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In this work we proposed a method to verify the differentiating characteristics of simple tea infusions
prepared in boiling water alone (simulating a home-made tea cup), which represents the final product
as ingested by the consumers. For this purpose we used UV–Vis spectroscopy and variable selection
through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA)
for simultaneous classification of the teas according to their variety and geographic origin. For compar-
ison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided signifi-
cantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian
green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodol-
ogy provides a simpler, faster and more affordable classification of simple tea infusions, and can be used
as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evi-
dently partial and cannot assess geographic origins.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since ancient times, tea has been used by the Asiatic cultures
not only as an herbal medicine, but also for its characteristic fla-
vour and aroma. The great present-day popularity of teas as bever-
ages is mainly due to the presence of polyphenols and caffeine,
which respectively determine up to 30% and up to 4% of the dry
weight (Kumar, Murugesan, Kottur, & Gyamfl, 2012). Polyphenols
have been shown to present various benefits for human health,
nutrition, and physiology (Khan & Mukhtar, 2007; Sharma, 2014),
while caffeine is principally attractive due to its stimulatory
effects, which are frequently used by the pharmacological industry
(Spiller, 1997; Wang, Wan, Hu, & Pan, 2008). The additional health
benefits of teas are also frequently described in the literature
(Sharangi, 2009; Chow & Hakim, 2011; Pinto, 2013).

Tea is the second most consumed non-alcoholic beverage in the
world (after water), and is prepared by brewing the dried leaves of
Camellia sinensis in water. The types of tea (white, yellow, green,
oolong, black, and Pu-ehr) basically differ with regards to the
extent of fermentation. Green (unfermented) and black (fully
fermented) teas are the two most popular categories, together
accounting for around 98% of both world production and consump-
tion (Diniz et al., 2012; Pinto, 2013). The plant is highly cultivated
in Asia, Africa, and South America. In South America, Argentina and
Brazil are the main tea producers, respectively harvesting 90.7 and
7.7 thousand tons in 2012 (Food & intergovernmental group on tea.
Current situation, 2012). In the 1920’s Japanese immigrants to
Brazil initiated cultivation using tea seeds from Sri Lanka and
India. Despite a relatively small tea industry in Brazil, the tea pro-
ducers here have achieved some increase in market share due to
their efforts to improve the quality of Brazilian teas. In Argentina,
tea was first introduced in 1920 (with Russian seeds) and it is cur-
rently the world 9th largest tea producer.

In worldwide tea trading, consumer interest and a country’s
reputation (clearly indicating geographic origin), has increasingly
become synonymous with higher than average prices (Ye, 2012).
As an example the famous ‘‘Lion’’ logo of ‘‘Ceylon’’ or ‘‘Sri
Lankan’’ teas (administered by the Sri Lankan Tea Board) is still
regarded worldwide as a sign of quality and taste.

Various analytical methods to verify the geographic origins of
teas have been proposed in the literature with the purpose of pro-
viding some sort of security to both tea traders and consumers, and
to prevent fraudulent labelling (Ye, 2012). However, most of these
techniques require laborious sample preparation, and induce
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significant operational expenditures. We therefore propose a tea
classification strategy that provides precise and reliable results,
and can be implemented in a routine laboratory. Ultraviolet–
Visible (UV–Vis) spectroscopy is one of the most common tech-
niques used in routine analysis, and has already been used to dif-
ferentiate between black, green, and Pu-erh tea varieties
(Pallacios-Morillo, Alcázar, de Pablos, and Jurado (2013)).
However in this method, methanol was used as the extractor sol-
vent creating very broad spectra with highly correlated variables.
This requires more sophisticated non-linear classifiers such as
Artificial Neural Networks (ANNs), and Support Vector Machines
(SVMs). Methanol also presents toxicity to humans as well as to
the environment (Clary, 2013). Geographical classification of teas
using UV–Vis spectroscopy has not been reported in the literature.
Simultaneous classification of both geographic origin and variety
for teas has been proposed using digital images (Diniz et al.,
2012), and near-infrared spectroscopy (NIRS) (Diniz, Gomes,
Pistonesi, Band, & Araújo, 2014). However, these methodologies
were carried out directly on the tea as contained in commercial-
ized bags, whereas the infusion represents the final product as
ingested by the consumer. Tea quality moreover is traditionally
evaluated by skilful tasters based on the infusion’s appearance,
taste, and aroma, which is evidently partial and cannot assess a
tea’s geographic origin (Diniz et al., 2014).

In this work we propose a method to verify the differentiating
characteristics of simple tea infusions prepared in boiling water
alone (simulating a home-made tea cup). This form represents
the final product as ingested by the consumer. For this purpose,
UV–Vis spectroscopy, and variable selection using the Successive
Projections Algorithm associated with Linear Discriminant
Analysis (SPA-LDA) (Soares, Gomes, Galvão Filho, Araújo, &
Galvão, 2013) was used for simultaneous classification of teas
according to their variety (black or green tea), and their geographic
origin (Argentina, Brazil, or Sri Lanka). For comparison, other
supervised pattern recognition techniques such as K-nearest
neighbours (KNN), Classification, Regression Tree (CART), Soft
Independent Modelling by Class Analogy (SIMCA), Partial Least
Squares Discriminant Analysis (PLS-DA), and Principal
Component Analysis-Linear Discriminant Analysis (PCA-LDA) were
used. It is worth noting that SPA-LDA has been successfully applied
to classify other foods such as edible vegetable oils using square
wave voltammetry (Gambarra-Neto et al., 2009), coffees using
UV–Vis spectroscopy (Souto et al., 2010), beers using NIR spec-
troscopy (Ghasemi-Varnamkhasti et al., 2012), and honeys using
digital images (Domínguez, Diniz, Di Nezio, Araújo, & Centurión,
2014).
2. Materials and methods

2.1. Samples

One hundred tea samples were purchased from local supermar-
kets in the cities of João Pessoa (Brazil), and Bahía Blanca
(Argentina): 20 Brazilian black teas, 20 Brazilian green teas, 20
Argentinean black teas, 20 Sri Lankan black teas, and 20
Argentinean green teas. A sample quartering step was performed
as described by Diniz et al. (2014). The contents of the 100 tea bags
from each batch were quartered, and then reduced to a final sam-
ple containing 25 g, they were subsequently stored in sealed plas-
tic bags to prevent contamination and/or adulteration.
2.2. Apparatus and procedure

The infusions were prepared using 1 g of each tea sample in
100 mL of double-distilled water at 90 �C, and let to stand for
5 min. The infusions were filtered with medium speed (8 lm)
retention filter paper, and completed to 100 mL with
double-distilled water. They were kept in Nalgene plastic bottles
and left to cool to room temperature. Of each infusion 10 mL were
transferred to a 50 mL volumetric flask and diluted with
double-distilled water. The spectrum for each sample was immedi-
ately acquired using a Hewlett Packard 8453 spectrophotometer
equipped with a quartz cell, with an optical path of 1 cm, and with
a photodiode array in the range 190–800 nm with a resolution of
1 nm. A blank spectrum was also recorded using double-distilled
water alone.
2.3. Data analysis

The tea samples were divided into training (75%), and test (25%)
sets by applying the Kennard-Stone (KS) uniform sampling algo-
rithm (Kennard & Stone, 1969). Differences between unsupervised
(PCA), and supervised (KNN, CART, SIMCA, PLS-DA, PCA-LDA, and
SPA-LDA) pattern recognitions were evaluated. The validation
step for each of the algorithms was performed using full
cross-validation. The test samples were used for the final data eval-
uation, and for comparison of the classification models only
(Soares et al., 2013).

The KS and SPA-LDA algorithms were performed with Matlab�

2009b (Mathworks Inc.) software. The other chemometric
approaches were performed by using the Classification toolbox
for Matlab� (version 2.0) released by Milano Chemometrics, and
QSAR Research Group (Ballabio & Consonni, 2013), and may be
found on the following site: http://michem.disat.unimib.it/chm/.
3. Results and discussion

3.1. Exploratory analysis of the data

Fig. 1a shows the absorbance spectra of the simple tea infusions
in the range of 190–800 nm. The spectra present a profile similar to
that of data published by Pallacios-Morillo et al. (2013), although
their spectra were much broader and highly correlated. This is
because the solvent (in this case, methanol) affects the position
of the spectral band, and the maximum absorbance, i.e. the values
of kmax, molar absorptivity e, and the shape of the spectrum. As can
be seen in Fig. 1a, the most informative portion of the spectra is
found in the UV region (190–500 nm), where the useful transitions
are p ? p⁄ for compounds with conjugated double bonds, some
n ? r⁄, and some n ? p⁄ transitions. Two absorption bands are easily
seen in the ranges from 190 to 250 nm, and from 250 to 300 nm, and
another broad absorption band appears around 300–400 nm. These
band absorptions are related to phenolic compounds presented in
the tea infusions (Fernández, Martín, González, & Pablos, 2000;
Obanda, Owuor & Mang’oka, 2001; Fernández, Pablos, Martín, &
González, 2002; Yao et al., 2006; Kilinc, 2009).

Fig. 1b shows the average spectra of the five studied tea classes,
in the range from 240 to 340 nm. As can be seen, the shape of the
mean exhibits a clear separation tendency into two major groups:
the black teas; Brazilian black teas (BrB, magenta line),
Argentinean black teas (ArB, blue line), and Sri Lankan black teas
(SkB, green line), and the green teas; Brazilian green teas (BrG,
red line), and Argentinean green teas (ArG, black line). In order
to verify the above, PCA was performed using the entire spectral
range (Fig. 2a) and five selected intervals: 190–250 nm (Fig. 2b),
251–310 nm (Fig. 2c), 311–370 nm (Fig. 2d), 371–430 nm
(Fig. 2e), and 431–490 nm (Fig. 2f). The region above 490 nm
presents no analytical information. We noted that the ranges
251–310 nm, 371–430 nm, and 431–490 nm contribute signifi-
cantly towards differentiating between the black and green teas.

http://michem.disat.unimib.it/chm/


Fig. 1. (a) Raw UV–Vis spectra of all studied tea samples. (b) Mean spectra of the five studied tea classes. Argentinean green (ArG, ), Brazilian green (BrG, ),
Argentinean black (ArB, ), Brazilian black (BrB, ), and Sri Lankan black (SkB, ).

Fig. 2. PCA score plots (PC1 � PC2) using the (a) entire spectra and five selected intervals: (b) 190–250 nm, (c) 251–310 nm, (d) 311–370 nm, (e) 371–430 nm, and
(f) 431–490 nm. Brazilian green teas ( ), Argentinean black teas ( ), Sri Lankan black teas ( ), Argentinean green teas (4), and Brazilian black teas ( ).
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Based on this result obtained by PCA, we choose to study two dif-
fering spectral ranges: (a) the entire UV–Vis, and (b) the range of
251–490 nm. Moreover, it is worth to note that geographical dis-
crimination of the samples could not be achieved, which justifies
the use of supervised pattern recognition techniques. In the work
of Pallacios-Morillo et al. (2013), PCA exhibited a noteworthy dis-
crimination between black, Pu-her, and green teas, which could
dispense with the use of more sophisticated non-linear classifiers
(machine learning approaches), such as ANNs and SVMs.

3.2. Classification

The construction of the multivariate classification models was
performed using a training set (75% of the studied samples). Each
model was validated using the leave-one-out cross-validation
technique. A test set (25% of the studied samples) was then used
for final data evaluation and comparison to the classification mod-
els. The performance of the models was evaluated by accuracy,
which is defined using the ratio of samples in the test set correctly
assigned into their respective classes. Table 1 presents the assigna-
tion of the test set samples into the five studied tea classes using
KNN, CART, SIMCA, PLS-DA, PCA-LDA and SPA-LDA for both the
entire UV–Vis spectral range as well as the range of 251–490 nm.
The summary of the classification accuracy for each model is
shown in Table 2.

3.2.1. K-nearest neighbours
KNN is a classification method based on a distance matrix, in

which an object is classified according to the classes of its
K-nearest neighbors in the data space, i.e. it classifies unlabelled
objects based on their similarity with samples in the training set.
The optimal KNN models were obtained using 4 and 1



Table 1
Assignation of the test set samples into the five studied tea classes using KNN, CART,
SIMCA, PLS-DA, PCA-LDA, and SPA-LDA.

BrG: Brazilian green teas; ArB: Argentinean black teas; SkB: Sri Lankan black teas;
ArG: Argentinean green teas; BrB: Brazilian black teas.
Gray shaded values represents the values included correctly into their own classes.

Paulo Henrique Gonçalves Dias Diniz et al. / Food Chemistry 192 (2016) 374–379 377
(respectively) for nearest neighbours, for the entire spectral range
and for the range of 251–490 nm, thus reaching a classification
accuracy of 88% and 84%. In the first case, two ArB samples were
misclassified as BrB, and one SkB sample was misclassified as
ArB tea, meanwhile in the last case two BrG samples were misclas-
sified as ArG, and two BrB samples as ArB (Table 1).
3.2.2. Classification and Regression Tree
CART is a tree-building technique based on rule induction, in

which the data space is successively partitioned into different class
subsets based on associated variables being significantly related to
Table 2
Summary of the classification accuracy for KNN, CART, SIMCA, PLS-DA, PCA-LDA, and
SPA-LDA models using both the entire UV–Vis range and the range of 251–490 nm.

Classification accuracy (%)

UV–Vis range 251–490 nm

KNN 88 84
CART 84 80
SIMCA 45 88
PLS-DA 80 68
PCA-LDA 92 100
SPA-LDA 96 100
the response variable. In this case, the response variable is categor-
ical. The final classification model consists of a collection of nodes
(tree) that define the classification rule. The partitioning in each
node is obtained by maximizing the purity of the new subsets.
The optimal CART models were obtained with a classification accu-
racy of 84% and 80%, respectively for the entire UV–Vis spectral
range and the range of 251–490 nm. In the first case, two BrG sam-
ples were misclassified as ArG, one ArB sample misclassified as
SkB, and one SkB sample misclassified as BrB, in the last case one
ArG sample was misclassified as BrG, besides the same samples
being misclassified for the entire UV–Vis spectral range (Table 1).

3.2.3. Soft Independent Modelling by Cluster Analysis
SIMCA is a class modelling technique, in which the final classi-

fication model consists of a collection of PCA models, one for each
class. A new object is then assigned by comparing the distances of
the class models to the object. The optimal SIMCA models for both
the entire UV–Vis spectral range and the range of 251–490 nm
were obtained with a respective classification accuracy of 45%
and 88%, respectively. As can be seen in Table 1, when the entire
UV–Vis spectral range was used, one BrG sample was misclassified
as ArG, and two SkB sample misclassified as ArB and BrB.
Moreover, twelve samples (three BrG, three ArB, three SkB, and
three ArG) were not assigned. For the range of 251–490 nm, one
SkB and two BrB were misclassified as ArB.

3.2.4. Partial Least Squares Discriminant Analysis
PLS-DA is a modification of Partial Least Squares Algorithm for

classification purposes. It is based on the PLS2 algorithm that
searches for latent variables with a maximum covariance for the
categorical variables (Y). The new object is then assigned to the
class with the maximum value in the Y vector or, alternatively, a
threshold between zero and one is determined for each class. In
our work, the optimal PLS-DA model using the entire UV–Vis spec-
tral range with 19 latent variables obtained a classification accu-
racy of 80%, being one BrG sample misclassified as ArB, and four
other samples (one BrG, two ArG, and one SkB) that were not
assigned (Table 1). On the other hand, three BrG, one ArB, two
SkB, and two ArG samples were not assigned when using the range
of 251–490 nm with 9 latent variables, totalling a classification
accuracy of 68%.

For the differing organic molecules presented in the tea infu-
sions, vibrational and rotational energy levels are overlapped on
the electronic energy levels in the UV–Vis region, i.e. many transi-
tions with different energies can occur, making the absorption
bands broadened and highly correlated. Since PLS-DA is a
full-spectrum-based technique, the analytical information comes
overlapped, which interferes in the performance of the classifica-
tion models in terms of its accuracy. This problem is circumvented
using a suitable reduction variable technique that selects
wavelengths whose information content is uncorrelated
and/or minimally redundant. This fact is corroborated by the clas-
sification results obtained in Sections Principal Component
Analysis-Linear Discriminant Analysis and Successive Projections
Algorithm-Linear Discriminant Analysis.

3.2.5. Principal Component Analysis-Linear Discriminant Analysis
LDA classification methods employ linear decision boundaries

(hyperplanes), which are defined in order to maximize
between-class separability while minimizing within-class variabil-
ity. For this purpose, the number of objects in the training set must
be larger than the number of variables included in the LDA model,
requiring a reduction in variables. This can be circumvented by
using the PCA scores as input data; since linear combinations of
the original variables called principal components (PCs) are uncor-
related. The optimal PCA-LDA models were obtained using 14 and



Fig. 3. Mean spectrum for all the tea samples studied with selected wavelengths
using SPA for both (a) the entire spectral range and (b) the selected interval of 251–
490 nm.
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19 PCs respectively, for both the entire UV–Vis spectral range and
the range of 251–490 nm, and reached a classification accuracy of
92% and 100%. When using the entire UV–Vis spectral range, one
SkB sample was misclassified as ArB, and one ArG sample was mis-
classified as BrG (Table 1).
Fig. 4. Fisher’s discriminant functions obtained by SPA-LDA for classification of the train
the selected interval of 251–490 nm. (d) Argentinean green tea, ( ) Brazilian green tea
3.2.6. Successive Projections Algorithm-Linear Discriminant Analysis
Another way to circumvent LDA limitations is to use an ade-

quate variable selection technique such as the Successive
Projections Algorithm. SPA is an iterative forward selection method
that selects such wavelengths as whose information content is
minimally redundant, which solves collinearity problems. These
chains of variables are then sequentially evaluated as based on
the G cost function (Eq. (1)), which is calculated in the validation
set as the average risk G of misclassification by LDA when the sub-
set of variables under study is used (Soares et al., 2013):

G ¼ 1
Kv þ

XKv

k¼1

r2ðxk;lIkÞ
minIj–Ikr2ðxk;lIjÞ

ð1Þ

where the numerator r2(xk,lIk) in the summation term is the
squared Mahalanobis distance between object xk and the sample
mean lIk of its true class; and the denominator corresponds to
the squared Mahalanobis distance between object xk and the center
of the closest wrong class. Ideally, object xk should be close to the
center of its true class and distant from the centers of all other
classes.

In our work, the optimum number of variables selected using
SPA was determined from the G cost function minimum of
0.7256 for the entire spectral range, and with 0.4426 for the range
of 251–490 nm. When using the entire UV–Vis spectral range, the
optimal SPA-LDA model selected twenty variables (190, 192, 195,
197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 213,
221, 242, 274, and 657 nm) (Fig. 3a) with a classification accuracy
of 96%, being one SkB sample alone misclassified as ArB (Table 1).
For the range of 251–490 nm, all of the samples in the test set were
correctly classified using the twenty-five wavelengths (251, 254,
262, 268, 274, 279, 286, 290, 293, 297, 306, 318, 329, 342, 359,
361, 363, 365, 367, 371, 388, 413, 431, 485, and 487) selected by
SPA-LDA, as indicated in Fig. 3b. A chemical or biochemical attribu-
tion to the selected wavelengths cannot be performed, because, for
the differing organic molecules presented in the infusions, vibra-
tional and rotational energy levels overlap the electronic energy
levels in the UV–Vis region, i.e. many transitions with different
energies can occur, broadening the bands. The broadening is even
greater in solutions, owing to solvent–solute interactions.
However, SPA selected the minimally correlated variables, and
the application of the resulting LDA models for both the entire
UV–Vis spectral range and the range of 251–490 nm classified cor-
rectly 96% and 100% of their respective samples. For illustration,
Fig. 4 shows the discrimination of the test set samples for both
cases in a three-dimensional graph, corresponding to the first three
ing (circle), and test (asterisk) samples for both (a) the entire spectral range and (b)
, ( ) Argentinean black tea, ( ) Brazilian black tea, and ( ) Sri Lankan black tea.
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Fisher’s discriminant functions. SPA-LDA was therefore the most
appropriate approach for simultaneous classification of the tea
samples into the five differing (Argentinean green; Brazilian green;
Argentinean black; Brazilian black; and Sri Lankan black) tea
classes.
4. Conclusions

A simultaneous classification of both geographic origin and
variety of teas using UV–Vis spectroscopy and pattern recognition
techniques was proposed. In order to verify their differentiating
characteristics, simple tea infusions prepared in boiling water
alone (simulating a home-made tea cup) were analysed, this
instead of extraction with methanol, as done by Pallacios-Morillo
et al. (2013). Apart from its toxicity, the use of methanol as a sol-
vent extractor makes the spectra much broader with highly corre-
lated variables, requiring more sophisticated non-linear classifiers
such as ANNs and SVMs. In our case, the use of water extraction,
besides avoiding laborious sample preparation and additional
operational costs, highlighted the analytical information contained
in the spectra, allowing for the visualized discrimination tenden-
cies between the black and green teas. Through this, the different
pattern recognition methods applied successfully identified the
differentiating characteristics of the tea samples for simultaneous
geographic and varietal classification. SPA-LDA and PCA-LDA pro-
vided significantly better results for tea classification into the five
classes (Argentinean green; Brazilian green; Argentinean black;
Brazilian black; and Sri Lankan black). The proposed method there-
fore provides simpler, faster and more affordable classification of
simple tea infusions, and can be used as an alternative approach
to traditional tea quality evaluations as made by skilful tasters,
which is evidently partial and cannot assess geographic origin.
However, to guarantee any generalization of the proposed method-
ology, a larger and more varied testing of tea samples, using more
varieties and geographic origins must be implemented.
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