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 Abstract 
  Background/Aim:  This study hypothesized an association between healthy dietary patterns, 
hypermethylation of the tumor necrosis factor-α  (TNF-α)  promoter and decreased risk of 
metabolic changes.  Methods:  Forty normal-weight young women were involved in this cross-
sectional study. DNA was isolated from white blood cells, and CpG site methylation in  TNF-α  
was analyzed by Sequenom EpiTyper. The quality of the diet was assessed by Healthy Eating 
Index (HEI-2005).  Results:  Contradicting our hypothesis, HEI-2005 score was negatively as-
sociated with CpG5 (r = –0.460, p = 0.003) and  TNF-α  total methylation (r = –0.355, p = 0.026). 
A higher intake of fruits was related to lower insulin, HOMA-IR, and  TNF-α  methylation. No 
other dietary pattern was related to  TNF-α  methylation.  TNF-α  total methylation correlated 
positively with systolic blood pressure (r = 0.323; p = 0.042) and CpG5 methylation with body 
mass index (r = 0.333, p = 0.036). Furthermore, fiber intake was negatively associated with the 
CpG5 (r = –0.324, p = 0.041) and  TNF-α  total methylation (r = –0.434, p = 0.005), whereas vi-
tamin C intake was negatively associated with  TNF-α  total methylation (r = –0.411, p = 0.009). 
Intakes of apples and citrus fruits were negatively associated with  TNF-α  total methylation. 
 Conclusion:  A healthy dietary pattern and higher fruit intake (particularly apples and citrus 
fruits) were related to better glucose tolerance in healthy subjects, which could be mediated 
by lower  TNF-α  methylation.  © 2016 S. Karger AG, Basel 
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 Introduction 

 Healthy dietary patterns and diets rich in fruits and vegetables (FV) are widely recom-
mended as a health promotion strategy due to high concentrations of vitamins, minerals, anti-
oxidants, phytochemicals and dietary fiber  [1] . The occurrence of these foods in the habitual 
diet contributes to explain the ‘fiber hypothesis’, which states that increased fiber intake 
protects against Western diseases  [2] . In this context, several studies have reported an asso-
ciation between FV intake and lower risk of chronic illnesses, such as cardiovascular diseases 
 [3] , oxidative stress  [4]  including lower DNA oxidation  [5] , and inflammation, being the 
expression of inflammatory genes inversely proportional to the consumption of fruits  [6] . A 
dietary pattern rich in fruits and dairy products has also been related to decreased odds of 
impaired blood glucose, hypertriglyceridemia and metabolic syndrome (MetS) risks  [7] . In 
addition, FV have low energy density, making them interesting for body weight management 
 [8] .

  MetS has been defined as a cluster of medical disturbances related not only to increased 
cardiovascular risk and type 2 diabetes, but also to higher mortality  [9] . MetS risk factors 
include diet  [10] , lifestyle  [11] , oxidative stress  [12] , genetics  [13]  and epigenetic mecha-
nisms such as DNA methylation  [14, 15] .

  Chronic inflammation has been proposed as a potential link between excessive weight 
and adiposity and metabolic complications of obesity  [16] . Indeed, tumor necrosis factor-α 
(TNF-α), one of the major mediators of inflammatory response  [17] , is usually overexpressed 
in obesity and with the number of MetS components  [18] , and is upregulated in white adipose 
tissue in obese individuals with insulin resistance  [19] .

  On the other hand, several nutrients and bioactive compounds have been reported to 
affect epigenetic mechanisms involved in gene expression regulation, such as DNA methyl-
ation, thus contributing to the prevention of the development of metabolic disorders  [20] . In 
fact, DNA methylation can be related to MetS phenotypes, and these relationships among 
epigenetics, diet and disease may be a cyclic interplay  [21] .

  Overall, we hypothesized that healthy dietary patterns can change the relationship 
between epigenetic signature and metabolic traits, increasing the DNA methylation of the 
 TNF-α  promoter, and hence, decreasing its expression. Thus, this study aimed to evaluate the 
effect of healthy dietary patterns and food intake on DNA methylation of the  TNF-α  gene in 
white blood cells (WBC) in normal-weight healthy subjects, and the interactions between 
diet, TNF-α methylation and the main features of MetS.

  Subjects and Methods 

 Subjects 
 This cross-sectional study included 40 normal-weight healthy women, university students of Pamplona 

(Navarra, Spain), with a mean age of 21 ± 3 (range: 18–28 years) and a mean body mass index (BMI) of 21.0 
± 1.7 (range: 18.5–24.9). Initial enrollment screening evaluations consisted of a medical history, physical 
examination, and fasting blood biochemistry, to exclude subjects with evidence of any chronic inflammatory, 
heart, or respiratory diseases, as detailed elsewhere  [22] . Other exclusion criteria were hormonal treatment 
or drug prescription affecting glucose metabolism, alcohol and drug dependence, history of recent diet for 
weight loss, or unstable weight in the last 6 months. All followed procedures were in accordance with the 
ethical requirements of the responsible committee on human experimentation (Investigation Ethics 
Committee of the Clínica Universidad de Navarra, No. 79/2005), and with the Helsinki Declaration of 1975, 
as revised in 2000 and later years. Informed consent was obtained from all patients for being included in the 
study.
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  Anthropometry and Body Fat Composition 
 Anthropometric measurements were conducted according to previously described procedures  [22] . 

BMI was calculated as the ratio between weight (kg) and height (m 2 ). Total body fat (%) was estimated by 
the equations of Durnin and Womersley  [23] , using four skinfold thicknesses (biceps, triceps, subscapular, 
and suprailiac).

  Dietary Intake Assessment 
 Dietary intake was assessed with a semiquantitative food frequency questionnaire (136 food items) 

validated for Spanish people  [24] . Nutrient intake was estimated using an ad hoc computer program specifi-
cally developed for this purpose, in which syntaxes that considered food frequency, serving size and food 
composition (amount per 100 g) were set, including the latest available information included in the food 
composition tables for Spain  [25, 26] . Daily energy and nutrient intake were calculated as frequency nutrient 
composition of each portion size for each consumed food item, where frequencies were measured in nine 
frequency categories (6+/day, 4–6/day, 2–3/day, 1/day, 5–6/week, 2–4/week, 1/week, 1–3/month, never 
or almost never) for each food item. All nutrients were adjusted by total energy intake (kcal), using the 
residual method. The daily intake of micronutrients does not include the intake of supplements, which was 
analyzed as a qualitative variable. The participants were assigned to two groups (low and high fruit intake) 
according to the median of fruit intake (293.4 g/day). The median cutoff criteria have been previously applied 
 [27]  based on a valid and reliable method to assign two groups of risk in epidemiological studies  [28] . Medi-
terranean dietary pattern  [29]  and Healthy Eating Index (HEI-2005) scores  [30]  were calculated to evaluate 
the quality of diet. HEI is a measure of diet quality based on the food group recommendations, such as fruit, 
vegetables, grains, dairy foods, meat and beans, oils, saturated fat, sodium and calories of fats, alcohol and 
added sugar  [30] .

  Blood Pressure and Biochemical Assessments 
 Systolic and diastolic blood pressures were measured following the WHO criteria  [31] . Venous blood 

samples were drawn after a 12-hour overnight fast. EDTA (ethylenediamine tetraacetic acid) plasma and 
WBC were separated from whole blood by centrifugation at 3,500 rpm, at 5   °   C for 15 min (model 5804R; 
Eppendorf, Germany), and immediately frozen at –80   °   C until assay (WBC in buffy coat). Serum concentra-
tions of triglycerides, total cholesterol, high-density lipoprotein cholesterol, glucose and insulin were 
measured by standard methods as previously described  [32] . The plasma low-density lipoprotein cholesterol 
data were calculated using the Friedewald equation  [33] . Insulin resistance was estimated by the HOMA-IR 
(homeostatic model assessment – insulin resistance), through the following calculations: HOMA-IR = [fasting 
glucose (mmol/l) × fasting insulin (lU/ml)]/22.5, as described elsewhere  [34] . Plasma concentrations of 
high-sensitive TNF-α were measured using enzyme immunoassay-based kits (R&D Systems, Minneapolis, 
Minn., USA) by means of an automated analyzer system (Triturus; Grifols, Barcelona, Spain).

  DNA Isolation and Methylation Assays 
 DNA from WBC was isolated by using the Master Pure kit (Epicenter, Madison, Wis., USA). DNA quality 

was assessed with PicoGreen dsDNA Quantitation Reagent (Invitrogen, Carlsbad, Calif., USA) and treated 
with sodium bisulfite (EZ DNA methylation kit; Zymo Research, Orange, Calif., USA) following the manufac-
turer’s protocols.

  The quantitative analysis of the 5-methylcytosine levels of the  TNF-α  gene promoter was performed 
with Sequenom EpiTyper (Sequenom, San Diego, Calif., USA), which relies on base-specific cleavage followed 
by MALDI-TOF mass spectrometry, as described elsewhere  [35] . Bisulfite-treated genomic DNA was amplified 
using two pairs of primers: 5 ′ -GGGTATTTTTGATGTTTGTGTGTTT-3 ′  (forward) and 5 ′ -AAAAATCTCCCTTCTC-
CACTCACAA-3 ′  (reverse), designed to amplify 20 CpG sites located between nucleotides –170 to +359 of the 
 TNF-α  gene  [36] .

  RNA Extraction and Expression Analysis 
 Total RNA from WBC was extracted with Trizol reagent (Invitrogen) and subsequently treated with 

DNase (DNA-free kit; Ambion/Applied Biosystems, Austin, Tex., USA) as previously described  [37] . Quanti-
tative real-time PCR was performed in an ABI PRISM 7000 HT Sequence Detection System (Applied 
Biosystems, Foster City, Calif., USA). Taqman probes for  TNF-α  were also supplied by Applied Biosystems. 
Gene expression levels were normalized by using 18s rRNA as internal control and calculated with the 2 –ΔΔCt  
method  [38] .
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  Statistical Analysis 
 Results are reported as mean ± SD, and the normality condition was determined by the Shapiro-Wilk 

test. Statistical comparisons between groups were performed by Student’s t test or the Mann-Whitney U test, 
as appropriate. Pearson and Spearman correlations were fitted to evaluate the potential correlations of 
 TNF-α  promoter methylation with anthropometric or metabolic features and dietary factors. The χ 2  test was 
used to evaluate the association between low/high intake of fruits and categorical variables of interest 
(vitamin and mineral supplementation and physical activity). Subjects were also categorized according to the 
tertiles of orange/tangerine intake. One-way ANOVA was performed to determine means differences, and 
polynomial contrasts for trend analyses. Statistical analyses were performed with the SPSS 15.0 software 
(SPSS Inc., Chicago, Ill., USA). A p value < 0.05 was considered as statistically significant.

  Results 

 Subject’s features below or above the median of fruit intake per day were similar in 
relation to age, vitamin and mineral supplementation and physical activity practice. However, 
those with a higher FV intake showed lower fasting insulin concentration and HOMA-IR. There 
was no difference in  TNF-α  expression in relation to fruit intake or another group of foods 
( table 1 ).

  Subjects with a higher intake of fruit showed lower total methylation percentage of the 
 TNF-α  gene and CpG5 of the region analyzed ( fig. 1 ). A trend towards significance (p < 0.1) was 
also observed in CpGs 14 and 19.  TNF-α  total methylation ( TNF-α  total) was related to higher 
systolic blood pressure, and CpG5 methylation was associated with higher BMI values ( fig. 1 ).

 Table 1.  Sample characterization according to median of fruit intake per day and associations between fruit 
intake and supplementation and physical activity

Variables Low intake
(≤293.4 g/day)

High intake
(>293.4 g/day)

p value

Age, years 20.7 ± 2.5 20.7 ± 2.3 0.948
BMI 21.2 ± 1.6 20.8 ± 1.9 0.433
Body fat, % 22.2 ± 4.7 20.7 ± 5.1 0.344
Waist circumference, cm 68.3 ± 4.6 67.8 ± 4.9 0.717
Glucose, mg/dl 80.9 ± 7.3 78.4 ± 5.7 0.237
Insulin, μU/l 8.36 ± 2.72 6.01 ± 3.39 0.020*
HOMA-IR index 1.69 ± 0.60 1.16 ± 0.68 0.014*
TC, mg/dl 178 ± 25 183 ± 28 0.618
LDL cholesterol, mg/dl 102 ± 19 106 ± 25 0.536
HDL cholesterol, mg/dl 64 ± 13 63 ± 12 0.830
TC/HDL ratio 2.85 ± 0.54 2.96 ± 0.59 0.545
Triglycerides, mg/dl 62.9 ± 23 65.9 ± 23.4 0.687
NEFA, mmol/l 0.48 ± 0.25 0.42 ± 0.18 0.382
Systolic BP, mm Hg 113.2 ± 10.0 107.2 ± 9.8 0.063
Diastolic BP, mm Hg 63.5 ± 6.3 64.5 ± 8.7 0.680
TNF-α, pg/ml 2.36 ± 3.9 0 2.37 ± 2.71 0.992
TNF-α mRNA (RE) 1.87 ± 0.53 1.81 ± 0.56 0.712
Vitamin/mineral suppl. (yes) 5 11 0.053
Physical activity (yes) 8 13 0.113

 NEFA = Nonesterified fatty acids; TC = total cholesterol; BP = blood pressure; RE = relative expression; 
suppl. = supplementation. Results are shown as mean ± SD or frequency (n) of occurrence. p values from 
Student’s t tests for means tests and from the χ2 test for associations. * p < 0.05.
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   TNF-α  total methylation was inversely correlated with fruit fiber and vitamin C (p = 0.005 
and 0.009, respectively) ( fig. 2 ), while the methylation levels of CpG5 were correlated with 
fiber (r = –0.32; p = 0.041).

  Other food groups and nutrients did not correlate with CpG5 and  TNF-α  total methyl-
ation, except for HEI-2005, which was negatively associated with the methylation levels of 
both regions, and whole cereals, which showed a trend towards significance ( table 2 ). Orange/
tangerine and apple intakes were particularly closely associated with both CpG5 methylation 
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  Fig. 1.  Methylation (%) of 17 CpGs sites located in the  TNF-α  gene.  a  DNA methylation according to the me-
dian of fruit intake (293.4 g/day).  b  Correlation of the methylation levels of different CpGs and anthropomet-
ric/metabolic features. SBP = Systolic blood pressure. 

  Fig. 2.  Correlations between  TNF-α  total methylation and some nutrients present in fruits. 
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( fig. 3 ) and  TNF-α  total methylation (p for trend: 0.000 and 0.002, respectively). In fact, 
orange/tangerine and apple were the most consumed fruits by these participants (83.1 and 
74.1 g/day, respectively).

  Discussion 

 The encouragement to consume more FV is not a new strategy for health promotion  [39] . 
In this sense, our results reveal that the higher intake of fruits was related to lower fasting 
insulin levels and HOMA-IR values, which means a better glucose tolerance in these healthy 
subjects. FV intake has been previously related to lower insulin resistance and MetS  [40] , and 
several biomarkers of FV intake, such as carotenoids and vitamin C, have been negatively 
associated with glycemia, serum insulin concentrations and glycosylated hemoglobin (HbA 
1c) levels  [41, 42] .

  As low-grade inflammation is involved in the development of insulin resistance, the 
effect of changing dietary habits (particularly higher consumption of fruits) on chronic 

 Table 2. Correlations between healthy food groups and CpG5 and TNF-α total methylation

Food group intake  CpG5 methylation (%) Total methylation (%)

 R p R p

Vegetables (g/day) –0.143 0.379 –0.216 0.180
Legumes (g/day) –0.245 0.128 –0.137 0.400
Nuts (g/day) –0.104 0.523 –0.014 0.932
Natural juice (g/day) –0.037 0.822 –0.030 0.855
Cereals (g/day) –0.022 0.894 –0.116 0.477
Whole cereals (g/day) –0.195 0.227 –0.276 0.084
Mediterranean dietary pattern –0.162 0.318 –0.227 0.159
HEI-2005 –0.460 0.003* –0.355 0.026*

p values from Spearman or Pearson coefficient correlations, as appropriate. * p < 0.05.

p for trend = 0.004
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  Fig. 3.  CpG5 and  TNF-α  total methylation in relation to the tertiles of orange/tangerine daily intake. Different 
letter indicates statistical differences between the tertiles of intake. p for trend was determined by ANOVA 
with polynomial contrasts.  
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inflammation may be one of the protective mechanisms regarding metabolic disorders  [43] . 
Hotamisligil  [44]  reported that the insulin receptor is an important target for   TNF-α, and that 
this cytokine may be involved in the switch of tyrosine to serine phosphorylation. In this 
context, a beneficial effect of FV, in particular fruits, has been already described in relation 
to oxidative stress  [5, 45]  and inflammation  [6, 46] . For example, it has been reported that a 
high FV intake reduces interleukin-6 and TNF-α concentrations and is associated with higher 
antioxidant capacity in plasma  [46–48] . These effects are mainly attributed to antioxidants 
and bioactive compounds found in FV, especially vitamin C and fiber  [49] , which corrobo-
rates our results.

  The beneficial effect of FV consumption on inflammation can be observed even at the 
molecular level, for example with a reduced expression of inflammatory markers  [6] , and 
could be regulated by epigenetic factors. For example, changes in dietary habits including 
fruit intake have been positively associated with epigenetic modifications, such as changes in 
LINE-1 DNA methylation  [50]  or a lower prevalence of DNA hypomethylation, an association 
that was dose dependent  [51] . Changes in the methylation levels of specific gene promoters 
may regulate the expression of genes by modifying the interaction of transcription factors 
and methyl-DNA-binding proteins  [52] . In this sense, our results reveal that  TNF-α  promoter 
methylation is related to healthy dietary patterns, especially to higher fruit intake. Citrus 
fruits and apples, the main fruits in our study, are rich in fiber and vitamin C. Dietary fiber 
content is considered to have a beneficial effect on inflammation  [53] . Krishnamurthy et al. 
 [54]  found that, for each 10 g/day increase in total fiber intake, the odds of elevated serum 
C-reactive protein (CRP) levels were decreased by 11 and 38% in those subjects without and 
with chronic kidney disease, respectively. Fiber intake was negatively associated with visceral 
adipose tissue, CRP and fibrinogen, and positively associated with adiponectin in adolescents 
 [55] . Fiber intake can even reverse the side effects of a high-fat, high-carbohydrate meal on 
inflammatory markers, endotoxemia and oxidative stress in normal-weight subjects  [56] . 
However, no other food groups also rich in dietary fiber, such as vegetables, legumes, nuts 
and whole cereals, were associated with  TNF-α  methylation, showing a specific effect of fruit 
intake, and maybe, an interaction between nutrients in the food matrix. Several dietary 
components found in vegetables, such as sulforaphane and flavonoids, have been reported to 
influence DNA methylation levels  [57, 58] . On the other hand, some polyphenols like curcumin, 
resveratrol and catechin can modulate NF-κB action and chromatin remodeling and, hence, 
the inflammatory response through DNA methyltransferase (DNMT) action  [59] .

  Our hypothesis was that the higher intake of ‘healthy food’, like FV, could result in a 
hypermethylation of the  TNF-α  promoter, and hence, in a lower expression of this cytokine. 
However, we found the opposite outcome, since the higher intake of fruit was related to 
positive metabolic effects but no changes in circulating TNF-α and  TNF-α  mRNA levels, and  
TNF-α  promoter hypomethylation in WBC. It is not known whether these mechanisms are 
similar in patients with established metabolic disorders and healthy subjects. Moreover, 
some studies have also reported that, although DNA methylation of the cytosine in the CpG 
dinucleotide is typically associated with gene silencing, CpG promoters can be both meth-
ylated and transcriptionally active due to an increase in the binding of transcription factors 
in a methylation-dependent manner  [60, 61] , and that promoter sequence and gene function 
are major predictors of promoter methylation states  [62] . In this sense, a study that evaluated 
the effect of Roux-en-Y gastric bypass on  TNF-α  methylation reported a decrease in  TNF-α  
promoter methylation in whole blood that was accompanied by a reduction in TNF-α   plasma 
levels, with no significant correlation between both features  [63] . A bioinformatic analysis 
 [64]  revealed that the CpG5 site in the promoter of  TNF-α  comprises the binding sequences 
of STAT4, which regulates the differentiation of T CD4+ cells, c-ETS that controls the expression 
of cytokines and chemokines, and ELK, an ETS family member.
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  Confirming these findings, there was no difference in  TNF-α  mRNA and TNF-α plasma 
concentration between the groups, and neither fruit intake nor DNA methylation status were 
related to  TNF-α  expression, showing that  TNF-α  promoter hypomethylation was not followed 
by an increase in  TNF-α  expression in WBC, and that other regulatory mechanisms could be 
involved, such as histone modifications  [65] , noncoding RNA, enhancer function  [66] , poly-
morphisms  [67]  and others. In fact, several investigations reported that there is not a simple 
association between DNA methylation and gene expression  [68, 69]  and that dietary influence 
on DNA methylation, and hence on metabolic features, can be unexpected  [70] . In fact, two 
possible DNA methylation regulatory mechanisms with opposite modes of gene expression 
regulation have been proposed  [71] : (1) tissue-specific differentially methylated regions are 
negatively correlated with the expression of their associated genes, and (2) the occurrence of 
negative regulators, such as transcriptional repressors that exhibit specific binding to meth-
ylated DNA motifs, causes a positive correlation between gene methylation and gene 
expression. Moreover, just as different mechanisms may influence the expression of a gene, 
these same mechanisms may influence the methylation itself  [72] . This type of interaction can 
also be observed in relation to the nutrients. Several phytochemicals related to the reduction 
of inflammatory processes also appear to influence the expression of DNMT genes, interfering 
with the target gene de novo methylation. For example, in a study with human breast cancer 
cells, epigallocatechin gallate, genistein, withaferin A, curcumin, resveratrol and guggulsterone 
resulted in a significant decrease in DNMT1, DNMT3a and DNMT3b transcripts  [73] . A similar 
effect was found with other polyphenols  [74]  and sulforaphane  [75] . Thus, FV intake would 
be influencing the methylation of the  TNF-α  gene promoter (as well as other genes), and not 
necessarily, the circulating levels of this protein.

  Specific foods and nutrients found in FV can also influence DNA methylation  [20] . In the 
current study, promising effects were found in relation to the consumption of apples and the 
orange/tangerine/grapefruit group. In this context, it has been described that apple poly-
phenol dietary supplementation in rats inhibited adipocyte hypertrophy and enhanced lipo-
lytic response through the regulation of genes involved in adipogenesis, lipolysis and fatty 
acid oxidation, which could be mediated, in part, by changes in DNA methylation  [76] . The 
anti-inflammatory effects of orange juice were reviewed by Coelho et al.  [77] , who reported 
that the modulation of inflammatory markers by orange juice consumption can be due to 
bioactive compounds, such as the flavonoids hesperidin and naringenin. On the other hand, 
mice supplemented with grapefruit extract (rich in naringenin and kaempferol) showed a 
significant decrease in fasting glucose levels, which was accompanied by a lower mRNA 
expression of some proinflammatory genes (monocyte chemoattractant protein-1  – MCP-1 , 
 TNF-α ,   cyclooxygenase-2  – COX-2 ,  nuclear factor-κB – NF-κB )   in the liver and epididymal 
adipose tissue  [70] . In that study, the CpG3 site of  TNF-α  showed higher methylation in the 
grapefruit group compared with the nontreated group, suggesting that DNA methylation 
changes in  TNF-α  in adipose tissue might help reduce the inflammation associated with 
diabetes and obesity  [70] , which corroborates our findings.

  The present study has some limitations, such as the sample size, the lack of data about 
WBC distribution (granulocytes, monocytes and lymphocytes) and the cross-sectional design, 
but it is very conclusive in determining the positive effects of fruit intake even in apparently 
healthy normal-weight subjects and the occurrence of epigenetic changes in proinflammatory 
genes that could be related to these beneficial effects. However, this relationship between 
fruit intake and DNA methylation in inflammation-related genes should also be investigated 
in longitudinal and clinical studies.

  In conclusion, a healthy dietary pattern and higher daily fruit intake are related to better 
glucose tolerance and lower methylation of  TNF-α  in WBCs, and fiber and vitamin C from 
fruits are putatively involved in this relationship.
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