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A practical and easy control of the authenticity of organic sugarcane samples based on the use of
machine-learning algorithms and trace elements determination by inductively coupled plasma mass
spectrometry is proposed. Reference ranges for 32 chemical elements in 22 samples of sugarcane (13
organic and 9 non organic) were established and then two algorithms, Naive Bayes (NB) and Random

Forest (RF), were evaluated to classify the samples. Accurate results (>90%) were obtained when using
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all variables (i.e., 32 elements). However, accuracy was improved (95.4% for NB) when only eight
minerals (Rb, U, Al, Sr, Dy, Nb, Ta, Mo), chosen by a feature selection algorithm, were employed. Thus,
the use of a fingerprint based on trace element levels associated with classification machine learning
algorithms may be used as a simple alternative for authenticity evaluation of organic sugarcane samples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sugarcane is one of the most consumed food commodities
worldwide. It is grown primarily in the tropics and subtropics,
and Brazil is by far the world’s largest producer, accounting for
one third of world production. Increasing world demands for
organic food products have stimulated organic sugarcane
production by several producers.

“Organic” food indicates a food has been produced according to
specific rules, which forbid the use of pesticides and inorganic
fertilizers, and is certified by a constituted agency. Certification
requires a series of steps that lead to a considerable increase of
the value of the product. Efficient control of authenticity of organic
food products is, however, still considered challenging since
conventional and organic food products cannot be distinguished
visually meaning specific analysis is mandatory. Methodologies
for the authentication of organic food are a matter of great interest
(Capuano, Boerrigter-Eenling, Van der Veer, Van Ruth, 2013; Kahl
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et al, 2012). Considering the significant differences between
organic and conventional sugarcane cultivation systems, a distin-
guishable pattern in mineral concentrations should also exist
(Yadav, Jain, & Rai, 2010). Based on this, previously, major and
trace element profiling has been used to distinguish between
organic and conventionally cultivated barley, coffee, fava bean,
potatoes, tomato and wheat samples (Fernandes, Tagliaferro,
Azevedo, & Bode, 2002; Kelly & Bateman, 2010; Laursen et al.,
2011). Previous studies have also demonstrated that nitrogen iso-
tope composition may be used to distinguish between crops grown
under conventional and organic conditions (Choi, Ro, & Lee, 2003;
Kelly & Bateman, 2010). However, the time of application and the
chemical form of synthetic fertilizer are important in determining
how fertilizer 5'°N impacts crop 8'°N (Kelly & Bateman, 2010).
Trace elements can easily be determined in sugarcane samples
with the use of atomic spectrometry techniques including atomic
absorption spectrometry (AAS) (Segura-Mufioz et al., 2006), atomic
emission spectrometry with inductively coupled plasma (ICP-OES)
(Mohamed, 1999) or inductively coupled plasma mass spectrome-
try (ICP-MS) (Nardi et al., 2009). However, ICP-MS has numerous
distinct advantages compared with AAS or ICP-OES, including
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measurement of multiple elements coupled with very low detec-
tion limits (Parsons & Barbosa, 2007). Moreover, it offers a wider
linear dynamic range which allows the determination of dozens
of chemical elements in the same sample injection (Parsons &
Barbosa, 2007). ICP-MS can also be considered a high throughput
technique enabling large quantities of data to be generated rapidly
(Kelly & Bateman, 2010; Parsons & Barbosa, 2007). However, this
analytical approach also demands proper statistical treatment of
data.

In the recent years, advances in chemometric techniques in
quality control of food products have gained considerable attention
from groups worldwide (Arvanitoyannis & Vlachos, 2009; Barbosa
et al., 2014; Drivelos & Georgiou, 2012; Fabani, Raverac, &
Wunderlin, 2013). In this context, several machine-learning tech-
niques have been proposed such as Support Vector Machine
(SVM), Multilayer Perceptron (MLP) and Randon Forest (RF)
(Aguiar et al., 2012; Alcazar, Jurado, Palacios-Morillo, de Pablos,
& Martin, 2012; Batista et al., 2012; Bereton & Loyd, 2010;
Jurado, Alcazar, Palacios-Morillo, & de Pablos, 2012). These data
mining tools are supervised learning models with associated learn-
ing algorithms that analyze data and recognize patterns, and are
used for classification and regression analysis (Koitsiantis,
Zaharakis, & Pintelas, 2006). They can be used to identify the group
to which a new sample belongs after a preliminary group classifi-
cation. (Batista et al., 2012) Classification is made, for instance,
after analyzing chemical components in a matrix and establishing
a pattern (i.e., a chemical fingerprint). However, to our knowledge,
these tools have not been used to control the quality and authen-
ticity of organic food products so far.

Thus, the aim of this study was to apply the machine-learning
techniques Naive Bayes (NB) and Random Forest (RF) to classify
organic and conventional sugarcane samples based on a multi-
mineral composition database obtained using inductively coupled
plasma mass spectrometry, which might be used to control the
authenticity of organic sugarcane samples.

2. Material and methods
2.1. Instruments

The determination of trace elements in sugarcane samples was
carried out by using an ICP-MS (ELAN DRCII, PerkinElmer, CT, USA)
with high-purity argon (99.999%, White Martins, Brazil). The
instrumental parameters and optimized conditions are provided
by Nardi et al. (2009).

2.2. Reagents

All reagents used were of analytical-reagent grade except for
HNOs, which was previously purified in a quartz sub-boiling still

(Kiirner Analysentechnik). High purity deionized water (resistivity
18.2 MQ cm) obtained using a Milli-Q water purification system
(Millipore, Bedford, MA, USA) was used. Multi-element
(10mgL™!) and rhodium (1000 mg L~') solutions were obtained
from PerkinElmer (Shelton, CT, USA).

2.3. Sampling and analytical procedures

Certified organic sugarcane (n = 13) and non-organic sugarcane
(n=9) samples from different brands were obtained in supermar-
kets from the Sdo Paulo state (southeast region of Brazil). To avoid
differences in metal levels due to geography variation between
samples, it was certified that all samples were originated from
sugarcane plants cultivated in the S3o Paulo state region. Then, five
grams of each sample was put in propylene metal-free Falcon®
tubes (Becton Dickinson) before analysis. The method proposed
by Nardi et al. (2009) was used with some modifications to deter-
mine trace elements in sugarcane samples. Briefly, samples (0.10 g)
were weighed accurately into a PFA digestion vessel, and 5 ml of
nitric acid 14 mol/L+2 mL of 30% (v/v) H,0, were added. The
bomb was placed in a microwave, and decomposition carried out
according to the following heating program: (a) step 1 (power
700 W, 4.5 min, 160 °C); (b) step 2 (power 0 W, 0.5 min, 160 °C);
(c) step 3 (power 800 W, 5.0 min, 230 °C); (d) step 4 (power O W,
20 min, 35 °C) (Nardi et al., 2009).

After that, the samples were left to cool and the volume made
up to 50 mL with Milli-Q water. Then, rhodium was added as inter-
nal standard to a final concentration of 10 pg/L. Using ICP-MS, 32
chemical elements (Al, Be, Bi, Ce, Co, Dy, Er, Eu, Gd, Ge, La, Mn,
Mo, Nb, Nd, Ni, Pb, Pr, Rb, Se, Sm, Sr, Ta, Tb, Th, Ti, TI, U, Y, Yb, W
and Zr) were determined.

2.4. Analytical quality control

The quality control of data was guaranteed by analyzing NIST
Standard Reference material NIST SRM 1515 apple leaves, NIST
1547 peach leaves, and NIST 1515 Wheat Flour acquired from
the National Institute of Standards and Technology (NIST, USA).
Reference samples were analyzed before and after sample
determinations. Values were in good agreement with reference
values.

2.5. Chemometric studies

Machine learning can be defined as methods from mathematics,
computer science and statistics using data collected to make
accurate predictions or classification.

In supervised learning, the learning scheme is presented with a
set of classified examples from which it can classify unseen exam-
ples. Instances in a dataset are characterized by values (in our case,

Table 1
Descriptive statistical analysis of the concentration of 32 elements in conventional Brazilian sugarcane samples.
Analyte Pb* Ni* Mn* Se* Co® Rb* u* AlP
Mean = SD 16.1+£73 153+45 206 £ 108 48 +14.9 1624 23.7+x11.7 42+1.7 0.77 £0.36
(min-max) 8.4-36 10.2-29.1 88-511 20.1-74 0.4-8.5 9.8-77 1.0-5.9 0.42-2.0
Be* Bi* Sr* TI* Ce* Dy* Er* Eu*
Mean + SD 22+13 89+12.0 265+ 84 0.19+0.12 104 £4.7 1.3+0.6 0.87 £0.32 0.50+0.17
(min-max) 0.1-4.5 0.8-57.5 39-595 0.13-0.54 2.0-14.5 0.3-2.0 0.14-1.20 0.13-0.72
Gd* La* Nd* Pr* Sm* Tb* Th* Y*
Mean # SD 21+1.0 5428 47+24 1.3+07 1.8+18 0.37 +0.07 11.5+5.7 35+1.7
(min-max) 0.3-3.5 0.9-8.3 0.6-7.5 0.3-3.2 0.1-8.1 0.13-0.40 0.9-18.5 0.5-5.5
Yb* Ge” Nb* Ta* Ti* w* Zr* Mo*
Mean + SD 0.77 £+ 0.41 0.52+0.23 43+1.8 0.58 +0.15 134+98 1.6+03 13.4+46 1.8+0.6
(min-max) 0.13-1.73 0.13-1.08 1.0-6.4 0.13-0.94 24.5-574 1.0-2.4 3.1-18.2 0.9-34

Notes: o: elements in ng g~'; B: elements in ug g~'; SD: standard deviation.
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Table 2
Descriptive statistical analysis of the concentration of 32 elements in organic Brazilian sugarcane samples.
Analyte Pb* Ni* Mn* Se® Co® Rb* u* AlP
Mean = SD 16.0+£13.2 19.2+12.0 227 +£25 47.7+123 1305 112+26 042 +0.14 1.5+04
(min-max) 6.1-82.3 8.7-73.2 179-288 16.7-73.5 0.5-34 78-168 0.14-0.78 1.0-2.8
Be* Bi* Sr* TI* Ce* Dy* Er* Eu*
Mean = SD 19+1.1 104 £15.8 15527 0.24+0.13 6.1+£3.2 0.64+0.30 0.24+0.10 0.16 £ 0.06
(min-max) 0.1-4.2 0.7-88.2 104-218 0.13-0.54 2.9-19.7 0.26-1.58 0.13-0.52 0.13-0.38
Gd* La* Nd* Pr* Sm* Tb* Th* Y*
Mean = SD 1.1£05 27+1.7 29+1.1 0.7+0.3 0.75+0.38 0.16 £ 0.08 1.6+09 0.95+0.44
(min-max) 0.4-3.0 1.0-9.2 1.3-6.2 0.3-2.0 0.26-2.02 0.13-0.52 0.7-4.6 0.40-2.36
Yb* Ge* Nb* Ta* Ti* w* Zr* Mo*
Mean = SD 0.21 £0.08 0.63 +0.23 0.28+0.13 0.14+0.03 97 + 64 22+0.6 48+38 139+59
(min-max) 0.13-0.41 0.13-1.02 0.13-0.58 0.12-0.29 40-387 1.1-39 2.0-203 1.4-37

Notes: o: elements in ng g '; B: elements in pg g~'; SD: standard deviation.

the minerals), or variables, which measure different aspects of the
instance (Witten, Frank, & Hall, 2011).

Classification algorithms were applied to the dataset obtained
and accuracy was analyzed. k-Fold cross validation was used for
model building and performance. The following classification algo-
rithms were used in this study:

1. Naive Bayes: It is a classification algorithm based on applying
Bayes’s rule that discovers the most feasible of the potential
classifications. It calculates the prior probabilities of each attribute
in each class. Probabilities are assumed to be independent from
one another. The classification is made by using the known proba-
bilities of each class and the known probabilities of each attributes.
That is, let {C;, C;} be the two given classes (organic sugar and
conventional sugar), which have foregoing probabilities P(C;) and
P(C,), respectively, and r attributes a;, a,,..., a, which for an
example X have values x4, X,..., X;, respectively, the subsequent
probability of class C; occurring for the specified example is given
by: P(C;) x P(a; =x; and a; =X ... and a, = X,|c;). Supposing that
the attributes are independent, the value of this expression can
be achieved through the expression:

P(Cy) x P(ay = x1|C}) x P(ay = X|C) % ... x P(a, = x,|Cy).

Thus we calculate the product above for i=1, 2 and pick the
classification that has the greatest value (Bramer, 2013).

2. Random Forest: The RF algorithm generates multiple decision
trees using bootstrap samples from the original training data. Then
the set of trees is used for classification of an example based on the
most frequent classification among them. The RF algorithm is an
example of an ensemble classifier, because each tree can be consid-
ered as an individual classifier. High levels of accuracy are
achieved, usually much higher than the accuracy obtained with a
single decision tree (Breiman, 2001).

Afterwards, we applied a feature selection algorithm to exclude
the least important variables, and applied the same classification
algorithms to this dataset with fewer variables. We used Weka to
execute the machine-learning algorithms. Weka is an open source
software issued under the GNU General Public License (Witten,
2011).

gleﬂ:e:ults of behavior of classification algorithms according to the number variables.
Method Accuracy
NB (%) RF (%)
Using the original 32 attributes 90.9 954
Using the 8 minerals selected by the CFS algorithm 95.4 954

NB = Naive Bayes, RF = Random Forest.

3. Results and discussion
3.1. Trace elements in organic and conventional sugarcane samples

Tables 1 and 2 show the mean values and ranges for the
elements determined in conventional and organic sugarcane sam-
ples, respectively. Considering the potentially toxic elements eval-
uated, aluminum presented the highest levels 0.42-2.0 pg/g and
1.0-2.8 pg/g for conventional and organic sugarcane, respectively.
The levels of essential elements Mn, Se, Co and Mo, were 88-
511 ng/g, 20.1-74 ng/g, 0.4-8.5 ng/g, 0.9-3.4 ng/g, respectively, in
conventional sugarcane samples and 179-288 ng/g, 16.7-73.5 ng/
g, 0.5-3.4ng/g, 1.4-37 ng/g in organic samples. Our reference
ranges were very similar to those previously found by Rodushkin
et al. (2011) in sugarcane samples from Argentina, Costa Rica and
USA.

For two thirds of the elements analyzed in the presented study,
the levels were not statistically different between organic and con-
ventional sugarcane samples. However, the levels of uranium,
thorium, dysprosium, niobium, samarium, strontium, yttrium and
ytterbium were statistically higher in conventional sugarcane sam-
ples compared with organic samples.

Phosphorus fertilizers utilized in conventional sugarcane crop
systems contain variable amounts of thorium, uranium and rare
earth elements (REEs) as contaminants from either phosphate rock
ores or other ingredients used in the fertilizer industry (Abdel-
Haleem, Sroor, El-Bahi, & Zohny, 2001; Otero, Vitoria, Soler, &
Canals, 2005; Turra, Fernandes, & Bacchi, 2011; Turra et al,,
2013). This fact could explain the higher levels of dysprosium,
samarium, thorium, yttrium, ytterbium and uranium in conven-
tional sugarcane samples compared with organic samples.

On the other hand, organic samples presented statistically
higher levels of rubidium, aluminum and molybdenum. Kelly and
Bateman (2010) found much higher levels of rubidium in organic
tomatoes compared with conventional samples, corroborating
our findings.

After establishing reference ranges for 32 metals in organic and
conventional sugarcane samples, a subset of relevant features was
selected (elements) for construction of the machine-learning
models (reduction of variables).

3.2. Reduction of variables

Feature selection is a method for selecting a subset of relevant
variables from original feature set. The quantity of variables in a
problem influences the computational time and the accuracy of
the classification algorithm. An important notion when using a fea-
ture selection algorithm is that the data have several redundant or
irrelevant variables. Redundant variables are those that provide no
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Fig. 1. Scatter plot of some variables selected by the CFS algorithm. (a) Nb x Rb; (b) Nb x U.

additional information than the currently selected ones, and
irrelevant variables offer no useful information in any circum-
stance. In our study, we used the Correlation Feature Selection
(CFS) Subset Algorithm for feature selection.

CFS Subset Evaluator: as in many feature selection algorithms,
CFS uses a search algorithm in conjunction with a function to
figure out the quality of feature subsets (Hall, 1998).

3.3. k-Fold cross validation
The holdout method for model building and accuracy evalua-

tion of the algorithms consists of selecting one subset of data for
training and another one for testing. The training phase is used

to identify sample characteristics. In the testing phase, the algo-
rithm is checked to see whether it is able to identify patterns for
the samples to be classified. The training and testing samples were
selected to be as representative as possible to ensure accurate
results. Here we used an approach called k-fold cross-validation
in which a fixed number of folds of data are chosen. The data are
split into k approximately equal partitions. Therefore, the holdout
method is the simplest type of k-fold cross validation in which
k =2. We used (k — 1) data subsets for training and the remaining
subset for testing, and this procedure was repeated k times so
every instance was used once for testing. Since our subset of sam-
ples was small, we used the leave-one-out cross-validation
(LOOCV) approach. LOOCV is a k-fold cross-validation, where k is
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Fig. 2. Scatter plots for some variables not selected by the CFS algorithm. (a) Mn x Ti; (b) Ni x Be.

the number of samples in the data set. Each instance in turn is left
out, and the learning scheme is trained on all the remaining
samples. Since no random sampling is involved in the LOOCV, it
is a deterministic method (Witten, 2011).

Two tests were performed to measure algorithm performance
during training to identify patterns in the samples, as follows:

Test 1: The original 32 variables (elements) were used;
Test 2: 8 best ranked variables selected by CFS Subset Eval
procedure were used (Rb, U, Al, Sr, Dy, Nb, Ta, Mo).

Table 3 shows the results of behavior from classification
algorithms according to the number variables. Accurate results
(>90%) were obtained when using all the variables (i.e., 32
elements). However, accuracy (95.4% for NB) improved with eight
minerals (Rb, U, Al Sr, Dy, Nb, Ta, Mo) chosen by a feature selection

algorithm. It can be pointed out that by analyzing separately the 8
minerals selected by the CFS algorithm, we also realized that 3 of
them, Rb, U and Nb, are classifiers for the two classes (organic,
non organic), see Fig. 1. The same is not true for the remaining
29 minerals, see for example Fig. 2 which are scatter plots for
Mn x Ti and Ni x Be.

4. Conclusion

We successfully applied machine learning to classify Brazilian
organic and non-organic sugarcane samples. Two algorithms for
classification (Naive Bayes and Random Forest) were used.
Accurate results (>90%) were obtained when using all the variables
(i.e., 32 elements). However, accuracy (95.4% for NB and RF) was
improved when only eight minerals (Rb, U, Al, Sr, Dy, Nb, Ta, Mo)
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chosen by a feature selection algorithm was used. The use of a
fingerprint, based on trace element levels in association with
classification machine-learning algorithms, may be used as a sim-
ple alternative for authenticity evaluation of organic sugarcane
samples.
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