were random on participant to account for non-
independence across repeated measurements within participants.
We examined model assumptions by inspecting residual by pre-
dicted values and normal probability plots of the person-level
random effects. Visual examination indicated a random distribu-
tion around zero in the residuals and a straight line for the residual
probability plot. We evaluated outliers with the criteria of a Cook’s
distance F probability value greater than 0.50 (Kutner, Nachtsheim,
Neter, & Li, 2005). In only one case was this criterion met and because
it did not alter the pattern of results, we retained this case in the
data set. These results suggest that no univariate or multivariate out-
liers contributed unduly to the observed main and interactive effects
reported herein.

Results

Descriptive statistics

Table 1 presents the descriptive statistics of the genotype groups
over the total sample. The average rate for successful genotyping was
as follows: TaqIA: 100%, COMT: 100%, DRD2-141C: 97%, DRD4: 100%,
and DAT1: 100%. χ2 analyses indicated that there were no signifi-
cant relations between genotype status and self-reported ethnicity,
race, or sex, suggesting that ancestry and sex are not potential
confounds. Except for DAT1 (χ2 = 7.61), all of our genes are in Hardy–
Weinberg equilibrium. χ2 analyses also indicated that there were no
significant differences between the 3 studies on the multilocus genetic
composite risk score and TaqIA, COMT, DRD2-141C, DRD4, and DAT1
genotype status. The multilocus genetic composite risk score and in-
dividual genotypes were not significantly correlated with baseline
BMI in the studies.

As a first step, unconditional linear growth models for BMI (i.e.,
BMI was regressed on a linear time variable) were fit following rec-
ommendations from Singer and Willet (2003). The average BMI slope
in Study 1 was 0.52 (range: −0.14–0.90), indicating that the average
participant showed an increase in his/her BMI score by about 0.52
units per year (which corresponds to approximately 1.52 kg per year
at the average height in the sample). The average BMI slope was
−0.11 (a .30 kg per year decrease; range: −0.25–0.17) in Study 2 and
0.56 (a 1.63 kg per year increase; range: −0.01–0.91) in Study 3.

The multilocus genetic composite risk score × time interaction
was associated with increases in BMI over 2-year follow-up in all
three studies (Study 1: r = 0.37, p = 0.01; Study 2: r = 0.22, p = 0.02;
Study 3: r = 0.14, p = 0.02) (Fig. 1A–C), suggesting that participants
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with a higher number of alleles associated with elevated DA sig-
naling capacity showed greater weight gain than those with fewer
of these variants. The effect sizes suggest that the multilocus genetic
composite risk score effects were stronger in the two samples with
overweight and obese individuals (Studies 1 and 2) compared to
the sample with healthy-weight individuals (Study 3).

Comparison of main effects of the multilocus genetic composite risk
score and individual genotypes on increases in BMI over 2-year
follow-up

We examined whether the multilocus genetic composite risk
score explained greater variance in weight gain than the individ-
ual genotypes. For these analyses, we combined the three samples
into one (N = 225) to increase our sensitivity to detect potentially
small effects of the individual genotypes and to decrease Type 1
errors due to multiple testing. Models were run separately for each
individual genotype and for the multilocus genetic composite risk
score. All models controlled for baseline BMI, sex, and interven-
tion. The multilocus genetic composite risk score × time interaction
again showed a significant positive association with future in-
creases in BMI over 2-year follow-up (r = 0.19, p < 0.001) in the
combined sample (Table 2). With regard to the predictive effects for
the individual genotypes, the DRD4 × time interaction (r = 0.14,
p = 0.003) and DAT1 × time interaction (r = 0.12, p = 0.01) were sig-
nificantly related to increases in BMI over 2-year follow-up; DRD4-S
homozygotes showed greater weight gain than DRD4-L carriers and
the DAT1-S carriers showed greater weight gain than the DAT1-L car-
riers (Table 2). Because the DRD4-S and DAT1-S were significantly
associated with future increases in BMI in the overall sample, we
next tested the effects of DRD4 × time interaction and DAT1 × time
interaction on increases in BMI in the individual samples. The
DRD4 × time interaction was positively related to increases in BMI
in Study 1 (r = 0.42, p = 0.002) and Study 2 (r = 0.27, p = 0.004), but
not Study 3 (r = 0.05, p = 0.36). The DAT1 × time interaction was pos-
itively related to increases in BMI in Study 3 (r = 0.17, p = 0.004), but
not in Study 1 (r = 0.04, p = 0.80) and Study 2 (r = 0.04, p = 0.69).

Given that Study 2 differed in study design (randomized weight
loss intervention) and sample (only females) from Study 1 and Study
3, we also tested these models in the combined data from Study 1
and Study 3 (N = 191), excluding data from Study 2. The multilocus
genetic composite risk score × time interaction was positively as-
sociated with increases in BMI over 2-year follow-up in this smaller

sample (r = 0.17, p < 0.001). The effect size did not significantly differ
from the effect size found in the larger combined sample. The
DRD4 × time interaction (r = 0.12, p = 0.02) and DAT1 × time inter-
action (r = 0.13, p = 0.01) were also significantly related to increases
in BMI over 2-year follow-up in this smaller combined sample. We
also tested directly whether the correlation between the multilocus
genetic composite risk score and increases in BMI differed for Study
2 data versus the data from Studies 1 and 3. We created a dummy
coded vector with Study 2 subjects receiving score 1 and all other
subjects score 0. The interaction between Study and multilocus
genetic composite risk score was not significantly associated with
increases in BMI (r = 0.01, p = 0.85).

Interactions between the multilocus genetic composite risk score and
weight loss intervention in the prediction of increases in BMI over
2-year follow-up

The multilocus genetic composite risk score × condition × time
interaction was positively associated with increases in BMI over
2-year follow-up (r = 0.21, p = 0.03). We divided the sample by means
of a median split of the multilocus genetic composite risk score and
calculated the mean BMI change over 2-year follow-up for both
groups. Figure 2 shows that in the weight loss intervention group,
those with a high multilocus genetic composite risk score, show less
weight loss over 2-year follow-up than those with a low multilocus
genetic composite risk score. In the control condition, those with
a high multilocus genetic composite risk score showed greater in-
creases in BMI compared to those with a low multilocus genetic
composite risk score.

Discussion

The primary aim of the present study was to evaluate the rela-
tion between a genetic propensity for high DA signaling capacity
in reward regions, as defined by the multilocus genetic composite
risk score, and future weight gain. As hypothesized, there was a sig-
nificant positive association between the multilocus genetic
composite risk score and increases in BMI over 2-year follow-up in
all three studies as well as the combined sample. These effects were
found while controlling for other factors (baseline BMI, sex, and in-
tervention). The fact that this result occurred in all three separate
samples suggests that this effect is robust. The results are in line
with the reward surfeit theory of obesity (Stice, Spoor, Bohon,

Table 1
Descriptive statistics for the genotype groups (N = 225).

Genotype N Dopamine
profile score

Ethnicity

TaqIA
A2/A2 143 (62.2% female) High 9.1% Hispanic; 84.6% Caucasian; 0.7% American Indian/Alaska Native; 1.4% Asian; 13.3 mixed races
A1/A2 75 (49.3% female) Intermediate 16% Hispanic; 72% Caucasian; 8% American Indian/Alaska Native; 4% Asian; 16% mixed races
A1/A1 7 (85.7% female) Low 14.3% Hispanic; 100% Caucasian

COMTVal158Met
Val/Val 47 (59.6% female) High 17% Hispanic; 72.3% Caucasian; 2.1% American Indian/Alaska Native; 2.1% Asian; 23.4% mixed races
Met/Val 117 (59% female) Intermediate 10.3% Hispanic; 82.1% Caucasian; 2.6% American Indian/Alaska Native; 3.4% Asian; 12.0% mixed races
Met/Met 61 (57.4% female) Low 9.8% Hispanic; 85.2% Caucasian; 4.9% American Indian/Alaska Native; 9.8% mixed races

DRD2 – 141CIns/Del
Del/Del 2 (0% female) High 50% Caucasian; 50% mixed races
Ins/Del 52 (55.8% female) Intermediate 15.4% Hispanic; 69.2% Caucasian; 7.7% American Indian/Alaska Native; 23.1% mixed races
Ins/Ins 165 (60% female) Low 10.3% Hispanic; 85.5% Caucasian; 1.2% American Indian/Alaska Native; 2.4% Asian; 10.9% mixed races

DRD4
DRD4-S 126 (55.6% female) High 8.7% Hispanic; 79.4% Caucasian; 2.4% American Indian/Alaska Native; 3.2% Asian; 15.1% mixed races
DRD4-L 99 (62.6% female) Low 15.2% Hispanic; 82.8% Caucasian; 4% American Indian/Alaska Native; 1% Asian; 12.1% mixed races

DAT1
9R/9R 6 (100% female) High 100% Caucasian
9R/10R 99 (54.5% female) Intermediate 9.1% Hispanic; 81.8% Caucasian; 4% American Indian/Alaska Native; 1% Asian; 13.1% mixed races
10R/10R 120 (60% female) Low 14.2% Hispanic; 79.2% Caucasian; 2.5% American Indian/Alaska Native; 3.3% Asian; 15.0% mixed races

Main effects of the multilocus genetic composite risk score on increases in BMI over 2-year follow-up.
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Veldhuizen et al., 2008), and suggest that individuals with a genetic
propensity for greater DA signaling have a biologically based el-
evated reward region responsivity (Nikolova et al., 2011; Stice et al.,
2012) which may render them more vulnerable to food cues and
unhealthy eating behaviors, resulting in future weight gain. Yet, it
should be noted that other findings are difficult to reconcile with
the reward surfeit model of obesity. That is, previous studies have
found that DA agonists (e.g., amphetamine) that increase DA sig-
naling lead to weight loss and DA antagonists (e.g., neuroleptics)
that reduce DA signaling lead to weight gain (Heal, Smith, Gosden,
& Nutt, 2013; Wirshing et al., 1999). This may imply that the
mechanism of weight gain in response to an antagonist drug is
qualitatively different from the mechanism of weight gain in re-
sponse to innate hypersensitivity of reward regions. Also of note,
human studies have found an inverse relation between BMI and illicit
drug use, and a lower risk for substance use disorders in obese versus
lean individuals (Blendy et al., 2005; Blüml et al., 2012; Simon et al.,
2006; Warren, Frost-Pineda, & Gold, 2005). Future research will be
needed to identify the differential effects of innate hypersensitiv-
ity of reward regions versus DA antagonists on weight gain.

Fig. 1. Partial regression plots showing the effects of the multilocus genetic com-
posite risk score on change in BMI units over 2-year follow-up in (A) Study 1,
(B) Study 2, and (C) Study 3, while controlling for baseline BMI (Studies 1–3), sex
(Studies 1–3), and intervention (Study 2).

Table 2
Main effects of the multilocus genetic composite risk score, TaqIA, COMT, DRD2-
141C, DRD4, and DAT1 on increases in Body Mass Index (BMI) over 2-year follow-
up (N = 225), while controlling for baseline BMI, sex (female = 1; male = 0), and
intervention (weight loss intervention = 1; control group = 0).

Variable B SE df t value p

Multilocus genetic composite
Intercept 0.15 0.55 462 0.27 0.78
Time 0.11 0.21 462 0.54 0.59
Baseline BMI × Time −0.00 0.01 462 −0.3 .76
Sex × Time −0.18 0.07 462 −2.76 .01
Intervention × Time −0.61 0.15 462 −4.18 <.001
Multilocus genetic composite × Time 0.14 0.03 462 4.14 <.001

TaqIA
Intercept 0.09 0.56 462 0.16 .87
Time 0.50 0.21 462 2.38 .02
Baseline BMI × Time −0.00 0.01 462 −0.13 .90
Sex × Time −0.20 0.07 462 −3.05 .002
Intervention × Time −0.60 0.15 462 −4.08 <.001
TaqIA × Time −0.06 0.12 462 −0.55 .58

COMT
Intercept 0.17 0.53 462 0.33 .74
Time 0.38 0.20 462 1.91 .06
Baseline BMI × Time −0.00 0.01 462 −0.12 .91
Sex × Time −0.21 0.07 462 −3.07 .002
Intervention × Time −0.64 0.15 462 −4.27 <.001
COMT × Time 0.15 0.09 462 1.64 .10

DRD2-141C
Intercept 0.16 0.51 451 0.31 .76
Time (months) 0.50 0.19 451 2.57 .01
Baseline BMI × Time −0.00 0.01 451 −0.5 .62
Sex × Time −0.20 0.07 451 −3.00 .003
Intervention × Time −0.58 0.15 451 −3.96 <.001
DRD2-141C × Time 0.09 0.07 451 1.23 .22

DRD4
Intercept 0.23 0.51 462 0.44 .66
Time 0.36 0.19 462 1.87 .06
Baseline BMI × Time −0.00 0.01 462 −0.27 .79
Sex × Time −0.19 0.07 462 −2.89 .004
Intervention × Time −0.54 0.15 462 −3.67 <.001
DRD4 × Time 0.19 0.06 462 2.94 .003

DAT1
Intercept 0.16 0.51 462 0.31 .76
Time 0.40 0.19 462 2.09 .04
Baseline BMI × Time −0.00 0.01 462 −0.31 .76
Sex × Time −0.20 0.07 462 −2.97 .003
Intervention × Time −0.62 0.15 462 −4.25 <.001
DAT1 × Time 0.17 0.06 462 2.69 .01

Note: ß = standardized regression coefficient; SE = Standard Error; df = degrees of
freedom.
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A recent study (Davis et al., 2013) found that the multilocus
genetic composite profile was positively correlated with self-
reported food addiction, binge eating, food cravings, and emotional
eating. Yet, post-hoc analyses in our combined dataset indicated that
there were no significant associations of the multilocus genetic com-
posite risk score with self-reported food cravings (Food Craving
Inventory (White, Whisenhunt, Williamson, Greenway, & Netemeyer,
2002)) at baseline (r = −0.04) and increases in self-reported food
craving over 2-year follow-up (r = 0.07). Further, food cravings were
not significantly associated with increases in BMI (r = 0.03). Future
studies should explore how objectively measured eating behav-
iors determine the effects of the multilocus genetic composite risk
score in the prediction of increases in BMI.

We also tested whether the multilocus genetic composite risk
score moderated the effects of weight loss treatment on change in
BMI over 2-year follow-up in Study 2. In the weight loss interven-
tion group, those with a high multilocus genetic composite risk score
show less weight loss over 2-year follow-up than those with a low
multilocus genetic composite risk score. In the control condition,
those with a high multilocus genetic composite risk score showed
greater increases in BMI compared to those with a low multilocus
genetic composite risk score. These findings converge with several
studies that found that individual genotypes associated with DA sig-
naling interact with treatment in the prediction of weight loss
success (Cameron et al., 2013; Roth, Hinney, Schur, Elfers, & Reinehr,
2013). Overall, these findings imply that qualitatively different weight
loss interventions may be needed depending on genetic risk.

We also tested whether the multilocus genetic composite risk
score was associated with greater variance in future weight gain
than the individual genotypes. Only DRD4 and DAT1 were associ-
ated with future weight gain; DRD4-S homozygotes and DAT1-S
carriers showed greater increases in BMI than DRD4-L carriers and
DAT1-L. The DRD4 finding is comparable with the findings of
Fuemmeler and colleagues (Fuemmeler et al., 2008) who found a
trend between DRD4-S and increases in BMI from adolescents to
adulthood. Interestingly, the DRD4-S genotype was associated with
future weight gain in the two smaller samples varying in weight
from lean to obese (Studies 1 and 2), but not in the larger sample
consisting of healthy-weight adolescents (Study 3). In contrast, the
DAT1-S genotype was associated with future weight gain in the larger
sample consisting of healthy-weight adolescents, but not in the two
smaller samples varying in weight from lean to obese. These find-
ings may suggest the DRD4-S and DAT1-S genotypes interact with

weight status in their prediction of future weight gain. Although
the effects of the DRD4-S in Studies 1 (r = 0.42) and 2 (r = 0.27)
and the effects of DAT1-S in Study 3 (r = 0.17) were slightly stron-
ger than the effects of the multilocus genetic composite risk score
in these individual studies (Study 1: r = 0.37; Study 2: r = 0.22; Study
3: r = 0.14), the multilocus genetic composite risk score was asso-
ciated with increases in BMI in all three separate samples. This
pattern of findings may suggest that the multilocus genetic com-
posite risk score is a more reproducible predictor in that it emerged
in multiple samples. Further, the effect of the multilocus genetic com-
posite risk score on increases in BMI in the combined sample
(r = 0.19) was slightly stronger than the effects of the DRD4-S (r = 0.14)
and DAT1-S (r = 0.12) genotypes.

It was noteworthy that the predictive effects for both the
multilocus genetic composite risk score and the DRD4 genotype were
stronger in the two samples with overweight and obese individu-
als (Studies 1 and 2) than in the sample with only adolescents in
the healthy weight range (Study 3). This finding converges with the
results of a study (Beyerlein, von Kries, Ness, & Ong, 2011) that found
that a genetic risk score for obesity significantly correlated with BMI
and fat mass in children, particularly in those with a higher weight
status. It is possible that epigenetic gene regulation, including DNA
methylation and histone modifications, plays an important role in
driving these differences. Environmental factors, like stress and nu-
trition, modulate gene expression via epigenetic mechanisms
(Schwenk, Vogel, & Schurmann, 2013). These mechanisms can be
active during intrauterine and early postnatal development as well
as throughout adult life (Schwenk et al., 2013). Future research will
be needed to examine how epigenetic mechanisms contribute to
the differential effects of genotypes associated with high DA sig-
naling and future weight gain in samples varying in weight status.
Another explanation for this finding is that the weaker predictive
effects from the sample that contained only healthy-weight ado-
lescents may have occurred because by excluding individuals who
were already overweight or obese in Study 3 sample, but not the
Study 1 and 2 samples, the latter two samples may have con-
tained a greater proportion of individuals at risk for future weight
gain, which increased sensitivity.

The multilocus genetic composite risk score and the individual
genotypes were not associated with baseline BMI. This pattern of
findings may have emerged because the participants were right-
censored in that most of the participants had not shown all of the
unhealthy weight gain that they will eventually show because the
average age was 16.1 in the total sample at baseline. Alternatively,
it is possible that other risk factors are more potent predictors of
future weight gain during childhood and early adolescence, such
as variation in exercise, which tends to begin to decline in adoles-
cents for most individuals in the US (McMurray, Harrell, Creighton,
Wang, & Bangdiwala, 2008), an effect that is more pronounced in
females (Sallis, 1993).

It is important to consider the limitations of the present study
when interpreting the findings. First, the multilocus genetic com-
posite risk score was estimated as a cumulatively additive effect of
5 genotypes. However, this method assumes that all genotypes are
independently associated with increased risk for weight gain. Future
studies with greater power are needed to test this assumption and
to check for potential interactions between these genotypes. Second,
although BMI is widely used to assess adiposity, is inexpensive, and
shows high test–retest reliability, it does not distinguish between
increased mass in the form of fat, lean tissue or bone and hence
can lead to misclassification (McCarthy et al., 2006; Prentice & Jebb,
2001). It is possible that by using a direct measure of fat mass (for
example, dual energy X-ray absorptiometry) additional or stron-
ger effects of the multilocus genetic composite risk score would have
been found. Future studies testing the associations of the multilocus
genetic composite risk score and changes in fat mass are needed

Fig. 2. Change in BMI over 2-year follow-up in Study 2 predicted by the interac-
tion of the multilocus genetic composite score and condition (i.e. weight loss
intervention vs control group) and increases in BMI over 2-year follow-up.
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to examine these relations more closely. Third, the sample sizes of
all three studies as well as the combined sample were small, which
limits the confidence that can be placed in the findings, even if the
results did replicate across all three samples examined herein. Finally,
it is possible that confounding effects due to unknown environ-
ment factors and false-positive associations due to biased selection
may have influenced the effects of the genotypes in this study.
Independent replication is needed before definitive conclusions can
be made about the role of these genotypes on risk of future
weight gain.

In conclusion, results provided support for the hypothesis that
a multilocus profiling approach can be used to create a genetic risk
profile for future weight gain based on genotypes associated with
DA signaling. This is in line with several longitudinal studies (Elks
et al., 2010; Mei et al., 2012; Warrington et al., 2013) that found
that a genetic score based on the combination of GWAS risk SNPs
(e.g., variants in or near FTO, MC4R, NEGRI, TMEM18, and BDNF) is
a better predictor of BMI and future weight gain than the individ-
ual variants. Further, recent research suggest that the multilocus
genetic composite risk score is associated with food addiction and
eating pathology (Davis et al., 2013) and addictive behaviors (Davis
& Loxton, 2013). Collectively, these results imply that it may be useful
to investigate the additive effects of genotypes that affect DA sig-
naling captured by multilocus composite risk scores on traits and
behaviors that exert their rewarding effects by increasing DA in the
reward circuitry. It might be also worthwhile to investigate addi-
tional genes that may impact DA signaling capacity, such as tyrosine
hydroxylase genes involved in DA synthesis, genotypes that influ-
ence all five of the DA-receptors, and monoamine oxidase genotypes
involved in DA metabolism. Adding additional genes associated with
DA signaling may increase the explained variance in weight gain,
which is modest in the current samples.

To our knowledge, the current study is the first to examine the
effect of the multilocus genetic composite reflecting high DA sig-
naling on increases in BMI. The results lend support for the
involvement of genotypes associated with high DA signaling on
future weight gain. Our findings therefore contribute to a further
understanding of genetic risk processes for risk for unhealthy future
weight gain and might highlight pathways that can be targeted for
prevention and treatment interventions for obesity.
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