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ABSTRACT
Background: An improved understanding of the contribution of the
diet to health and disease risks requires accurate assessments of

dietary exposure in nutritional epidemiologic studies. The use of

dietary biomarkers may improve the accuracy of estimates.
Objective: We applied a metabolomic approach in a large cohort
study to identify novel biomarkers of intake for a selection of polyphenol-

containing foods. The large chemical diversity of polyphenols and

their wide distribution over many foods make them ideal biomarker

candidates for such foods.
Design: Metabolic profiles were measured with the use of high-
resolution mass spectrometry in 24-h urine samples from 481 subjects

from the large European Prospective Investigation on Cancer and

Nutrition cohort. Peak intensities were correlated to acute and habitual

dietary intakes of 6 polyphenol-rich foods (coffee, tea, red wine, citrus

fruit, apples and pears, and chocolate products) measured with the use

of 24-h dietary recalls and food-frequency questionnaires, respectively.
Results: Correlation (r . 0.3, P , 0.01 after correction for multiple
testing) and discriminant [pcorr (1) . 0.3, VIP . 1.5] analyses showed

that .2000 mass spectral features from urine metabolic profiles were

significantly associated with the consumption of the 6 selected foods.

More than 80 polyphenol metabolites associated with the consumption

of the selected foods could be identified, and large differences in their

concentrations reflecting individual food intakes were observed within

and between 4 European countries. Receiver operating characteristic

curves showed that 5 polyphenol metabolites, which are characteristic

of 5 of the 6 selected foods, had a high predicting ability of food intake.
Conclusion: Highly diverse food-derived metabolites (the so-called
food metabolome) can be characterized in human biospecimens

through this powerful metabolomic approach and screened to identify

novel biomarkers for dietary exposures, which are ultimately essen-

tial to better understand the role of the diet in the cause of chronic

diseases. Am J Clin Nutr 2015;102:905–13.

Keywords: dietary biomarkers, food metabolome, polyphenols,
flavonoids, phenolic acids, coffee, tea, red wine, citrus fruits, EPIC

INTRODUCTION

The human organism is constantly exposed to diverse envi-
ronmentalchemicals,eithernaturalorman-made,thatarepresentin
food and drinking water, air, or any drug or consumer products. In
particular, .27,000 compounds have been described in foods
(1, 2), andmany of themcan be absorbed in the gut andmetabolized
in tissues or by the gut microbiota. These food-derived metabolites
constitute the so-called food metabolome (3). Some of these me-
tabolites have been used as dietary biomarkers for monitoring ex-
posures to specific components of the diet in populations and for
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studying associations between dietary exposures and disease risk
(3–5).

Thus far, #100 dietary biomarkers have been measured in
various cohort studies, and these biomarkers represent only a mi-
nor fraction of the food metabolome (3, 6). More biomarkers re-
main to be identified, and metabolomic approaches have already
been successfullyused to identifynovel dietarybiomarkers such as
proline betaine and S-methyl-L-cysteine sulfoxide for citrus fruit
and cruciferous vegetable intakes, respectively (7–11). Both nu-
clear magnetic resonance spectroscopy and mass spectrometry
(MS)20 have been used in thesemetabolomic studies. However,
the high sensitivity of modern high-resolution MS allows for
the measurement of thousands of metabolites in small human
biospecimens (12, 13). This technical progress has opened new
perspectives to measure the food metabolome in a more-
comprehensive way and to provide a richer view of dietary
exposures (3).

In addition, the measurement of the food metabolome may
improve the accuracy of the dietary assessment. Usual approaches
to measure dietary exposure in large epidemiologic studies are
largelybasedon self-administered food-frequencyquestionnaires.
The resulting dietary measurements are prone to random and
systematicmeasurementerrors,whichare, in turn,acauseofbias in
theevaluationofassociationsbetweendietandriskofdiseases(14).
In contrast, dietary biomarkers are objective measures that can
either be directly used in etiological models or can help disclose
the measurement-error structure in dietary assessments (15, 16),
thereby improving the accuracy of estimates. In addition, a more-
comprehensive measurement of the food metabolome should
permit thediscoveryofunexpectednovel riskfactorsfordiseasesas
exemplified by the identification of choline and its microbial
products as risk factors for cardiovascular diseases (17).

Inthisarticle,wecomparedthepolyphenolmetabolome,which
is amajor fraction of the foodmetabolome, in urine samples from
481 free-living subjects from 4 European countries as part of the
EPIC (European Prospective Investigation on Cancer and Nu-
trition) cohort. Polyphenols were selected for their high abun-
dance in the diet, large chemical diversity, wide distribution over
a large diversity of foods, their high prospect as dietary bio-
markers, and the high interest in their biological and health
properties (18–21). Data from urine metabolic profiles were
mined to identify good predictors of intake for 6 polyphenol-rich
foods that may improve measurements of intake in epidemio-
logic studies.

METHODS

Subject selection, dietary data, and urine samples

The EPIC study was designed to investigate the relations
betweendiet, nutritional status, and lifestyleandenvironmental
factors and the incidence of cancer and other chronic diseases.
The EPIC is among the largest studies on diet and cancer
with more than than one-half million (520,000) participants

recruited between 1992 and 2000 in 23 centers in 10 European
countries (22). For this study, participants were selected from
a subset (n = 1072) of the EPIC cohort for whom an archived
24-h urine collection and a single standardized 24-h dietary
recall (24-HDR) were taken on the same day (23) and a dietary
food-frequency questionnaire per subject was available. The
standardized 24-HDR and dietary questionnaires used in each
participating country have been extensively validated within
the EPIC study (15, 23, 24). The collection of urine samples
started just after the first pass of the day at 0700 and ended at the
same time the next day with the inclusion of the first urine pass.
For collection, subjects were given two 2-L containers, each of
which included 2 g boric acid as preservative. Dietary intake
recorded in the 24-HDR included all foods ingested during the
same period. The completeness of the collection of 24-h urine
samples was monitored with the use of p-aminobenzoic acid
that was given to participants in a tablet form. Samples with
a p-aminobenzoic acid recovery ,85% or .110% were ex-
cluded from the study (23). A total of 481 urine samples were
finally selected for the study. Urine samples were collected
between 1995 and 1999 and stored at 2208C. The following
6 food items were selected: coffee, red wine, citrus fruit (in-
cluding orange, mandarin, lemon, grapefruit, and lime), tea,
apples and pears, and chocolate products (from chocolate bars,
candy bars, and paste). The selection of food items was based
on their high contents in polyphenols and possible role in
the prevention of various diseases such as cardiovascular
diseases, diabetes, or cancers (25–29). A summary of the
consumption of the 6 polyphenol-rich foods and their coun-
try-specific patterns in the 481 subjects is shown in Supple-
mental Tables 1 and 2.

Informed consentwas provided by each participant in the study.
All participants gave consent for future analyses of their urine
samples, and theEthicsCommittee of the InternationalAgency for
Research on Cancer approved the metabolomic analyses.

Metabolomic profiling with the use of MS

Urine concentrations were first normalized before data ac-
quisition toremoveanyunwantedvarianceofvolumebydilution
with water on the basis of the specific gravity measured with the
use of refractometry (30). Diluted urine samples, blanks, and
pooled urine quality-control (QC) samples were analyzed with
the use of a ultra-high performance liquid chromatography
system (Infinity 1290, Agilent Technologies Inc.) coupled to
a quadrupole time-of-flight (Q-TOF) mass spectrometer (6550,
Agilent Technologies Inc., France). The UPLC column
(ACQUITYHSS T3, 1.8mm, 2.1 mm3 100mm;Waters, Saint-
Quentin en Yvelines) was held at 508C, with a mobile-phase
flow rate of 0.36mL/min. Urine samplesweremaintained at 48C
in a thermostated autosampler before injection (1 mL). A 10-min
linear gradient was applied with solvent A, which was com-
posed of 0.1% formic acid in water, and solvent B, which was
composed of 0.1% formic acid in methanol. The following
gradient was used: 2% B for 2 min was ramped successively to
30% B in 6 min, 100% B in 3 min, and finally maintained at
100% B for one additional minute. The Q-TOF was operated in
negative electrospray ionization mode from 50 to 1100 m/z.
Pooled QC samples were injected every 10th injection. See
Supplemental Subjects and Methods for details.

20 Abbreviations used: EPIC, European Prospective Investigation on Can-

cer and Nutrition; MS, mass spectrometry; MS/MS, tandem mass spectrom-

etry; O-PLS-DA, orthogonal partial least-squares discriminant analysis;

ppm, parts per million; QC, quality control; ROC, receiver operator charac-

teristic; 24-HDR, 24-h dietary recall.
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Raw data processing and data analysis

MS raw data (.d) files were converted to the .mzxml cross-
platform open file format before processing with the use of the
XCMS platform (version 1.36.0) for nonlinear peak alignment (31)
and the fully automated software MetMSLine (32) for automated
zero-peak filling, generalized-log transformation, correction for
signaldriftacrosstheanalyticbatchwiththeuseoflocallyweighted
scatterplot smoothing ,and outlier removal (see Supplemental
Subjects and Methods for more details). Of the 481 subjects
initially includedin thestudy,a totalof476subjectswereretained,
and 5 subjects were excluded because of outlying urinary met-
abolic profiles. Mass spectral features were filtered by a ,30%
relative SD cutoff within the repeated pooled QC injections.

A large list of dietary biomarkers were initially identified by
computing Pearson correlation coefficients between peak areas of
all MS features and 24-HDR measurements of each food item for
each of the 476 subjects. Nonzero dietary measurements were
included in the analysis. For each correlation, P values were cal-
culated and corrected for the false-discovery rate with the use of
the Benjamini-Hochberg method (33) to account for the large
number of comparisons performed. Partial parametric Pearson
correlation coefficients were calculated with the use of the vari-
ance-covariance matrix method. Statistical significance was as-
sessedat the1%level.Because a largenumberofMSfeatureswere
identified, correlation coefficients .0.3 were further retained in
the analysis.

In a second phase and for all the same food items, dietary bio-
markers were also identified with the use of a pairwise orthogonal
partial least-squares discriminant analysis (O-PLS-DA) whereby
thetopandbottomquintilesof the24-HDRofeachpolyphenol-rich
food were compared. Models were calculated on preprocessed,
outlier-filtered data, which were centered and Pareto scaled in
the SIMCA-P+ program (version 13; Umetrics). Biomarkers
were identified on the basis of 4 O-PLS-DA model filtration
criteria as follows: the magnitude of covariance [p(1). 0.018],
minimum O-PLS-DA loadings coefficient [pcorr(1) . 0.3],
a variable influence on projection (VIP).1.5, and the variable
influence on projection after the subtraction of the jack-knifed
95% CI (.0.1) (32).

Correlations between mass spectral features that met the O-
PLS-DA biomarker identification criteria were determined by
the calculation of a Pearson correlation coefficient matrix. This
interfeature correlation matrix was hierarchically clustered with the
use of the average linkagemethodwith dissimilarity calculated by
the correlation metric (one-correlation coefficient) and finally vi-
sualized as a heat map with the use of the gplots package in R
software (version 3.1.1, 64-bit).

O-PLS-DA models were also calculated to compare metabolic
profilesbetweencountries.Receiveroperatorcharacteristic (ROC)
curves were calculated with the use of the pROC package in R
software by modeling top and bottom 24-HDR quintiles of each
food item in turn. A nonparametric bootstrap resampling was
performed (n = 1000 iterations) for the ROC analysis of every
polyphenol metabolite (Supplemental Table 3). A 2-sided, non-
parametric 95%CIwas calculatedwith the use of the percentiles of
the bootstrap distribution. Calculations were performed in the R
program (version 3.1.1 64-bit) with the use of the pROC (version
1.7.3) and boot (version 1.3–13) packages.

Metabolite annotation

Chemical adducts were annotated automatically on the basis of
high mass accuracy tolerance [,10 parts per million (ppm)] from
a list of potential mass shifts that are commonly seen in liquid
chromatography–MS data that result from the physical process
of electrospray ionization (32). Unknown biomarkers were auto-
matically annotated (32) with the use of mono-isotopic mass
matching (,10 ppm) with biologically plausible metabolites of
the Phenol-Explorer database (http://phenol-explorer.eu/) (34)
and all possible phase II metabolites (sulfate esters, glucuronides,
and N-acetylcysteine conjugates). The chemical identity was
confirmed by comparing tandem mass spectrometry (MS/MS)
fragmentation spectra obtained with the use of a novel data-
dependent liquid chromatography–MS/MS method that was based
on the sequential iterative exclusion of MS features for which an
MS/MS spectrum has already been acquired in the previous round
(see Supplemental Subjects and Methods for details). Fragmen-
tation experiments were conducted with the use of a sample that
was prepared by pooling individual samples from highest con-
sumers of the 6 foods of interest (n = 19) and also the pooled QC
(n = 481). Urinary fragmentation spectra were compared with
those extracted from the literature and online open-accessMS/MS
databases or obtained from authentic chemical standards when
available (Supplemental Tables 4–9). A short list of 34 metabo-
lites characterized by their high correlation level with intakes
of the 6 foods and highest evidence supporting their assignment
(MS/MS match and availability of chemical standards) is given
in Table 1.

RESULTS

Large number of features in the urinary metabolome
correlate with food intake

Atotalof481subjectsfromtheEPICcohorttookpartinthestudy;
59%werewomenand41%weremenwithamean6SDageof55.3
6 8.4 y at the time of the collection of urine samples and dietary
intake data. Study subjects were from France (Ile de France),
Germany (Heidelberg and Potsdam), Greece (nation wide), and
Italy (Florence, Naples, Ragusa, Turin, and Varese) and were se-
lected for the availability of both a 24-h urine sample and 24-HDR
collected on the sameday.Themetabolomewasmeasuredwith the
use of high-resolution MS, and 14,323 MS features (i.e., detected
ions) that passed the QC test were semiquantified in the urine
samples (Supplemental Figure 1).

This data setwasmined to identifyMS features correlated to the
acute intake of the following 6 foods that are rich in polyphenols:
coffee, tea, red wine, citrus fruit, apples and pears, and chocolate
products. With the use of a significance level of 1%, Benjamini-
Hochberg–adjustedP values (35), and aminimum threshold value
of 0.3 for the correlation coefficient, a total of 1064, 107, 829, 317,
19, and 2 MS features (n = 2272) were shown to correlate with
24-HDRmeasurements of coffee, tea, redwine, citrus fruit, apples
and pears, and chocolate products, respectively (Figure 1A,
Supplemental Figure 1).

Given the low number ofMS features associatedwith intakes of
apples andpears andchocolateproducts,wealso tested theO-PLS-
DA to relate MS features to the top (n = 95) and bottom (n = 95)
24-HDR quintiles, thereby comparing, for each food, the most-
extreme consumers according to their acute food intakes. This
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approach led to the identification of 1229, 537, 566, 131, 55, and
306MS features that were most discriminant for coffee, red wine,
citrus fruit, tea, apples and pears, and chocolate products, re-
spectively (totaling 2824 MS features for the 6 foods). A de-
scription of results from O-PLS-DA models is summarized in
Supplemental Table 10. The O-PLS-DA allowed for the identi-
fication of a higher number of biomarkers than did correlation
analyses (except for red wine), and these biomarkers included all
or most of those identified through correlation analyses, which
showed the large overlap of the 2 methods. A Pearson correlation
coefficient matrix was calculated for the 2824 markers. An un-
supervised hierarchical clustering analysis of these markers
combined with retention-time matching (62 s) led to the identi-

ficationof374 retention timeclusters that accounted for 64%of the
significant features, which, subsequently, greatly facilitated the
identification (610 ppm) of isotopomers, chemical adducts, and
fragments (25% of all significant features) formed in the mass
spectrometer source (Supplemental Subjects and Methods).

Concentrations of polyphenol metabolites in urine
correlate with both acute and habitual intakes of
polyphenol-rich foods

To annotate the metabolites associated with intakes of the 6
selected foods, the 2824 MS features previously identified were
screened and matched on the basis of their accurate monoisotopic

TABLE 1

Food-derived metabolites in urine of free-living subjects from the EPIC cohort correlated with acute intakes of 6

polyphenol-rich foods1

ID Assignment2 Food VIP ROC AUC, %

1 Dihydroferulic acid sulfate (I) Coffee 3.92 95.5

2 Guaiacol glucuronide Coffee 3.73 95.3

3 Feruloylquinic acid (I) Coffee 3.41 91.9

4 Ferulic acid sulfate (I) Coffee 3.77 95.2

5 Feruloylquinic acid glucuronide (I) Coffee 3.77 94.3

6 3-O-Caffeoylquinic acid (I) Coffee 2.89 88.4

7 p-Coumaric acid sulfate Coffee 3.38 91

8 Caffeic acid sulfate (I) Coffee 3.04 91.4

9 Ferulic acid glucuronide (I) Coffee 2.9 89.3

10 Hydroxyhippuric acid (I) Coffee 2.24 86.1

11 Dihydrocaffeic acid sulfate Coffee 2.63 85

12 m-Coumaric acid sulfate Coffee 2.28 79.9

Red wine 0.52 52.7

13 Dihydroferulic acid glucuronide (I) Coffee 2.63 85.7

14 p-Hydroxyphenyllactic acid Coffee 2.06 83.2

15 Guaiacol sulfate Coffee 2.23 86

16 Ethylcatechol glucuronide Coffee 2.82 88

17 Gallic acid ethyl ester sulfate Red wine 6.49 91.9

18 Hydroxytyrosol sulfate Red wine 3.2 76.7

19 Dihydroresveratrol glucuronide Red wine 4.9 86.9

20 Syringic acid sulfate Red wine 2.64 72.8

21 Naringenin glucuronide Citrus fruit 6.23 91.3

22 Hesperetin glucuronide sulfate Citrus fruit 5.55 86.8

23 Hesperetin glucuronide (I) Citrus fruit 6.25 89

24 Methylgallic acid sulfate (I) Tea 6.62 81.6

Red wine 4.61 83.6

25 4-O-Methylgallic acid Tea 6.81 83.9

Red wine 4.83 84.7

26 Dihydroxyphenyl-g-valerolactone sulfate Tea 6.58 79.3

27 Pyrogallol sulfate (I) Tea 3.59 70.4

28 Hydroxyphenylvaleric acid glucuronide Tea 3.46 65.3

29 Methyl(epi)catechin sulfate (I) Tea 3.01 66.9

Apples and pears 4.17 70.7

Chocolate 4.93 74.4

30 Phloretin glucuronide Apples and pears 4.58 75.8

31 Dihydroxyphenyl-g-valerolactone sulfate Apples and pears 2.91 63.2

32 4-Hydroxy-(3#,4’-dihydroxyphenyl)valeric acid sulfate Chocolate 2.96 66.4

33 Dihydroxyphenyl-g-valerolactone glucuronide Chocolate 2.24 63.6

Tea 2.94 59.2

34 Vanillic acid sulfate Chocolate 2.42 62.1

1VIP is avariable that summarizes the importanceofXvariables to theO-PLS-DAmodel.Variableswith values.1.5were

themost influential in themodel. TheROCAUC is ameasure of the sensitivity and specificity of the biomarker for a food.EPIC,

European Prospective Investigation on Cancer and Nutrition; ID, identification number; O-PLS-DA, orthogonal partial least-

squares discriminant analysis; ROC, receiver operator characteristic; VIP, variable influence in projection.
2Number in parentheses refers to the isomerswhen several isomerswere detected but not fully resolved (see Supplemental

Tables 4–9).
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mass with those expected from known polyphenol metabolites.
The Phenol-Explorer database was used to generate a list of 123
polyphenol entries made of all polyphenols known in the selected
foods and of all metabolites known to be formed from these
polyphenols or their food sources (34, 36). In addition, all possible
combinations of phase II conjugates were also calculated for each
database entry and added to the list of expected mass spectral
features. All expected polyphenol metabolites were queried
against the unknown MS features associated with the consump-
tion of the selected foods, and 526 hits (,10-ppmmass accuracy)
were identified. MS/MS fragmentation spectra were acquired for
a fraction (24%) of these tentative assignments. Fragments and
neutral losses were automatically annotated and queried against
MS/MS spectra in on-line databases such as the Human Metab-
olomeDatabase,Metlin,Massbank, and theReSpect database. All
assignments of polyphenol metabolites (n = 83) showed a strong
biological plausibility on the basis of previous literature reports
and were confirmed with authentic standards when available (see
Table 1 and Supplemental Tables 4–9 for a complete list of an-
notated metabolites).

ROC curves were calculated andAUCs and associated 95%CIs
were used to compare for each of the 83 polyphenolmetabolites to
evaluate their capacities to predict intakes of the 6 polyphenol-rich
foods (Table 1,Figure 2). Compoundswith the greatest predictive
ability were dihydroferulic acid sulfate for coffee (AUC: 95.5%),
gallic acid ethyl ester for red wine (AUC: 91.9%), naringenin
glucuronide for citrus fruit (AUC: 91.3%), 4-O-methylgallic acid
for tea (AUC: 83.9%), phloretin glucuronide for apples and pears
(AUC: 75.8%), and methyl(epi)catechin sulfate for chocolate
products (AUC: 74.4%) (Figure 2A, B).

Four of these compounds (dihydroferulic acid sulfate, gallic acid
ethyl ester, naringenin glucuronide, and phloretin glucuronide) are
known to be derived from precursors that originate predominantly or
exclusively from the associated foods (Supplemental Table 11),

which supports their possible use as biomarkers of food intake.The
2 remaining compounds were shown to be also associated with
intakes of other foods as follows: 4-O-methylgallic acid with red
wine (AUC: 84.7%), and methyl(epi)catechin sulfate with apples
and pears (AUC: 70.7%), and tea (AUC: 74.4%) (Table 1).

We first compared the correlation between 4-O-methylgallic
acid and tea after adjustment for redwine.Unadjusted andadjusted
correlation values were 0.55 and 0.63, respectively, which sug-
gested a limited confounding effect of red wine in the association
between tea and 4-O-methylgallic acid. However, similar corre-
lations were observed between 4-O-methylgallic acid and red
wine with and without adjustment for tea intake, which indicated
a lack of specificity in the use of 4-O-methylgallic acid as a marker
of tea (and red wine) intake.

Similarly, the formation of methyl(epi)catechin sulfate from 4
different precursors (catechin, epicatechin, and their O-galloyl-
esters) abundant in foods such as tea, wine, and apples (Supple-
mental Table 11) limits their possible use as biomarkers of intake
for chocolate products. A number of other polyphenolmetabolites
were also shown to be associated with the intake of chocolate
products with ROCAUC values that ranged from 62.1% to 66.4%
(Table 1, Figure 2C). Two polyphenol metabolites [i.e., 4-hydroxy-
(3#,4#-dihydroxyphenyl)valeric acid sulfate and dihydroxyphenyl-
g-valerolactone glucuronide) are also metabolites of (epi)catechin,
which is a polyphenol that is present in tea, wine, and apples, that
may act as confounders. Vanillic acid sulfate was also associated
with the intake of chocolate products (Table 1, assignment 34) and
is derived from vanillin, which is a common ingredient in many
chocolate products. However, vanillin is also used as an additive
in other food products, and its specificity for chocolate remains to
be established.

Besides the possible consumption of other foods that contain
the same polyphenol precursors, other confounders may also limit
the accuracy of polyphenol biomarkers used to assess intakes

FIGURE1 Mass spectral features observed in urine samples from the European Prospective Investigation onCancer andNutrition cohort showing significant
correlationswith intakes of 6 polyphenol-rich foods. (A)Hierarchical clustering analysis of the 2272mass spectral features linearly associatedwith acute intakes of
the 6 polyphenol-rich foods. The color scale indicates the level of correlation (24-h dietary recalls; Pearson correlation coefficient.0.3; F test with Benjamini-
Hochberg correction:P, 0.01) and reveal clusters ofmass spectral features that are characteristic of each food. (B)Venn diagrams visualizing the overlap between
mass spectral features correlatedwith acute 24-HDRs (red circles) andhabitual food intakes (with the use ofFFQs; blue circles) of 5of 6 selected foods.Numbersof
acute andhabitual consumers (24-HDR,FFQ)were as follows: coffee (n=413, 445), redwine (n=120, 128), citrus fruit (n=185, 460), tea (n=119, 313), and apples
and pears (n = 228, 460). The Venn diagram for chocolate products is not shown because only 2 mass spectral features were demonstrated to be significantly
correlated to its acute intake. A broad overlap can be seen between biomarkers of acute and habitual intakes for some foods, particularly for coffee, tea, or redwine,
which are more-regularly consumed in the populations considered. FFQ, food-frequency questionnaire; 24-HDR, 24-h dietary recall.
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of polyphenol-containing foods. More particularly, amounts of
polyphenol biomarkers result from the action of transporters and
phase I and II enzymes forwhich a number of polymorphismshave
been described, and this effect may result in some interindividual
variability in the concentrations of circulating metabolites (37).
Polyphenol metabolites formed by the microbiome were also
shown to be less suitable as biomarkers of intake than were other
polyphenol metabolites because of the variability of the micro-
biome between individuals (38).

The annotation of biomarkers for each of the selected foods
allowed for the attribution of the main clusters (metabolite-me-
tabolite Pearson correlation coefficient .0.3) in the correlation
heatmapof the significantMSfeatures tometabolitesderived from
the 6 foods (Figure 3), each cluster of which was explained by the
co-occurrence of several characteristic polyphenols in each food.
The largest cluster (986 MS features) gathered mass spectral
features that were correlated to coffee intake and included all
identified coffee metabolites (Table 1). The other clusters cor-
responded to redwine, citrus fruit, and tea and chocolate products
with 656, 345, and 102 features, respectively. A small cluster of
MS features derived from apples and pears was also recognized.
A number of features were common to the red wine and tea
clusters and included metabolites such as methylgallic acid (and
its sulfate ester metabolites), which are known to be present in
both dietary sources, or catechin and its gut microbial metabo-
lites (Supplemental Tables 4–9) (36).

We also examined correlation coefficients between all MS
features detected and habitual intakes of the 6 selected foods
assessed through the use of dietary questionnaires at the same
significance level of 1% with Benjamini-Hochberg adjusted P
values (35) and a minimum threshold value of 0.3 for the cor-
relation value. Features correlated with habitual food intakes
were identified for 5 of the 6 foods as follows: coffee: 817
features; red wine: 499 features; citrus fruit: 7 features; tea: 36
features; and apples and pears: 10 features. A large fraction of
the features (70–91% for coffee, tea, red wine, and citrus fruit)
that correlated with acute dietary intake were shown to also
correlate with habitual intake as illustrated in the Venn dia-
grams (Figure 1B). However, the number of features related to
habitual intake was significantly lower for all foods and par-
ticularly for tea, citrus fruit, and apples and pears.

FIGURE 2 Polyphenol metabolites as predictor of food consumption
(24-h dietary recalls). (A) Receiver operator characteristic curves of the most-
highly predictive polyphenol metabolites of the 6 polyphenol-rich foods. (B)
Chemical structures of the followingmost-highly predictivemetabolites: dihy-
droferulic acid sulfate for coffee (AUC: 95.5%), gallic acid ethyl ester for red
wine (AUC: 91.9%), naringenin glucuronide for citrus fruit (AUC: 91.3%), 4-
O-methylgallic acid (AUC: 83.9%) for tea, phloretin glucuronide for apples
and pears (AUC: 75.8%), and methyl(epi)catechin sulfate for chocolate prod-
ucts (AUC: 74.4%). (C) Capacity of all polyphenol metabolites identified to
predict intakes of the following 6 polyphenol-rich foods: coffee (n = 35), red
wine (n = 17), citrus fruit (n = 6), tea (n = 16), apples and pears (n = 4), and
chocolate products (n = 13).

FIGURE3 Metabolite-metabolitecorrelationanalysisof the2272massspec-
tral features correlated to dietary intakes of 6 polyphenol-rich foods (24-h dietary
recalls). The heat map shows clusters for each foodmade of mass spectral features
derivedfrommetabolitesco-occurringinasamefoodandexcretedin thesameurine
samples. Numbers refer to the annotated polyphenol metabolites (Table 1).
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Polyphenol metabolome shows variable profiles according
to country

O-PLS-DAmodels were used to compare metabolic profiles in
the 4 countries by pairs. An examination of the loadings of the O-
PLS-DA models showed that, of the features associated with the
consumption of polyphenol-rich foods, many of the polyphenol
markers were covariant with the country assessed. The most-
contrasted O-PLS-DAmodel was obtained for Germany and Italy
(Figure4). Someof the dietary biomarkers annotated in this study,
particularly those characteristic of coffee, tea, red wine, and citrus
fruit intakes, significantly contribute to the loadings of theO-PLS-
DA S-plots and to the discrimination of German and Italian
populations (Figure 4). This result showed the relatively higher
exposure of theGerman population tometabolites fromcoffee and
tea (Figure4A,D) and thehigher exposureof the Italianpopulation
to red wine and citrus fruit metabolites (Figure 4B, C).

DISCUSSION

The identification of associations between dietary exposure and
diseaseoutcomesreliesontheaccurateestimationofdietaryintake.
Dietary biomarkers have been increasingly used either to validate
other dietary assessment tools such as questionnaires or to com-
plement them(4,39).Still, thenumberofbiomarkers thathavebeen
identified and used in epidemiogic studies is relatively limited (3).
In the current article, we showed that the application of meta-
bolomics to a cross-sectional study with rich dietary information
allowed for the identification of a large number of dietary com-
pounds associated with food intake. This discovery approach ne-
cessitated richdatabaseson foodconstituents and theirmetabolites
to annotate unknownsignals correlated to thediet. Focuswasput in
thisworkonthepolyphenolmetabolomebecauseof theavailability
of thePhenol-Explorerdatabasethatcontains informationon.500
dietary polyphenols and their food sources and on 350 polyphenol
metabolites described in humans or experimental animals. More
than 80 polyphenol metabolites associated with intakes of 6 poly-
phenol-rich foodswere identified, someofwhichshowedanexcellent
capacity to predict intakes of the selected foods (Figure 2). The
chemical nature of 4 of these metabolites, together with the knowl-
edge of their dietary precursors and the distribution in foods of these
precursors (Supplemental Table 11), provided a high level of confi-
dence about the biochemical parentage that links dietary exposure to
the biomarker and contributes to their validation as biomarkers.

The current biomarker discovery approach required rich data on
food constituents and their metabolites as shown in the Phenol-
Explorerdatabaseandalsonecessitatedhigh-qualitydataondietary
intake as was available in the EPIC calibration study (24). The
relatively lownumberofbiomarkers identified for apples andpears
or for chocolate products could have equally reflected the in-
sufficient accuracy of intake measurements for such foods used in
a wide number of recipes made of varying amounts and the com-
positionofingredientsorthelackofthespecificityandsensitivityof
the few phenolic biomarkers identified as previously discussed.

In this work, biomarkers that were correlated with both acute
intakes,asmeasuredwith theuseof24-HDRs,andhabitual intakes,
as estimated with the use of a food-frequency questionnaire, were
identified.Nutritionalepidemiologistsareparticularlyinterestedin
biomarkers of habitual dietary exposure. However the number of
MS features that correlated with habitual intake was significantly
less than those that correlated with acute intake (Figure 2).

A number of elements may explain this difference. First, habitual
food-intake measurements may be less accurate than are acute
intake measurements, mainly because of the longer period of di-
etary assessment (12mo comparedwith 1 d) and the limited number

FIGURE 4 Orthogonal partial least-squares discriminant analysis S plots
showing the contribution of the mass spectral features measured in urine to the
discrimination of the German (n = 175) and Italian (n = 178) populations.
Biomarker characteristics of each selected polyphenol-rich food are high-
lighted in color. (A) Coffee. (B) Red wine. (C) Citrus fruit. (D) Tea. Numbers
refer to the annotated polyphenol metabolites (Table 1). The model reveals the
robust discrimination of the urinary mass spectral data from these 2 countries
with contrasted typical dietary intakes [R2X: 0.21; R2Y: 0.94; Q2(cum): 0.89;
11 31 0 (n predictive components1 n orthogonal components)]. R2X, the
fraction of the variation of the X variables (i.e. MS features) explained by the
model; R2Y, the fraction of thevariation in theYvariable (i.e. country) explained by
themodel;Q2(cum): thecumulativepredictiveabilityof themodel,calculatedas12
the predicted residual sum of squares (PRESS) divided by the sum of squares (SS).

POLYPHENOL METABOLOME IN HUMAN URINE 911

 by guest on O
ctober 17, 2017

ajcn.nutrition.org
D

ow
nloaded from

 

http://ajcn.nutrition.org/


of food items included in the dietary questionnaires. Second, some
foods are characterized by sporadic or seasonal consumption, thus
leading to the quick elimination of polyphenol metabolites in urine,
which is most often complete 24 h after ingestion (40). In agreement
with this last hypothesis, the largest overlap between markers
correlated to acute andhabitual dietary intakemeasurementswere
observed for regularly consumed foods such as coffee, tea, and red
wine (Figure 1B). Therefore, biomarkers identified in this work
should be considered as biomarkers of acute food intake with ap-
plicationsincohortstudieslargelylimitedtoassessexposuresofmost
regularly consumed foods.

The current metabolomic approach was also used to compare
dietary exposure in individuals from the EPIC cohort who origi-
nated from4differentEuropeancountrieswithgreat heterogeneity
of dietary habits. Large differences in urinary metabolic profiles
were observed between the 4 European countries. The most-
contrasted O-PLS-DA model, when countries were compared by
pairs, was obtained for Germany and Italy in agreement with the
known contrast in dietary patterns in Northern and Southern Europe
(Figure 4) (41). This contrast in the urinary MS data are likely
largely explained by differences in diet as suggested by the con-
tribution of the polyphenol metabolites to the O-PLS-DA models
(Figure 4).Wealso checked that thebiomarkers identifiedwerenot
confounded by countries and truly reflected differences in dietary
exposures. Indeed correlation coefficients between amounts of
polyphenol metabolites and food intakes showed minor changes
after adjustment for the country (Supplemental Table 12).

Thesedifferences inmetabolicprofilesbetweencountriescanbe
used to reveal country-specific differences in dietary exposure. A
previous metabolomic study conducted in the International Study
ofMacro/micronutrientsandBloodPressurewith theuseofnuclear
magnetic resonance spectroscopy revealed some differences in
biomarker amounts that could be notably explained by differences
in alcohol (ethanol and ethyl glycoside) and fish (trimethylamine-
N-oxide) consumption in Japanese, Chinese, and American popula-
tions studied (42). However, many more dietary-related biomarkers
can be detected with the far more–sensitive high-resolution MS
technique used in the current work.

The value of a metabolomic approach to compare dietary ex-
posures in different populations is further exemplified by coffee.A
largenumberofphenolicmetabolitesidentifiedinurinewereshown
tobecharacteristicof coffeeconsumption, and feruloylquinicacid,
which is a major polyphenol characteristic of coffee (18, 43), was
identifiedasoneof thebestpredictorsofcoffeeconsumption(Table
1, assignment 3). Concentrations of feruloylquinic acid in urine
showedcountry-specificdifferences, asshowninFigure4A, for the
German and Italian populations that were related to differences in
coffee consumption. Self-reported coffee intake expressed as mL/
ddaywas5 timeshigher inGermanconsumers (mean6SD:6486
378 mL/24 h; n = 150) than in Italian consumers (average: 1346
89 mL/24 h; n = 161), whereas mass spectral intensities of fer-
uloylquinic acid were only 2-fold larger in German coffee con-
sumers (peak-area counts: 2.37310561.593105) than in Italian
coffee consumers (peak-area counts: 1.20 3 105 6 8.66 3 104)
coffee consumers. These differences in the ratio of coffee intake
and biomarker concentrations between Germany and Italy likely
reflected variations in the mode of preparation of coffee brews
(mainly filter coffee in Germany and espresso in Italy) and the
dilution level of coffee drinks. Biomarkers should provide a more
objective and reliable estimate of the exposure to food constituents

and improve the subject classification in epidemiologic studies
that aim to unravel the effects of coffee on disease risk.

Strengths of our study were the diversity of diets in the 4 pop-
ulations studied, the availability of 24-h urine samples, the wealth
andqualityof thedietary informationcollected, thehighsensitivity
of the analytic method used to measure the food metabolome, and
the use of the Phenol-Explorer database to annotate the food
metabolome.Most often in cohort studies, only spot urine samples
are available when urine samples have been collected. The com-
bination of 24-h urine samples with very-rich dietary information
collected on a same day made this study quite unique. The dataset
generated in the current work can bemined to identify biomarkers
forallsortsoffoodsandotherlifestyleexposures.Ourstudyalsohad
some limitations including missing details on intakes for some
foods (e.g., chocolate products) and the tentative identification of
some biomarkers that will need to be confirmed when authentic
standards are available. Another important limitation was that the
design of the current study did not allow us to make the difference
betweenacutebiomarkersrapidlyeliminatedintheurineorbileand
habitual biomarkers with longer half-lives in the organism. Ha-
bitual biomarkers may still be identified through the comparison
of metabolic profiles with habitual dietary intake data, but the
risk of confounding with other associated foods should carefully
be considered.

In conclusion, the current work shows themajor contribution of
the foodmetabolome to the humanmetabolome,more particularly
in urine as a principal route of excretion for by-products of di-
gestion. Each ingested food contributes with its own metabolome
madeof thousandsofnutrients andother chemicals, and thismakes
the food metabolome one of the most complex fractions of the
humanmetabolome (3, 13).Measurement of the foodmetabolome
in future epidemiologic studies should complement or substitute
traditional methods based on questionnaires to improve dietary
exposure assessment. Finally, measurement of the food metab-
olome should facilitate the provision of clearer evidence on the
relations between dietary exposure, food composition, and risk of
major chronic diseases such as cancer, cardiovascular diseases, or
diabetes and shed new light on the causes of such diseases.
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