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Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin
(GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite pro-
files and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid
(ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites
with known structures were detected and the change of metabolite during germination was time- and
genotype dependent. Sugars and amino acids were the most dramatically changed compounds.
Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites,
especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley
accessions. The current study is the first attempt in investigating the effect of hormones on metabolite
profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination
or malt quality.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Barley is a most widely used cereal crop for brewing industry,
and malting is an essential step for the production of beer and
wines. During malting, the enzymes related to starch degradation
are developed or activated. Under the coordinative actions of these
starch-degrading enzymes, including a-amylase, b-amylase, limit
dextrinase (LD) and a-glucosidase, starch as well as other polysac-
charides in the endosperm of the germinating grains is degraded
into monosaccharide, mainly glucose for further fermentation
(Manners, 1974). Therefore high activities of these hydrolytic
enzymes are favorable for complete degradation of starch and
polysaccharides, leading to high malt extract, an important quality
trait for malt barley.

It is commonly known that addition of GA could promote ger-
mination of barley grains during malting (Himmelbach, Iten, &
Grill, 1998; Ritchie & Gilroy, 1998), which is attributed to enhanced
synthesis and secretion of the enzymes related to seed germination
(Bewley & Black, 1994). In the brewing industry, GA is frequently
used for increasing activities of a-amylase and LD, thereby improv-
ing the malting quality (Chandler, Zwar, Jacobsen, Higgins, & Inglis,
1984; Hader, Rikiishi, Nisar, & Noda, 2003). On the other hand,
ABA, as an antagonist of GA, inhibits seed germination (Frank,
Scholz, Peter, & Engel, 2011). Chen and An (2006) used microarray
analysis to investigate the transcriptional changes of barley aleu-
rone in responses to GA and ABA treatments and detected more
than 2200 genes, in which 1328 and 206 genes showed over three-
fold change under GA or ABA treatment. However, little effort has
been done to study the impact of GA or ABA treatment on metabo-
lites including sugars, amino acids or organic acids in geminating
barley grains.

The measurement of small metabolites has been facilitated by
the development of gas chromatography–mass spectrometry
(GC–MS) technology. Hence the metabolite profile of a single sam-
ple can be obtained, which may allow us to make insight into the
metabolic processes in response to germinating conditions, such
as addition of GA and ABA (Fiehn, 2002; Goodacre, Vaidyanathan,
Dunn, Harrigan, & Kell, 2004). So far, GC–MS has been successfully
applied in the studies on plant tolerance to abiotic stresses such as
phosphate deficiency (Huang et al., 2008), salinity (Yousfi, Rabhi,
Hessini, Abdelly, & Gharsalli, 2010) and drought (Guo et al.,
2009). Frank et al. (2011) investigated the metabolites profiles of
barley whole seeds during micro-malting, and Gorzolka, Lissel,
Kessler, loch-ahring, and Niehaus (2012) conducted metabolomic
analysis on barley malting at industrial scale.

In the modern barley breeding, narrower genetic diversity has
become a bottleneck of developing the new cultivars with high
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biotic and abiotic stress tolerance, and better malt quality.
Comparatively, wild barley is much wider in genetic diversity
and regarded as an elite source of genes for crop improvement
(Ellis et al., 2000). Recently, Tibetan wild barley is proved to be rich
in genetic diversity of stress tolerance and barley quality. For
instance, in comparison with cultivated barley, the wild barley
shows greater variation in HvGlb1, encoding b-glucanase isoen-
zyme (Jin et al., 2011), b-amylase activity (BAA) and b-amylase
thermostability (BAT) (Zhang et al., 2014). In the previous studies
(Jin et al., 2011; Zhang et al., 2014), we found that XZ72 and
XZ95 have higher activities of starch-degrading enzymes. So the
two Tibetan wild barley accessions were used in this study.

In this study, a GC–MS-based strategy was used to investigate the
impact of GA and ABA additions on metabolite profiles in the germi-
nating seeds of the two Tibetan wild barley accessions during malting.

2. Materials and methods

2.1. Malting procedure

Two Tibetan wild barley accessions, i.e. XZ72 and XZ95 were
malted in Joe White Malting System (Adelaide, SA, Australia). The
malting procedures were as below: (1) Steeping stage: 5–8–8–1
2–4–5–2 h (wet–dry–wet–dry–wet–dry–wet); (2) Germination
stage: 96 h at 16 �C. GA (0.5 ppm) or ABA (0.5 ppm) was added at
the last wet stage during steeping by adding them into individual
containers. Seed samples were collected at 24 h, 48 h, 72 h and
96 h after germination, and freeze dried, and then grinded for fur-
ther analysis.

2.2. Determination of enzyme activity and b-glucan content

The activities of a-amylase, b-amylase, b-glucanase and limit
dextrinase, and b-glucan content in the collected samples were
measured using Megazyme assay kits (Megazyme International,
Bray, Ireland), according to the manufacture’s manual instruction.

2.3. Metabolite extraction

The grain samples collected at 0 h, 48 h and 96 h during malting
were used for metabolic analysis. The metabolites were extracted
according to Gorzolka et al. (2012). The pestled samples of 10 mg
was homogenized using a ribolyzer (3 � 45 s, 6.5 m/s) and 1 ml
of 80% methanol containing 10 lM ribitol as internal standard.
Totally 750 ll of supernatant was dried in a vacuum freeze dryer
and the dried sample was derivatized at 37 �C by adding 100 ll
methoxyamine-hydrochloride (20 mg/ml in pyridine, Sigma–
Aldrich) for 90 min and afterwards 100 ll MSTFA (Sigma–
Aldrich) for 30 min.

2.4. GC–MS analysis

The extracted samples were determined for metabolites by
6890N GC/5975B MSD (Agilent, USA). The temperature-rising pro-
gram was as follows: 80 �C for 3 min, 5 �C/min rate up to 300 �C,
2 min for 300 �C. Mass spectra of eluting compounds were identi-
fied using the commercial mass spectra library NIST (http://
www.nist.gov) and the Golm Metabolome Database of the Max
Planck Institute of Molecular Plant Physiology, Germany. (http://
csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/gmd_msri.html).

2.5. Data analysis and statistics

Principle component analysis (PCA) of the identified metabo-
lites was conducted using Simca-P v13.0 (http://www.
umetrics.com/simca). Heatmap analysis was conducted using
Excel 2007.
3. Results

3.1. The changes of degrading enzymes activities and b-glucan content
as affected by GA and ABA treatments during germination

The changes of degrading enzyme activities and b-glucan con-
tent in the germinating grains of the two barley accessions were
determined every day during germination. The activities of the
enzymes, including a-amylase, b-glucanase and LD showed the
dramatic increase, while b-amylase activity remained little change.
Meanwhile, b-glucan content declined greatly during germination
(Fig. 1a–e).

GA treatment markedly increased the activities of a-amylase,
b-glucanase and LD in both barley accessions, but had little effect
on b-amylase activity and b-glucan content (Fig. 1a–e). By contrast,
ABA treatment caused a significant reduction in b-glucanase activ-
ity by 40–50% after 4 d germination (Fig. 1c). Interestingly,
b-amylase activity in XZ95 was markedly reduced from 1 d to 3 d
of germination, while XZ72 showed slight reduction after 3 d treat-
ment (Fig. 1b). In addition, ABA significantly inhibited degradation
of b-glucan in XZ72, but had relatively small effect on that in XZ95
(Fig. 1e).

Moreover, it is wealthy noted that XZ72 has constantly higher
activities of a-amylase, b-glucanase and LD than XZ95 in both con-
trol and GA treatment after 2 d germination (Fig. 1a, c, and d).
Although GA increased activities of all examined degrading
enzymes, the difference between the two barley accessions was
distinct, with XZ 95 having much lower activities of b-glucanase
and LD than XZ72 (Fig. 1c and d). By contrast, XZ72 had lower
b-amylase activity and b-glucan content in comparison with
XZ95 (Fig. 1b and e).

3.2. The changes in metabolite profiles during germination and their
response to GA and ABA treatments

Totally 52 metabolites with known structure, including 19 sug-
ars, 15 organic acids, 15 amino acids and 3 other compounds, were
identified. A principal component analysis (PCA) of the total meta-
bolic data revealed the difference in metabolite profiles among
samples (Fig. 2). The largest difference was found among the sam-
ples collected in different germinating time, as shown by the com-
plete separations among metabolic samples in PCA, indicating that
considerable metabolic changes happened during germination. The
similar metabolite profiles could be found in XZ72 and XZ95 at the
beginning of germination (0 d), and then the difference became lar-
ger with germination, suggesting the genotypic difference in
metabolite change pattern or rate during germination. Clear sepa-
ration among the treatments (CK, GA and ABA) was also detected
in XZ72 after 2 d and 4 d germination, indicating that both GA
and ABA treatments substantially affect germinating pattern.
Moreover, the treatments had less effect on metabolites in XZ95,
especially after 4 d germination, indicating the genotypic differ-
ence in the responses to two hormones during germination.

3.3. The responses of metabolites to GA and ABA treatments

According to Heatmap analysis, most of sugars or sugar deriva-
tives, including sucrose, glucose, galactose, xylose, gentiobiose, tre-
halose, ribonic acid and xylitol were significantly increased, while
raffinose and 2-keto-gluconic acid showed dramatic decrease dur-
ing germination (Fig. 3). Meanwhile, most of amino acids
increased, but glycine and alanine concentrations were reduced
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Fig. 1. Variation in the activities of a-amylase, b-amylase, b-glucanase and limit dextrinase, and b-glucan content in micro-malted barley.

Fig. 2. Principle component analysis (PCA) of metabolite profiles.
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during germination. A dramatic decrease was observed for some
organic acids, such as pyruvic acid, malonic acid, fumaric acid
and a-ketoglutaric acid, while some other organic acids showed
increase, including citric acid, quinic acid, isocitric acid and
2-aminobutyric acid (Table 1).

At the initiation of seed germination, all samples showed the
similar levels of metabolites. However, higher metabolite level
could be detected in XZ72 than in XZ95 for both control and GA
treatment after 4 d germination. XZ72 had significantly higher con-
centrations of most sugars and amino acids, including glucose,
galactose, xylose, gentiobiose, trehalose, isomaltose, ribonic acid,
erythritol, threonine, serine, valine, norleucine, pyroglutamic acid,
proline, methionine, phenylalanine, ornithine and tryptophan, in
GA treatment than in control after 4 d germination. However,
XZ95 had little difference in most metabolites between control
and GA treatment, although a slight increase could be found for
some organic acids in the GA-treated samples. It may be suggested
that GA treatment improved germination, as reflected by increased
levels of sugars and amino acids, but the influence of GA treatment
on germination is genotype-dependent. The finding is basically
consistent with the results reached by PCA analysis. On the con-
trary, the concentrations of most metabolites were lower in ABA
treatment than in control and GA treatment, indicating that ABA
inhibits seed germination.

4. Discussion

In the current study, XZ72 and XZ95 showed similar trend in
starch degrading enzymes activities and b-glucan content as
affected by GA and ABA treatments (Fig. 1), but the differences
between two cultivars became predominant during germination.
The metabolites of XZ72 and XZ95 had the similar content at the
very beginning of germination, and differed between the two geno-
types when the germination entered the second day (2 d). XZ72
had significantly higher metabolite level than XZ95 at the 4 d of
germination (Fig. 3). The enzymes activities showed the consistent
changes as metabolites.



Fig. 3. Heatmap of metabolites at different stages of germination. The darker of the color means the higher abundance of the metabolites. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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We found that under the normal condition without addition of
GA or ABA, most of the sugars, sugar derivates and amino acids
increased during germination, being consistence with the observa-
tions in other metabolome studies on barley and rice (Frank et al.,
2011; Gorzolka et al., 2012; Howell et al., 2008; Shu, Frank, Shu, &
Engel, 2008). The increased levels of sugars and amino acids can be
attributed to the raised activities of starch-degrading and prote-
olytical enzymes (Briggs, 1998; Evans, Li, & Eglinton, 2008;
Evans, Li, Harasymow, Roumeliotis, & Eglinton, 2009), as reflected
by the increased activities of a-amylase, b-amylase and LD (Fig. 1).

However, a few sugars showed the decrease, with raffinose hav-
ing a dramatic decrease. Raffinose was known as a contributor of
energy supply at the beginning of germination, and blocking of raf-
finose breakdown inhibits seed germination (Blochl, Peterbauer, &
Richter, 2007). Fructose and inositol are two other metabolites in
sugar group showing gradual decrease during germination (Fig. 3),
and can react to build sucrose and galactinol, respectively
(Gorzolka et al., 2012), thus explaining the reduction of inositol
and raffinose, and increase of galactinol. However, different trend
of fructose and inositol was observed in other metabolome study
on germinating barley seeds, in which these metabolites showed
increase at early stage of germination, reached a peak at mid-term
stage, and declined gradually at late stage (Gorzolka et al., 2012).
The inconsistency in these experiments may be attributed to the dif-
ference in malting procedure, such as soaking time, temperature,
moisture and so on, but it need to be confirmed by further studies.

Malic acid and citric acid were the only two organic acids with
high abundance in TCA cycle (Frank et al., 2011; Gorzolka et al.,



Table 1
The change of identified metabolites by GC–MS of different treatment compared with CKs were listed as below.

X72-0 d X72-2 d X72-4 d X95-0 d X95-2 d X95-4 d

GA/CK ABA/CK GA/CK ABA/CK GA/CK ABA/CK GA/CK ABA/CK GA/CK ABA/CK GA/CK ABA/CK

Sugar Erythritol 1.226 1.436 2.964 1.771 1.198 0.472 1.534 1.131 0.992 1.531 1.083 0.893
Xylose 0.942 0.702 1.208 0.622 1.541 0.694 1.098 1.061 1.227 0.429 1.287 0.326
Xylitol 1.243 0.888 0.855 1.299 0.985 1.253 1.097 1.217 0.957 0.779 0.829 0.726
Ribonic acid 1.160 0.912 0.681 0.924 1.010 0.580 1.136 0.974 1.022 0.943 0.540 0.450
2-Keto-gluconic acid 1.485 1.263 0.782 0.899 0.959 0.826 1.115 1.551 0.882 0.837 0.837 0.779
Mannitol 1.220 0.940 0.738 0.735 0.842 0.984 1.047 1.007 1.016 0.806 0.812 1.085
Galactitol 0.947 0.752 0.836 0.884 0.641 1.544 1.134 1.020 0.809 1.410 0.934 1.225
Trehalose 1.005 0.791 0.802 0.677 1.330 0.631 1.015 0.936 1.347 0.904 1.213 0.505
Inositol 1.044 0.952 0.596 0.570 1.004 0.998 1.084 1.057 1.008 0.947 0.878 0.850
Glucose-6-P 3.522 1.650 0.573 0.172 1.413 0.430 1.628 0.869 1.479 0.502 0.675 0.488
Inositol-2-P 1.015 0.931 0.588 0.506 1.127 0.601 1.092 1.217 1.005 0.788 0.971 0.588
Gentiobiose 0.944 0.556 0.630 0.286 1.361 0.211 0.937 0.978 1.408 0.600 2.216 0.277
Isomaltose 0.000 0.000 0.694 0.092 1.687 0.165 0.000 0.000 1.528 0.404 1.806 0.336
Galactinol 0.000 0.000 0.579 0.368 0.766 0.502 0.000 0.000 0.455 0.628 0.468 0.713
Fructose 1.136 0.936 0.739 0.460 0.996 0.452 1.046 1.097 1.062 0.738 1.045 0.703
Glucose 0.973 0.898 0.914 0.735 1.081 0.751 0.962 0.948 1.144 0.926 1.162 0.699
Galactose 0.818 0.703 0.890 0.692 1.164 0.704 1.089 1.139 0.981 0.896 0.984 0.596
Sucrose 0.924 0.840 0.595 0.621 0.992 1.034 0.964 1.019 1.004 1.037 0.878 0.890
Raffinose 1.209 1.328 0.000 0.000 0.000 0.000 0.772 1.154 0.000 0.000 0.000 0.000

Amino Acid Alanine 1.226 1.055 1.939 2.031 0.953 0.664 1.114 0.910 1.017 1.147 1.068 0.669
Valine 1.224 1.012 1.247 0.935 1.197 0.696 1.009 0.973 1.125 0.945 1.210 0.819
Norleucine 1.201 1.008 1.525 0.838 1.439 0.567 0.955 1.003 1.285 0.867 1.518 0.686
Glycine 1.124 1.050 1.231 0.977 1.115 0.670 1.028 1.073 1.041 0.863 1.096 0.739
Serine 1.057 0.932 0.805 0.558 1.250 0.661 1.065 0.987 1.191 0.924 1.350 0.690
Threonine 1.078 0.881 0.812 0.531 1.242 0.591 1.013 1.034 1.164 0.942 1.372 0.752
Beta-alanine 1.066 1.026 0.996 1.008 0.945 0.990 1.172 1.199 0.762 0.740 0.770 0.973
Methionine 1.449 0.823 1.184 0.634 1.418 0.406 1.306 0.937 1.543 1.021 1.730 0.546
Pyroglutamate 1.065 1.000 0.950 0.628 1.291 0.723 1.086 1.177 1.152 0.794 1.076 0.690
Aspartate 1.503 0.706 0.530 0.437 1.261 0.580 1.843 0.941 1.574 1.460 1.214 0.972
Phenylalanine 0.963 1.622 0.964 0.504 1.460 0.520 1.281 1.056 1.315 0.962 1.261 0.580
Glutamate 5.888 2.051 0.674 0.559 1.268 1.486 1.232 0.906 1.367 1.005 0.674 1.000
Ornithine 0.000 0.000 1.627 0.962 1.285 0.953 0.000 0.000 1.242 0.819 0.687 0.429
Tryptophan 0.000 0.000 0.000 0.000 1.136 0.764 0.000 0.000 0.000 0.000 0.817 0.584
Proline 1.085 0.920 1.510 1.073 1.176 0.741 0.888 1.016 1.265 1.134 1.177 0.687

Organic acid Pyruvic acid 0.905 0.749 0.000 0.000 0.000 0.000 1.019 0.770 0.000 0.000 0.000 0.000
Lactic acid 1.126 0.873 0.992 2.904 0.573 0.565 0.986 1.114 0.614 2.038 1.000 0.375
Oxalic acid 1.102 1.679 6.220 3.897 1.022 0.937 1.124 1.118 1.020 0.921 1.611 1.315
2-Aminobutyric acid 0.000 0.000 0.000 0.000 1.023 0.954 0.000 0.000 0.000 0.000 1.177 0.900
Malonic acid 0.982 0.588 1.062 0.449 0.000 0.000 1.088 0.969 1.314 1.116 0.000 0.000
Succinic acid 1.107 0.867 1.122 1.927 0.823 0.373 0.926 1.189 0.869 1.190 1.047 0.476
Glyceric acid 0.939 0.734 1.043 1.137 0.855 0.543 0.998 1.086 0.977 1.089 0.887 0.647
Fumaric acid 1.147 1.063 1.225 1.598 0.790 0.567 1.085 1.133 0.930 1.019 0.807 0.987
Malic acid 0.966 1.026 0.859 1.042 0.936 0.988 1.091 1.052 0.978 1.118 0.785 0.950
Threonic acid 1.841 1.389 0.550 0.962 0.912 0.644 0.775 1.103 1.000 1.005 0.854 1.011
2-Ketoglutaric acid 0.815 0.755 0.000 0.000 0.000 0.000 1.062 1.050 0.000 0.000 0.000 0.000
Citric acid 0.911 0.990 0.883 0.736 1.146 1.337 1.035 1.025 1.191 0.929 0.747 0.784
Isocitric acid 1.504 1.098 1.000 2.256 0.769 1.455 0.719 0.675 1.123 1.720 0.713 0.608
Ascorbic acid 1.036 0.740 0.618 0.424 0.952 0.411 0.967 1.028 1.091 0.859 0.668 0.667
Quinic acid 1.198 0.939 0.793 0.485 0.825 0.575 1.142 1.246 1.262 0.767 0.813 0.405

Others Monomethylphosphate 1.012 1.001 1.069 0.940 1.174 0.997 1.098 1.236 1.041 1.062 0.714 0.810
Glycerol 1.483 0.984 0.945 0.771 0.977 0.726 0.823 0.923 0.979 0.738 0.903 0.788
Putrescine 1.173 0.995 0.893 0.437 0.928 0.351 1.027 1.057 1.011 0.669 1.301 0.569
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2012). The current study showed that citric acid level increased
while malic acid level decrease in the germinating barley seeds,
being consistent with other observations (Frank et al., 2011;
Gorzolka et al., 2012; South, 1996). In addition, putrescine
increased at late stage of germination, especially in XZ72 under
control and GA treatment. The similar results were also observed
by Izquierdo-Pulido, Mariné-Font, and Vidal Carou (1994).
Putrescine is usually formed from ornithine due to endogenous
decarboxylase activity and plays a vital role in plant metabolism
(Halász, Baráth, & Holzapfel, 1999).

In this study, addition of GA increased activities of a-amylase
and LD in both barley accessions, which is in accordance with pre-
vious observations (Enari & Sopanon, 1986; Filner & Varner, 1967;
Hardie, 1975; Schroeder & MacGregor, 1998). The enhanced
enzyme activity may partially explain the elevated levels of sugars
and sugar derivates, especially in GA-treated XZ72. However,
sugars were little or slightly affected by addition of GA in XZ95.
The possible explanation might be genotypic difference in endoge-
nous GA level or response to heterogeneous GA. Actually the geno-
typic difference in response to GA was once reported (Evans et al.,
2009). The lower LD activity in XZ95 relative to XZ72, may partially
explain its lower sugar level. It is not surprising that b-amylase in
germinating seeds has no response to GA, as the enzyme is synthe-
sized during grain development (Hardie, 1975).

Amino acids showed increase in the GA-treated seeds, espe-
cially for XZ72 (Fig. 3). Obviously it may be attributed to enhanced
protease activity by GA, as it was reported by some researchers
(Briggs, 2002; Enari & Sopanon, 1986). The released amino acids
could provide the sufficient substrates for biosynthesis of proteins
and enzymes, being necessary for seed germination. GA also pro-
motes cell wall modification and degradation (Briggs, 2002; Enari
& Sopanon, 1986), as reflected by increased b-glucanase activity
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(Fig. 1), a key enzyme involved in cell wall degradation (Forrest &
Wainwright, 1977). Higher level of galactose, which is a product of
cell wall degradation in GA treatment than in CK, may also support
the finding (Fig. 3).

Seed germination has been proved to be regulated by antago-
nistic interaction of ABA and GA, whereby GA promotes and ABA
inhibits germination (Bewley, 1997; Holdsworth, Bentsink, &
Soppe, 2008). It is well documented that addition of GA at steeping
may improve malt quality through enhancing some
sugar-degrading enzymes (Briggs, 1998), while ABA has an antag-
onistic effect to GA (Bewley, 1997). The current study confirms the
substantial effect of GA and ABA on the metabolite profiles of ger-
minating barley seeds, and may make further insight into the role
of these hormones in seed germination.

5. Conclusions

In this study, we used GC–MS to analyze changes of metabolites
for two Tibetan wild barley accessions XZ72 and XZ95 during ger-
mination and as affected by addition of GA and ABA. a-amylase,
b-glucanase and LD increased dramatically, and b-amylase activity
remained little change during germination. Meanwhile, b-glucan
content declined greatly. GA treatment caused great increase in
the activities of some sugar-degrading enzymes, and ABA had the
opposite effect. Sugars and amino acids are most changed com-
pounds, and GA or ABA treatment enhanced or inhibited the accu-
mulation of some metabolites, respectively.
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