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Abstract

The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal
muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA)
ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute
exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and
nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose—dependent effects on translational
regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent
through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted
or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA
supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure
stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive,
albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on
muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the
exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even
when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and
likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake
per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions.
There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold
(>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand
the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA
supplementation during RET.  J Nutr 2016;146:155-83.
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Introduction and Regulation of Protein

-

Metabolism

Human skeletal muscle protein metabolism is an intriguing and
relevant area of investigation. The dynamic nature of this inte-
grated system of physiology is challenged by the demands and
consequences of human performance, nutrition, aging, inac-
tivity, and disease. Protein turnover is simply defined as the
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constant cellular processes of protein synthesis [using amino
acids (AAs)* to make peptides and proteins] and protein
breakdown (degrading proteins or peptides into AAs) con-
trolling the quantity and quality of protein in a biological
system.

4 Abbreviations used: AA, amino acid; AE, aerobic exercise; AMPK, AMP-activated
protein kinase; CSA, cross-sectional area; EAA, essential amino acid; Ex-Fed vs.
Ex-PLA/CHO, protein/AA-fed postexercise MPS compared with fasted or carbo-
hydrate placebo postexercise values; Ex-Fed vs. Fed, protein/AA-fed postexercise
MPS compared with fed resting values; Ex-Fed vs. Rest, protein/AA-fed postex-
ercise MPS compared with basal resting values; Fed vs. Rest, protein/AA-fed
resting values compared with basal resting values; FFM, fat-free mass; FSR,
fractional synthesis rate; MHC, myosin heavy-chain fraction; MPB, muscle protein
breakdown; MPS, muscle protein synthesis; mTORC1, mammalian target of
rapamycin complex 1; RE, resistance exercise; RET, resistance exercise training;
S6K1, p70 ribosomal protein S6 kinase 1.
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An inequality between muscle protein synthesis (MPS) and
muscle protein breakdown (MPB) can lead to muscle protein
accrual/hypertrophy (e.g., exercise training and nutrition) or
muscle loss/atrophy (e.g., sarcopenia, inactivity, malnutrition,
and muscle wasting). Considering that muscle contains approx-
imately half of the body’s protein, muscle loss is a concerning
issue. The maintenance of muscle quality and mass is necessary
for muscle to fulfill its adaptive roles in physical movement,
energy metabolism, immunity, and temperature regulation. In
addition, as the largest protein source available (~15-20%
protein/tissue weight), the muscle serves as a reservoir for water,
minerals, vitamins, and AAs, all of which are essential during
periods of stress. Most research studies examined mixed-muscle
protein turnover, which is the turnover of all the proteins in
muscle mixed together. However, the contractile proteins (i.e.,
myofibrillar proteins), including myosin and actin among other
proteins, make up a larger proportion of the total protein
content of muscle compared with the noncontractile sarcoplas-
mic and mitochondrial proteins, which serve more direct roles in
the regulation of muscle energy metabolism. Although these
noncontractile proteins are less abundant than the myofibrillar
proteins, they have a faster turnover rate (1).

Resistance exercise (RE), when repeated over a period of
time, can stimulate a range of health benefits, such as improving
body composition and neuroendocrine and cardiovascular func-
tion and increasing muscle size and strength (2—4). A prodigious
amount of investigation has been directed toward understanding
these adaptations and determining if an enhancement effect
occurs with protein and/or AA supplementation. Because of the
vast body of knowledge and the conflicting conclusions derived
from sections of the literature, we undertook a critical exam-
ination of the diverse body of evidence characterizing the
physiologic and phenotypic response of human muscle growth
and to ascertain if an enhancement from protein/AAs is present
both acutely and chronically when these nutrients are given in
close proximity to exercise. The evidence was collected by =6y
of hand-searching the author lists of research articles and
systematic reviews on the topic.

o The population studied examined healthy young men and
women aged <40 y and who engaged in any degree of physical
activity (i.e., untrained, recreationally active, and trained
individuals).

o The intervention was RE with or without protein and/or AA
nutrition.

® The comparisons included RE type, training and duration,
protein and/or AA nutritional interventions, study size,
methods, nutritional timing, and period of measurement.

® The outcomes included MPS rate, including type of muscle
protein being synthesized, MPS, fractional synthesis rate
(FSR), skeletal muscle mammalian target of rapamycin
complex 1 (mMTORC1) signaling, lean mass, muscle mass,
and strength.
Type of study designs included randomized clinical placebo-
controlled trials, observational studies, and crossover
counterbalanced designs. The acute studies were character-
ized by the examination of these responses in the hours or
days after =1 bouts of RE. We also collected the literature
describing the chronic (>4 wk of exercise training) pheno-
typic skeletal muscle adaptation (muscle size and strength)
in young individuals to RE with protein/AA nutritional
intervention. The studies required an arm with a protein
supplement and a placebo arm and/or other comparison
with nutritional supplementation.
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® We searched MEDLINE (including in-process and other nonin-
dexed citations), Biomedical Reference Collection: Basic,
E-Journals, ERIC, Health Source-Nursing/Academic Edition,
CINAHL, AMED, Web of Science SPORTDiscus, and
reference lists of articles (in 2010, 2011, 2012, 2013, 2014,
and 2015). This search was programmed into PubMed’s
weekly update, which was e-mailed to one of the authors
(PTR). The most fruitful method of discovering studies
was 1) hand-searching for articles published by re-
searchers who are well known in the area of muscle protein
metabolism/exercise training and 2) using the reference
lists of all retrieved articles to identify potentially missing
sources. Several studies were not retrieved via standard
methods.

As such, we assessed all of the literature, to our knowledge,
with regard to muscle protein turnover and the related cell
signaling response (young adult human skeletal muscle) to RE
and protein/AA. The compiled evidence was extensive and was
summarized in an effort to provide current and future re-
searchers and nutritional practitioners with a unified resource
informing the acute and chronic effect of protein/AAs in the
adaptation to exercise. To understand any effect from RE and
protein/AA feeding, a detailed understanding of RE in the fasted
state is needed. The evidence with regard to the physiologic
response to RE in the fasted state is enormous, and because our
focus was to comprehensively ascertain the effect of feeding we
provide evidence to adequately characterize the fasted state
response and apologize in advance to any researchers whose
valuable contributions we were unable to include. For further
information on the topic, readers are encouraged to read the
following publications (5-11). Supplemental References and
Supplemental Glossary are provided with the Online Supporting
Material.

Acute Physiologic Adaptation to RE with
and without Protein and/or AA Feeding

Over the past 30 y, a dedicated effort has been made to study
how an acute bout of RE can influence muscle protein metab-
olism during the early stages (hours to days) of postexercise
recovery. This early phase of adaptation in muscle protein
metabolism involves a complex interaction of signal transduc-
tion, gene transcription, translation, and protein degradation,
among many other changes (11). Our main focus in the
following sections is to comprehensively examine the evidence
characterizing the physiologic (protein metabolism) and molec-
ular response (cell signaling) of human muscle protein anabo-
lism and whether an enhancement from protein/AAs is present
when these nutrients are given in close proximity to exercise.

Human muscle protein turnover after RE in the fasted and
protein- and/or AA-fed state. To assess the acute muscle
protein anabolism (growth) response researchers have used AAs
as tracers (stable and isotopically labeled) alongside muscle
biopsies to measure MPS and MPB in humans in vivo. Several
assumptions and many different methodologic approaches ex-
plain some of the inherent variability with the in vivo assessment
of human MPS (12). Thus, direct comparisons of qualitative
values across laboratories should be interpreted with caution.
Nonetheless, some general trends can be gleaned from the
percentage changes occurring in each investigation. For mixed-
MPS, increases from a resting value of ~0.05-0.07% to ~0.07-
0.12%/h are common after acute RE (Tables 1 and 2). It is rare
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to see a value for MPS >0.15%/h after RE, but these values are
highly dependent on several methodologic choices, including,
but not limited to, the time between biopsies and the chosen
tracer precursor. For myofibrillar MPS, it is common to find a
maximal stimulation of ~0.07-0.09%/h after RE compared
with a resting value of ~0.02-0.05%/h. However, the duration
and magnitude of post-RE MPS are highly dependent on the
exercise intensity and volume (75, 76, 106, 107). These
“maximal" values appear to stay elevated for only ~1-3 h
before starting to decline, depending on the exercise intensity,
precursor, and muscle fraction studied and the type and timing
of the protein/AA feeding.

Energetic, metabolic, and mechanical stresses during and
after RE play dynamic roles in the control of protein turnover. It
seems intuitive that during RE the primary goal of skeletal
muscle metabolism is to maintain energy for contraction, thus
prompting a reduction (108) or no change (21) in basal values in
the energy costly process of MPS in human skeletal muscle. As
expected, during high-intensity RE, muscle blood flow is
increased and, secondary to that, muscle perfusion, shunting,
and AA flux are increased as well (21). Reports indicate that
during the immediate (0-1 h) period after RE, the metabolic
milieu switches from catabolic to anabolic as shown by the
release of AMP-activated protein kinase (AMPK) inhibition of
translation initiation and MPS (21, 24, 28, 33, 38). During this
time, blood flow and lactate concentrations normalize as the
muscle becomes more sensitive to nutrients, presumably due to
the increased AA flux (14, 98, 109), mTORCT1 signaling, most
noticeably through p70 ribosomal protein S6 kinase 1 (S6K1)
phosphorylation (24, 33, 109), and increased insulin sensitivity.
After RE, both MPS and MPB are increased compared with rest;
yet, net balance is less negative (14, 16, 43). In the fed state, the
FSR increases to a greater extent, fractional breakdown rate is
thought to slightly decrease, presumably due to insulin- and/or
AA-mediated effects, and net protein balance (between MPS and
MPB) becomes positive (51, 101, 110). Because this outcome
(fractional breakdown rate or MPB) changes less than FSR (16)
in response to RE, interventions have targeted FSR. Gender
differences in post-RE protein metabolism do not seem to be
present. In the fasted (33, 38) and whey protein—fed (86)
conditions after RE, MPS and mTORCI signaling did not differ
between men and women. The majority of the literature
examining protein metabolism with RE and protein/AAs studied
the intermediate postexercise recovery (1-6 h) period, mainly
due to a landmark study (111) and methodologic/logistical
difficulties. Less was known concerning the MPS response in the
later period (6-24 h) (111), and it has been shown that a single
bout of RE improves the MPS response in the morning 24 h
postexercise (13, 16, 38, 111-114). Regardless of when MPS is
elevated after exercise, we still have very little understanding of
the translational relevance of these changes in protein turnover
in relation to the chronic changes after exercise training.

To provide a comprehensive view of the effect of protein/AAs
on postexercise MPS, we examined all of the literature and
estimated the percentage change in MPS in studies with protein/
AA feeding during the various post-RE time frames. The
following comparisons of estimated mean responses, if present,
are highlighted in this review: 1) fasted postexercise MPS
compared with basal resting values (Ex-Fast vs. Rest), 2) protein/
AA-fed resting values compared with basal resting values (Fed
vs. Rest), 3) protein/AA-fed postexercise MPS compared with
basal resting values (Ex-Fed vs. Rest), 4) protein/AA-fed
postexercise MPS compared with fed resting values (Ex-Fed vs.
Fed), 5) fasted postexercise MPS compared with fed resting

values (Ex-Fast vs. Fed), and the main focus of this review, 6)
protein/AA-fed postexercise MPS compared with fasted or
carbohydrate placebo postexercise values (Ex-Fed vs. Ex-PLA/
CHO; Figure 1). These comparisons were examined over
various postexercise periods of varying duration (Tables
1 and 2).

RE alone exerts an obvious increase in postexercise mixed-
MPS (Tables 1 and 2). Although the magnitude of the increase
may vary between investigations, it appears that postexercise
mixed-MPS increases ~65% from resting basal values. Myo-
fibrillar MPS increases to a similar extent (~40%), and the
muscle collagen fraction is most sensitive with a ~89% increase.
The 2- and 3-pool stable-isotopic mathematical models appear
to be less responsive in this condition, with increases of only
~29% from basal resting values, and only when all of the leg
muscles are exercised (14, 20). The average fasted-state post-RE
increase in MPS for all studies and methods across all time
periods suggests a postexercise increase of 56% from resting
values. Although the magnitude and duration of MPS response
is highly dependent on exercise intensity/volume (35, 39), it
appears that a fatiguing bout of RE, studied in the fasted state,
results in multiphasic postexercise MPS responses. A sluggish
increase in MPS peaks somewhere at 2-3 h postexercise (~60-
70%), declining at ~4 h, slightly increasing in the ensuing hours,
decreasing during sleep, and then rebounding the following
morning. The prevailing theory is that the provision of exoge-
nous AAs during the post-RE periods can further increase and/or
prolong MPS depending on the particular conditions examined,
which we will highlight below.

The maximal MPS response after nutrition alone (no exer-
cise) is rather transient in that it is only captured in the first few
hours postingestion, when MPS typically doubles (~0.10%/h)
(116-119). Indeed, examination of the literature suggests
increases during the first 1 or 2 h postingestion with Fed vs.
Rest MPS of ~130%, 117%, 50%, and 81% for myofibrillar
MPS, sarcoplasmic MPS, mixed-MPS, and 2- or 3-pool models
(arterial and venous limb balance methods), respectively.

The majority of research has been confined to the Ex-Fed vs.
Rest comparison, which elicits the highest rates of postexercise
MPS as evidenced by changes of ~138%, 54%, 100%, 78%,
and 170% for myofibrillar MPS, sarcoplasmic MPS, mitochon-
drial MPS, mixed-MPS, and 2- or 3-pool models (arterial and
venous limb balance methods), respectively. The average
increase in MPS for all studies and methods across all time
periods suggests a postexercise increase of 129% from resting
values.

To determine the effect of protein ingestion on enhancing the
MPS response, a comparison with exercise in the fasting or
carbohydrate-fed, postexercise condition is clearly required (Ex-
Fed vs. Ex-PLA/CHO) (Figure 1). This comparison has been
made (14, 24, 28, 30, 35, 40, 42, 44, 51, 52, 54, 55, 57, 58, 62,
66, 70, 81, 83, 91, 92, 95-97, 114, 120), albeit in restricted
conditions due to the logistic difficulty of procuring additional
participants or muscle biopsy samples. Interestingly, only 1 study
examined the effect of protein/AA feeding on collagen post-RE
MPS. The authors found no effect, and even a slight (nonsta-
tistical) decrease in collagen MPS was evident in young adults
(35). With myofibrillar MPS a consistent postexercise additive
effect (~45%) of protein/AAs on MPS has been shown. This
effect was shown regardless of glycogen depletion (40), energy
deficit (91), during sleep (42), after a recent meal (44), or with
inclusion of concurrent aerobic exercise (AE) with RE (92),
suggesting that this effect is rather robust during the acute-
response period. Indeed, this clear protein/AA effect on MPS
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Net bal
< Neg
< Neg

PEx*
0.10, 0.072
0.067
0.082
0.093, 0.039
0.075, 0.043

MPS, %/h
Ex

0.045
0.073
0.041, 0.027

Rest*

0.048, 0.038
0.061, 0.030

Group

ut
TR
ut
TR

FSR Bx time PEx

12-13 h

0-4h

0-4h

Protein
fraction

Exercise®

JN THE JOURNAL OF NUTRITION

WB,PRT 9 Ex: 2-3 X 8-12; 60-90% 1 RM  Mixed/MHC
training

Si-KE: 8 X 10; 120% 1 RM; Ex and rest leg  Mixed
LP. KE: 4 X 10; 80% 1 RM; 8-wk PRT Mixed/Myo

Tracer
["*ClLeu
2Hg, "N Phe
['*CelPhe

Subjects:
status, n, age’
4M,3W,23-32y
3M,3W,25+3y
ST, 3M/3W, 26 =3y
Sed, 8M, 25 = 2y

Continued

Hasten, 2000 (48)
Phillips, 1999 (49)

Kim, 2005 (50)
rapamycin; RE, resistance exercise; Rec, recreationally active; ref, reference; RET, resistance exercise training; rhGH, recombinant human growth hormone; RM, repetition maximum; Sed, sedentary; Si, single leg; SNP, sodium nitroprusside; Sq,

squats; ST, strength-trained; TR, trained; UT, untrained; W, women; WB, whole body; Y, young; 3-MH, 3-methylhistidine; <, no change; < 1, trend to increase; 1, increase from basal values.

muscle protein breakdown; MPS, muscle protein synthesis; MVC, maximal voluntary contraction; Myo, myofibrillar protein fraction; Neg, negative; Net bal, net balance; PEx, postexercise; PLA, placebo; PRT, progressive resistance training; Rap,
2 Values for age are means = SDs or SEMs (see corresponding reference).

" ACET, acetaminophen group; AE, aerobic exercise; BFR, blood flow restriction; Bx, biopsy; Cntl, control; Col, collagen fraction; Con, concentric contractions; COX, cyclooxygenase; Ecc, eccentric contractions; Ex, exercise; Failure, exercise to
failure; FSR, fractional synthesis rate; GH, growth hormone; HL, high load; IBU, ibuprofen group; imed, immediate; INF, infusion, KE, knee extension; LL, low load; LP, leg press; M, men; max, maximum; MHC, myosin heavy chain fraction; MPB,

4 Multiple values in the PEx column indicate the various postexercise MPS assessments for the reference when they are reported. These time periods are described in the column “FSR Bx time PEx'* for the respective reference.

3 Exercise column denotes the exercise (sets X repetitions), at exercise intensity as a percentage of 1 RM unless otherwise stated.

First author,
year (ref)

TABLE 1

N
(0]

Reidy and Rasmussen

causally observed in close proximity to exercise has generated
recommendations of an optimal postexercise time frame to
ingest protein/AA supplements (i.e., the anabolic window).

As a challenge to this recommendation, examination of the
various time periods =2 h (when myofibrillar/mixed-MPS was
assessed) does not seem to indicate an optimal time to maximize
the effect for ingestion of protein/AAs. Indeed, anabolic sensi-
tivity to protein/AAs after RE has been shown to be similar at
1 and 3 h post-RE (53) and exists as far as 24 h postexercise in
the myofibrillar protein fraction (114). These data highlight the
ability of exercise to sensitize the muscle to AAs during
postexercise recovery. However, given the multiphasic response
of MPS in the fasted state, some have suggested that the additive
effect of protein/AAs should be tested at various postexercise
time points to determine the most effective synergism/
interaction of protein/AA feeding and MPS. A recent investiga-
tion examined the repeated timing and dosing of protein/AAs for
optimizing the post-RE MPS (90). They suggested that repeated
periods of AA flux from postexercise ingestion of 20 g protein
every 3 h was more effective than 40 g every 6 h or 10 g every
1.5 h at maximizing myofibrillar MPS throughout a 12-h period
(90). However, the optimal timing and dosing of protein
supplements around the typical meal pattern are unknown,
and these findings should be interpreted with caution, because
exercising and prolonged postexercise recovery in a fasted state
is not typical practice. From the available literature, it seems that
protein dose (30, 44, 91, 121-123) rather than exercise intensity
(35) mediates this synergistic effect of protein/AAs (Figure 1).
When a maximal dose of protein is given, for the exercise
protein/AA fed compared with exercise placebo/carbohydrate
comparison, young adults showed a (~31-89%) change in
myofibrillar MPS (44, 91). With mixed-MPS a consistent
additive effect (~23-157%) of protein/AAs on MPS has been
shown, illustrating a similar pattern to the myofibrillar frac-
tion, except that, at a maximal dose, young adults can reach an
average 89% increase in MPS (30) during a short time frame.
Interestingly, only 1 recent study did not show an additive effect
of protein after RE (97). A potential explanation is that the
participants were accustomed to the exercise bout via an
exercise habituation period preceding the metabolism study.
Most investigations examining this comparison have used
untrained or recreationally active participants (Tables 1 and
2). This theory could be questioned with the observation that
resistance-trained participants have also shown this protein/AA
effect (30, 40, 44, 91, 92, 95). Yet, even resistance-trained
participants do not habitually train higher volumes of knee
extension exercise as conducted during these metabolic studies,
and one could deduce that these “trained” participants are still
experiencing a novel stimulus. Future examination of this
comparison should determine if the additive/prolonging effect
of protein/AAs may be more beneficial on post-RE MPS during a
novel compared with a habituated stimulus. When 2- or 3-pool
models (arterial and venous limb balance methods) were used, a
slightly higher effect was seen (~113% change) with this
comparison, yet this effect was much more transient, similar to
any change in MPS with this methodology examining nutrition
alone, lasting only 1-2 h postingestion (14, 51-55, 57,111, 115,
124).

Several studies have shown an additive effect of protein/AA
feeding with protein/AAs (40, 70, 92, 125), during an early
postexercise time frame (0—4 h postexercise). However, with
regard to the Ex-Fed vs. Fed comparison, others have shown that
after exercise, the effect of a maximal dose of protein/AAs on
maximizing MPS was similar to that of protein/AAs only in
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not applicable; NB, net balance; Neg, negative; Net bal, net balance; NM, not mentioned; NSAID, nonsteroidal anti-inflammatory drug; Nutr, nutrition; PEX, postexercise; P-In, postingestion; PLA, placebo; PPO, peak power output; PRO, protein; RE,
resistance exercise; Rec, recreationally active; ref, reference; RET, resistance exercise training; RM, repetition maximum; Sarc, sarcoplasmic protein fraction; Sed, sedentary; Si, single leg; Sq, squats; ST, strength-trained; TM, treadmill; TR,
trained; UT, Untrained; VO,max, maximal oxygen uptake; W, women; WB, whole body; WP, whey protein; WPC, whey protein concentrate; WPH, whey protein hydrosolate; WPI, whey protein isolate; WM, work-matched; WWmax, watt max; <,

no change; «< 1, trend to increase; 1, increase from basal values; ?, unknown.

2 Values for age are means = SDs or SEMs (see corresponding reference).
4 Multiple values in the PEx column indicate the various postexercise MPS assessments for the reference when they are reported. These time periods are described in the column “FSR Bx time PEx’* for the respective reference.

3 Exercise column denotes the exercise (sets X repetitions), at exercise intensity as a percentage of 1 RM unless otherwise stated.
5 The majority of values for MPS are reported as %/hour, but 2- and 3-pool arterial-venous method studies (52-55) presented data as nmol - min™"
5 Values in parentheses represent the sarcoplasmic protein fraction.

N
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some studies (72, 84) but not others (66, 73, 102); yet, the
Ex-Fed vs. Fed response was ~52% on average. For a maximal
protein/AA dose, this effect was nonexistent within the first 3 h
postexercise (72, 84, 93) and when protein/AAs were coingested
with carbohydrate and fat (93). With a maximal dose, this effect
was most evident at 3-5 h (72, 84) (intriguingly, around the time
of the next meal) and at 24 h (75,102, 111, 114, 126) after high-
intensity RE. In addition, low-intensity RE may potentiate this
effect out to 8-10 h postexercise (87). Yet, this effect of exercise
in the fed state was attenuated with RE training (RET) (101-
103), presumably due to elevated basal MPS (49, 50, 101, 102)
and a more efficient AA utilization within the muscle (127, 128).
At the same absolute intensity after RET, a decrease in post-RE
MPS was observed and at the same relative intensity the
magnitude was increased (102) or unchanged (103), but the time
course of the MPS response was attenuated (102). Together,
these findings indicate that exercise clearly prolongs the
nutrient-induced increase in MPS.

A number of investigators have highlighted the transient
effect of protein/AAs on MPS, whereas extracellular AAs are
maintained, a phenomenon termed the “muscle full” effect
(116). We believe that this effect is largely dependent on the
sensitivity of the muscle to nutrients and is most often regulated
by physical activity (exercise) or lack thereof (35, 72). We
propose that in exercise-stimulated muscle, this “full effect” is
attenuated and it is more likely for prolonged aminoacidemia to
have an effect on extending MPS. It is interesting to speculate
that the attenuation of this “full effect” is partly a consequence
of muscle perfusion/swelling that transiently increases myofiber
size after RE. Furthermore, the “full effect” first postulated by
Atherton et al. (116) is most likely to occur when the muscle AA
pools are rapidly filled from the large increase in blood AA
concentration that follows a large bolus of a quickly digested
protein, such as whey. Thus, blending protein sources with
different digestion rates may confer a potential benefit by having
just enough AA pool expansion to signal additional MPS while
delaying this “filling” and subsequent effect by not overfilling the
pool. This effect may be especially relevant in exercise-sensitized
muscle because AA flux is increased. Yet, there are several
alternative thoughts for the proposed muscle full effect. Some
research has suggested, at least in rats, that a means to inhibit
prolonged MPS is at the step of translation elongation via a
reduction in energy status (129), but this has not yet been shown
in human skeletal muscle. Another potential explanation of the
muscle full effect is that MPS declines before mTORCT signaling
due to a rate-limiting delay in another step in mRNA translation
not regulated by mTORC1. However, this warrants further
investigation. These findings have begun to characterize the
adaptation in protein metabolism after exercise training; yet,
there is much that is not known with regard to the balance of
protein synthesis and protein breakdown as adaptation to
repeated exercise stimulus occurs.

Protein dose. Because of the implications of finding an effect, a
great deal of attention has been placed on interventions to
enhance the acute response of MPS in the early recovery period
post-RE. In 2009, Moore et al. (30) used 6 participants to
describe a dose effect of post-RE MPS with egg protein
ingestion. They discovered that MPS was maximized with 20 g
egg protein (30), which corresponds to ~8-9 g essential amino
acids (EAAs) and ~1.8 g leucine. Follow-up research with whey
protein showed similar findings in participants who were
provided breakfast (44) in energy deficit (91) or with beef
ingestion (123). These and other studies helped shape the general
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FIGURE 1 Effect of protein/AA supplementation on postexercise
MPS in young adults. Percentage changes from fasted to protein/AA
supplemented states on MPS via the direct precursor product method
(either the myofibrillar or mixed-muscle protein fractions) and arterial
and venous balance methods (2- and 3-pool models) plotted from
individual studies according to the time period (h) of assessment post-
RE. Studies with an ~900% response during exercise (115) and
~600% responses at 1-2 and 3-4 h (53) were removed from panel D
to shorten the y axis. Each data point represents a mean response
value from a treatment arm in a clinical trial: n = 30 for myofibrillar (A),
n = 16 for mixed muscle (C), and n = 21 for 2- and 3-pool models (D)
treatment arms. The horizontal (dashed or dotted) line in each column
represents the mean response for all treatments in that time period.
Panel B shows the mean (95% Cl) pooled treatment responses over
all time periods. AA, amino acid; EX, exercise; MPS, muscle protein
synthesis; PLA, placebo; RE, resistance exercise.

consensus that 20-30 g (containing ~8-15 g EAAs) is likely to
maximize the postexercise MPS response, at least in young men.
Yet, certain individuals with a larger lean mass or body mass
may benefit from a larger postexercise protein dose (91). These
generalized recommendations may not always apply, because
there are several modifiers to AA sensitivity in skeletal muscle.
Previous physical activity may lower the protein/AA dose,
whereas catabolic conditions of energy deficit (91) or various
health concerns (inflammation, sickness, aging) may necessitate
a higher dose (121-123, 130) to maximize MPS. Although 20-
30 g protein seems to be the dose needed to maximize post-RE
MPS, given the above points, this maximal dose seems to be
conditional on the subject population in question and possibly
the type or mix of protein/AAs ingested.

Protein type/source. In addition to factors intrinsic to the
individual, the type or source of protein/AAs ingested has been
thought to modulate the postexercise MPS response. Potential
differences could be due to the overall protein quality (i.e., AA
composition) of the protein source and the extracellular AA
appearance reflected by its digestion and absorption rate (i.e., fast,
intermediate, or slow). It is clear that crystalline AAs have a potent
effect on postexercise MPS (28, 51-53, 55, 70, 71). In addition,
intact protein ingestion in the form of soy, casein, whey, egg, or
beef increases postexercise MPS (30, 37, 58, 67, 68, 73,79, 81, 83,
121, 122, 131). Because of several methodologic differences
between investigators, there is some disagreement about whether
different protein sources produce superior effects on MPS.

An examination of the literature suggests that the intrinsic
properties of the ingested protein type/source reflect the phys-

iologic MPS response (Table 2), at least in the immediate hours
after ingestion. A fast, rapidly digested source causes a rapid and
maximal increase in MPS (58, 73, 80, 122, 132, 133), whereas a
slowly digested source is more likely to cause a delayed, more
prolonged response (37, 81), at least in the exercised condition.
Because of a higher BCAA content (134), and rapid increases in
blood AA concentrations, whey protein is often considered
superior to other isolated protein sources (80, 121, 122, 135, 136).

However, our scientific interpretations of these findings are
shaped by the limits of our observations. Most of the studies
examining various protein types/sources use a window of 3—4 h
postexercise (Table 2). A study extending the postexercise
window to 1-6 h comparing postexercise ingestion of whey
with casein found no difference in the MPS but tended to show
differences in early and late periods (81). We have shown a
similar pattern with a protein blend of multiple AA-release
profiles (88). This evidence suggests that the limits in our
observation may be skewing our interpretation. It seems clear
that when examining the evidence from many acute studies
(Table 2), there is no difference in protein source on the
magnitude or duration of the MPS response when examined
over a longer postexercise incorporation window (past 4 h
postexercise). This hypothesis has been tested and is supported
by credible evidence in chronic exercise and supplement studies
discussed in later sections.

One reason for discrepancies between effects of protein
supplement type on the postexercise MPS response is that
matching protein by total protein content results in an imbalance
of total leucine content across the protein interventions. In
studies with this imbalance there are some differences in acute
post-RE MPS between protein supplement types (134, 137). It is
clear that leucine stimulates MPS (138-144). It seems that the
potent stimulatory effect of the higher leucine content of a
supplement will affect the MPS response and mTORCT1 signal-
ing more than a minor change (1-5 g) in total protein, although
the exact titration is unknown. In addition, the difference in
total protein ingested is mostly composed of nonessential AAs,
which do not further stimulate muscle protein anabolism (52,
145). Although energy status may be important in some cases,
such as overall energy deficit (91), but not others (40) a 12- to
40-kcal difference in total energy provided from the few extra
grams of protein in the supplement is extremely unlikely to in-
fluence the MPS response. We have shown that adding 120 kcal
in the form of carbohydrate does not further stimulate muscle
protein anabolism when providing sufficient EAAs (146).

It appears that the digestion/absorption rate and AA compo-
sition of a protein are 2 factors that should be considered
together because they may not act independently. Protein
appears to be most effective when given as a bolus (with an
adequate amount of leucine) in close proximity to exercise (80)
to maximize the feeding effect, because a pulse ingestion (35, 80,
83, 87) poorly mimics the blood AA release from a bolus of more
slowly digesting protein (37, 81, 88). Further support to the
stimulatory effect of leucine is demonstrated by evidence
showing that added free leucine to a whey pulse is just as
effective as a whey bolus (83) when given before exercise. Thus,
protein/AA ingestion in close proximity (hours or perhaps 1-2 d)
to exercise may lower the leucine threshold by exercise-induced
facilitation of AA flux. An examination of the literature (Table
2) suggests that a greater leucine stimulus may be needed in the
rested compared with exercised condition to prolong and/or
enhance the MPS response. We estimate that a protein/AA
source containing ~1.8-2.0 g leucine would be sufficient to
activate a postexercise “leucine trigger” due to the exercise-induced
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FIGURE 2 Representative schematic for the effect of postexercise PRO/AA supplementation on the overall mTORC1 signaling and MPS
response in human skeletal muscle. AA, amino acid; Akt, protein kinase B; AMPK, AMP-activated protein kinase; eEF2, eukaryotic elongation
factor 2; eEF2K, eukaryotic elongation factor 2 kinase; elF2B, eukaryotic initiation factor 2B; ERK1/2, extracellular-related kinase 1/2; Gator,
GTPase-activating protein activity toward Rags; MPS, muscle protein synthesis; mTOR, mammalian target of rapamycin; mTORC1, mammalian
target of rapamycin complex 1; PA, phosphatidic acid; Phosph, phosphorylation; PRAS40, proline-rich Akt substrate 40; PRO, protein; Rags,
recombination activating genes; Raptor, regulatory-associated protein of mTOR; RE, resistance exercise; Rheb, Ras homolog enriched in brain;
rpS6, ribosomal protein S6; S6K1/p70S6K1, p70 ribosomal protein S6 kinase 1; TSC1, tuberous sclerosis complex 1; TSC2, tuberous sclerosis

complex 2; 4E-BP1, eukaryotic initiation factor 4E binding protein 1.

AA flux and/or improved muscle sensitivity to AAs. Leucine
plays a key role in the postexercise MPS response, at least
when total protein intake is lower. Two recent studies have
elegantly shown that the leucine content in a supplement is a
primary stimulator of MPS, especially when the total protein or
content of other AAs is low (84, 93). However, if the protein/AA
dose contains sufficient leucine it seems clear that it does not
matter what protein source is used provided there is a sufficient
quantity of a high-quality source that is digestible and contains all
the EAAs. This hypothesis has been tested and proven by chronic
exercise and supplement studies discussed in later sections.

A factor overlooked in most studies that considered the
impact of protein/AA nutrition on postexercise MPS responses is
gut physiology and adaptation. Splanchnic uptake extracts
~50% or more of the AAs released during digestion during the
first-pass splanchnic extraction (147-150). Because of the higher
turnover of proteins in those tissues, the splanchnic region is a
primary site of AA flux and supply (of certain AAs) to other
tissues under various conditions (151-153). This response likely

168 Reidy and Rasmussen

is dependent on frequency/size of the ingested bolus, health and
age of the population in question, and the AA composition of the
ingested protein source (153-155). We know very little about
the interplay of this process with regard to modulating postex-
ercise MPS, especially with regard to chronic exposure to the
stimulus. It is possible that the gut or other nonskeletal muscle
tissue protein metabolism may play a role in the improved
efficiency of protein metabolism that occurs during RET and
provide a partial explanation for the negligible effect of protein
supplementation after RET.

Most studies that investigated the acute response of postexercise
MPS report data in the format of means and then direct generalized
conclusions toward the population. Unfortunately, we have very
little published information on individual variability in an acute
MPS response to nutrition. Our own experiences show that there is
significant variability in the magnitude and duration of postexercise
MPS between individuals (PT Reidy, unpublished data, 2014). In
addition, a few recent publications (92, 94) have shown diverse
individual responses. It is possible that a portion of the population
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(suggested to be ~25%) may not respond to protein/AA supple-
ments (92, 156). Future research should elucidate more precise
estimates of the prevalence and mechanisms underpinning this
phenomenon. This may also provide an explanation for the
negligible effect of protein supplementation after RET.

Association with acute molecular events and the physio-
logic response to RE. Animal, cell, and other basic science
models have clearly delineated a necessary role for mTORC1
and other signaling pathways in controlling MPS. Indeed, the
large body of evidence in human skeletal muscle also supports
the concept that the early protein turnover response to RE is
driven largely through translational and post-translational
control (112, 157) (Figure 2, Supplemental Tables 1-7, and
Supplemental References).

The increased translation of mRNA after RE is controlled via
the mTORCI1 signaling pathway. This signaling pathway is a
master growth regulator of translation initiation and elonga-
tion, among other processes. Although there are multiple and
concerning sources of variance with using the Western blotting
method in human studies, the compiled evidence still shows that
this control point is upregulated with RE and is enhanced with
AA provision, through altered activity of several of its effectors,
most prominently S6K1 (Supplemental Tables 1-7). Our labo-
ratory has been able to use the drug rapamycin as a means to gain
insight on the cause and effect of RE and EAAs on MPS in human
skeletal muscle. Even with a minimal dose of the drug, we were
able to block the contraction (27, 43) and EAA (119)-induced
stimulation of mMTORCT1 signaling and MPS in human muscle,
indicating that an increase in mTORCT1 signaling is necessary to
increase MPS as a result of these anabolic stimuli. In review of the
literature there is a clear pattern that the increases in postexercise
MPS are mechanistically supported by the literature describing
an additive effect of protein/AA ingestion on post-RE intracel-
lular signaling through mTORC1 in human skeletal muscle
(Figures 1 and 2, Tables 1 and 2, Supplemental Tables 1-7). We
presented this review of signaling response to 1) look for patterns
in the protein/AA response but also to 2) demonstrate the
variability in methods and response patterns by investigators.

After a period of RET some studies showed an attenuation in
the acute mTORCT1 signaling response (103, 104, 158), as a
reflection of the attenuated MPS response (104, 159), but others
did not (160, 161). Whether these acute effects add up over the
long term to influence muscle mass and consequently strength is
the crucial question that needs to be addressed.

As discussed above, although a number of reports showed
concomitant activity, several reports did not show concomitant
increases in mMTORCI signaling and MPS. Some researchers have
voiced frustration regarding “discordance" between mTORC1
signaling and MPS (94, 162). Although much of this inconsistency
could be explained by differences in analytical methods, antibody
batch effects, or timing of the assessment relative to the
assessment of MPS, it is not surprising to see an imperfect
concordance between time course and mTORCT1 signaling. This
should be expected given the multiple and concerning sources of
variance with using the Western blotting method in human
studies. In particular, the lack of standardized reporting and use of
unverified antibodies are especially concerning (163). It would
seem presumptuous to assume that a few static 1-s “snapshots" of
mTORCT1 signaling would be representative of the MPS response
over a several-hour (2-6 h) postexercise recovery period. None-
theless, even with a signal encompassing <0.001% of the MPS
time period, several investigations have reported correlations
between mTORCT1 signaling and MPS after AE (164, 165) and
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RE in the fasted (32, 38, 75) and fed (76) conditions. Given the
lack of consistent protocols (Supplemental Tables 1-7; the
normalization marker is diverse or not reported), antibodies,
studies, participants, and testing protocols and the fact that one
measure of signaling at a specified time point represents a very
small percentage of the response time, it is extraordinary that
signaling results ever line up with phenotype.

However, we have also shown that rapamycin administration
does not influence resting postabsorptive protein synthesis,
indicating that other mechanisms besides mTORC1 signaling
can be involved. Collectively, our rapamycin data suggest that
increases in mTORCT activity are akin to an “anabolic switch" to
turn on MPS in response to a stimulus. It seems very likely that up
to a certain point this “switch" may serve as an on/off or on/low/
high function in a permissive, but necessary, role to increase MPS
rather than as a sensitive “dimmer" switch fine-tuning the MPS
response. Indeed, in support of this concept, we showed that
additional activation of mMTORCT signaling by adding leucine to a
maximal dose of EAAs does not further enhance MPS (118).
However, if the overall total protein dose is not optimal or
indigestible, slight modifications (i.e., addition of leucine or
specific AA combinations) to amplify mTORC1 signaling, and
thus MPS, may be successful if conditions are appropriate (84,
93). The evidence from explorations into human skeletal muscle
signal transduction shows that an increase in mTORCI1 activity
and translation initiation occurs after exercise corresponding with
increases in MPS; however, although exercise prolongs the MPS
response, this effect wanes, which suggests that other factors
(energy, available substrate, substrate composition, substrate flux,
cell swelling, and changes in AA sensing) may be involved and
take precedence over mMTORCT1 signaling after the initial stimulus
fades. Future research needs to delineate the relevance, if any, of
these acute signaling effects in relation to the adaptation of long-
term outcomes of muscle mass and consequently strength. These
signaling markers are clearly not reliable as primary outcomes,
but are rather supplemental tools to explore other outcomes.

Chronic Phenotypic Adaptation to RE with
and without Protein and/or AA Feeding

Molecular and metabolic investigations have shown the effec-
tiveness of protein or AA supplementation after an acute RE

TABLE 4 Authors’ conclusions from meta-analyses of chronic
effects of RET with protein/AA nutrition’

First author, year (ref) Conclusions

Cermak, 2013 (169) “Protein supplementation increases muscle mass and
strength gains during prolonged resistance-type exer-
cise training.”

Miller, 2014 (176) “The current body of literature supports the use of WP,
either as a supplement combined with resistance
exercise or as part of a weight loss or weight
maintenance diet, to improve body composition
parameters.”

Schoenfeld, 2013 (171) “Current evidence does not appear to support the claim
that immediate (<1 h) consumption of protein pre-
and/or post-workout significantly enhances strength-
or hypertrophic-related adaptations to resistance

exercise.”

T AA, amino acid; ref, reference; RET, resistance exercise training; WP, whey protein.
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session in the enhancement of MPS and signal transduction (see
above). There is a clear benefit of RET to increase muscle size
and strength in young adults (166, 167). However, there is lack
of clarity with regard to whether chronic protein supplementa-
tion during RET further enhances these outcomes compared
with RET without protein supplementation.

There have been many systematic reviews, meta-analyses,
and even more opinion papers with regard to the effects of
protein supplementation on exercise adaptations of muscle
mass, body composition, strength, power, and exercise perfor-
mance (134, 135, 168-176). Given the heterogeneity of long-
term exercise-training studies, these reviews have been com-
mendable undertakings, necessary to provide evidence-based
application. Nonetheless, further expansion and assessment of
the literature on this topic are still needed, because no clear
consensus has been found regarding the effects of protein
supplementation to augment exercise adaptations. The results
and authors’ conclusions from several meta-analyses are sum-
marized in Tables 3 and 4. An effect of protein supplementation
was seen with whole-body DXA lean mass and strength when
the outcomes were examined independently and unadjusted for
any other variables (see footnote) (169, 171). However, after
adjusting the analysis to include both young and old participants
(and several predictors), the effects of protein/AAs on lean mass
and strength were negated (171).

Although a number of studies have shown no effect of added
protein/AA supplementation (169, 178-191), other studies with
a high-quality protein supplement during RET occasionally
showed improved lean mass and, more infrequently, strength
compared with no protein supplementation (182, 192-198).
The reasons for the confusion in the literature have been
suggested to stem from differences in study design, choice and
measurement of outcomes, target populations, exercise proto-
cols and timing, and the type and amount of the protein
supplement or placebo given. It is likely that other unknown
variables are involved as well. However, this area of research is
very active, and in the past year alone several new investigations
have added to the evidence base. Therefore, to provide a
comprehensive critique, we tabulated all of the available
literature on younger adults (Supplemental Tables 8-13) that
examined the role of protein/AA supplementation (intake, dose,
timing, and type) on RET improvements in muscle size, lean
mass, and strength.

The pooled results from one meta-analysis showed gains in
fat-free mass (FFM), type I and II muscle fiber cross-sectional
area (CSA), and 1-repetition-maximum leg-press strength with
protein supplementation compared with no protein supplemen-
tation after prolonged (>6 wk) RET (169) (Tables 3 and 4). The
young adults gained approximately an additional 1 kg FFM,
with additional increases of 20% in leg-press strength and an
additional 212- and 291-um? expansion in myosin heavy-chain
fraction (MHC) I and II myofiber CSA in the selected studies,
respectively. Interestingly, the younger participants who had
previous RET experience had a greater benefit on FFM gains
than did untrained participants. The authors suggested that this
finding reflected an improved sensitivity of nutritional support to
help overcome a plateau or slowing in adaptation to RE (199).
This is an interesting hypothesis, although unproven, consider-
ing most of the acute investigations of MPS have suggested that
RE-trained individuals have a shortened and reduced sensitivity
to postexercise protein/AAs compared with resting conditions
(see earlier sections). A more probable explanation is that the
RE-trained participants were given much more protein (median:
84 g/d; mean: 74 g/d) than the untrained participants (median:

38 g/d; mean: 32 g/d). However, to our knowledge, no
longitudinal study has examined the effects of timed protein
dosing on the adaptions to RET.

A recent systematic review has suggested that, as RET
progresses beyond 6-8 wk and the intensity/volume is increased,
an effect of protein/AAs is more likely to occur (174). The
longest-running RET and protein supplement study in young
adults to date evaluated participants at 12, 24, and 36 wk of a
periodized RET program (186). In contrast to popular belief, the
authors showed that lean mass gain clearly reached a plateau at
12 wk with protein and further supplementation throughout a
progressively difficult RET program had no additional effect. A
similar pattern was shown when using ultrasound to assess
muscle thickness at 10.5 and 21 wk of progressive RET and
protein supplementation (200). Collectively, these data suggest a
slowing or limit of muscle growth (hypertrophic plateau) at ~6—
12 wk of RET, even when using untrained participants. This
duration coincides with the time course of muscle hypertrophy
(201, 202), indicating that =90% of the muscle hypertrophy
occurs in the first 2 mo of RET. A more in-depth statistical
approach examining the effect of previous training was taken by
Schoenfeld et al. (171). They could not show that previous
training status was an important predictor of lean mass or
strength changes with RET and protein supplementation. Their
findings do align with the “protein paradox” hidden in the
literature. General physical activity (203, 204), and RET (127,
128, 205) in particular, improves efficiency of protein turnover,
so theoretically those who become more trained actually would
not need more protein; yet, several still posit that RE-trained
participants benefit the most. Even so, some have suggested that
because trained individuals display a more transient MPS
response, protein timing may be important; however, the 2
studies that investigated this hypothesis yielded equivocal results
(206, 207). Although RE-trained individuals are unlikely to
benefit from protein/AA supplementation, unless through a
placebo effect, it is interesting to speculate that previously well
trained individuals who restart an intensive program after a
period of detraining may have enhanced sensitizing to protein/
AA nutrition. Protein/AA supplementation may provide a
benefit for elite strength athletes who train at abnormally high
intensities and volumes (4-6 h/d), but this protein/AA effect
would apply to a very small proportion of the population (208)
who consume protein/AA supplements.

One meta-analysis set out to examine if protein timing in
close proximity to an exercise bout was an important factor that
mediated these exercise adaptations (171). In modeling without
covariates, the meta-analysis showed a modest effect of protein
supplements on muscle hypertrophy but, as previously men-
tioned, no effect on strength. When including other variables,
such as total protein intake, the effect of protein supplements
was negated (171), and they discovered that total protein intake
was the best predictor of improvements in muscle mass in their
model. Importantly, none of their statistical models showed
a protein/AA effect on strength. This finding is contrary to the
commonly preached message that protein supplements should
be ingested within close proximity of RE, within the so-called
anabolic window (168, 209-211) described earlier. Unfortu-
nately, these less-than-convincing reports have followed on the
coattails of carbohydrate supplementation for endurance exer-
cise performance, where an anabolic window truly exists. In
fact, only a small handful of investigations suggested a benefit
from protein timing (206), whereas a host of both acute and
chronic investigations clearly indicated that timing may be an
inconsequential argument (170, 171), because exercise sensitizes
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the muscle to protein/AAs up to 24 h postexercise (114, 212,
213). These data suggest that, in the absence of postexercise
protein/AA supplementation, the AUC for protein turnover
during the day is likely to be similar regardless of when protein is
taken for those who are exercising, especially as exercise training
progresses. We have high hopes that an emerging methodology
(89) will be used to test this hypothesis. The finding of a greater
effect from total protein intake, and not protein timing, in
relation to an exercise bout during RET should not come as a
surprise. As further support behind the role of total protein
intake, another review focused on the role of supplemented
protein intake during RET (170). The authors discovered that
“successful” protein supplementation studies had a significant
change (~66% increase) in protein intake (from baseline
habitual intake) and a significantly higher (~60%) protein
intake in the protein-supplemented group compared with the
control group (170). This may be an important factor, possibly
more relevant than exercise-related supplement timing.

Protein intake and distribution. A surprising finding of the
Cermak et al. (169) meta-analysis was that protein supplemen-
tation with RET provided an effect, even though the young
participants’ protein intake (1.2 g - kg ' - d ') was typically well
above the 0.8 g - kg™' - d”! RDA before commencing the
intervention (169). This amount of protein per day is within the
ranges of the current recommendation of protein intakes for a
strength athlete, which is 1.2-1.8 g - kg™! - d™' (214, 215) and
would be well over the per-meal recommendation of 0.25-3 g -
kg™'-d~1(215,216). Indeed, consuming minimal protein (0.5 g
-kg™'-d™") has been shown to attenuate RET outcomes in some
young adults (217). Some have reasoned that higher amounts of
protein intake, not supplementation, in proximity to exercise are
more likely to affect the responses to RET (170, 171). Yet,
evidence suggests that if a certain amount of protein intake is
met, any further changes in protein intake have less bearing on
the adaptation (169, 181, 209, 218, 219) (Tables 3 and 4,
Supplemental Tables 8-13). This fits with a paradigm that
distribution, amount, and spread of protein throughout the day
may have greater efficiency and relevance on the protein
metabolic response (90, 206, 210, 220), particularly with the
slowly absorbed intact proteins that humans typically ingest
during a complete meal containing all macronutrients. Yet,
because the distribution of protein with (221) or without (222)
exercise seems to have no effect on lean mass in young adults
consuming >1.7 g protein - kg~! - d”!, future research should
examine the role of protein supplement distribution during RET
under lower protein intakes (<1.7 g protein - kg™' - d™') or in
situations of energy deficit (223). Although a recent recommen-
dation (216, 223) suggests that maintenance of lean mass during
energy deficit necessitates protein intakes of 2.3-3.8 g protein -
kg ! FFM - d '), future research should confirm this recom-
mendation. There is no evidence that lean mass gain can occur
during energy deficit, but the evidence suggests that maintenance
of existent lean mass can occur with higher protein intakes. In
addition, because lean mass can increase by provision of
additional energy alone (183, 224, 225), the need for supple-
mental protein/AAs in situations of high energy intake (>1700-
2000 kcal/d) is unnecessary during RET (183, 226). A sufficient/
overabundant energy intake common to the Western diet may be
another potential reason why additional protein/AAs given
during RET vyield minimal effects on RET outcomes. Energy
appears to play a permissive role for lean mass gain, yet the
exact energy intake range in which the effect of protein/AAs
diminishes to enhance outcomes during RET is unknown.
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Moreover, a meta-analysis has indicated that total protein
intake, with the current Western diet, is more relevant than
protein dose or distribution on affecting muscle hypertrophy
during RET (171). However, research has yet to determine the
role of protein intake, timing, and distribution under variations
in total energy/protein intakes.

Protein type. The authors of several reviews have suggested that
future investigations expand the literature on protein supplemen-
tation during RET by investigating protein timing and type (169,
209). With regard to protein type, whey protein in its various
forms has been the most frequently studied in its ability to
augment muscle mass during RET. The amount of evidence
comprising whey protein as a supplement prompted another
meta-analysis that examined the changes in body composition
with supplementation of specifically whey protein (176). The
authors concluded that whey protein demonstrates significant
increases in lean body mass (~2.2 kg) when taken throughout
RET. Furthermore, they found no effect with regard to whey
protein form (isolate compared with concentrate) or when whey
was compared with other protein sources (176). It should be
noted that these analyses were conducted in only a handful of
studies and, as such, are susceptible to greater bias from outlying
studies. Thus, further examination of protein type is warranted.

To examine chronic supplementation during RET by protein
type we compiled a section of Supplemental Tables 11 and 12 to
only include studies (186, 190, 191, 194-196, 227-231) that
directly compared =2 different protein sources/types/forms on
lean mass and strength. Only 2 of these studies actually showed
an improved strength outcome when comparing protein forms
(195, 229), in this case whey compared with casein, but these
studies provided conflicting results, leaving one to conclude that
no particular protein source type or form investigated to date
provides a greater enhancement of strength over another high-
quality source. In addition, 4 studies compared whey or milk
with soy protein (186, 194, 196, 230) and 2 studies showed that
milk/whey was superior to soy (186, 196) for enhancing lean
mass gains, whereas 2 others did not (194, 230). It should be

TABLE 5 Summary of the acute and chronic effects of protein/
AA supplementation with resistance exercise’

Results and recommendations

Acute (1 or a few exercise bouts
with supplementation)
mTORC1 signaling?
Muscle protein synthesis?
Optimal protein dose/serving
Optimal protein type
Chronic (exercise training
with supplementation)
Whale-body lean mass?
Regional lean mass
Muscle CSA/thickness
Strength
Optimal daily protein intake
Optimal protein dose/serving
Optimal protein type

1 Akt, mTORC1, rpS6; 1 1 S6K1

1 Mixed-muscle, myofibrillar, AV-balance methods
~20-30 g and >2 g leucine/dose

Any high-quality protein with >2 g leucine/dose

1, (some, inconsistent)

<, Rarely examined

<, Minimal to no effect

<, Minimal to no effect
=08-10g-kg~'-d”’

Same as acute, ~0.25g - kg~' - d”’
Same as acute, but may not be needed

T AA, amino acid; Akt, protein kinase B; AV-balance, arterial-venous balance; mTORC1,
mammalian target of rapamycin complex 1; rpS6, ribosomal protein S6; S6K1, p70
ribosomal protein S6 kinase 1; <, no change; < 1, trend to have an effect; 1, clear
effect, 11, very clear effect.

2 Effect of protein/AA supplementation.
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noted that in the studies in which the dairy proteins were more
beneficial, a lower protein dose (~20 g or less) was given, such
that the leucine content for soy was likely less than optimal (<1.8 g).
However, in the studies (194, 230) in which equivalence in the
anabolic response was found between the protein sources, a
higher protein dose was given (>28 g). As such, the leucine dose
likely “triggered” a maximal response in both treatments (232).
This finding is further supported by Joy et al. (227) and Babault
et al. (190), who found that protein quality “disparities” between
whey and rice protein or whey and pea protein can be overcome
by providing a higher protein dose during RET. Indeed, another
study comparing whey with a mix of whey, casein, and BCAAs
found similar results (231). These data suggest that protein type is
likely irrelevant if a high-quality protein is ingested at a dose that
stimulates the leucine threshold for that protein.

Critique of the Specificity and Relevance
of the Effect of Protein Supplementation

In evaluation of the literature on RET and protein/AA supple-
mentation, the majority of the evidence shows identical increases
in whole-body lean mass and especially strength in placebo- and
protein-treated groups (Table 5, Supplemental Tables 8-13).
However, a few studies showed greater increases in whole-body
lean mass with protein than with placebo-alone groups. Several
studies showed a trend for a difference in the change between
groups, and some showed significant increases with outcomes in
the protein group but not in the placebo group. Yet, several of
those studies that showed greater increases in outcomes with
both protein and placebo treatments displayed very similar
absolute values after training. There are several hypotheses/
questions for these overall equivalence findings, as we highlight
below. Mainly, what is the statistical and meaningful effect of
protein supplements during RET, who benefits, what is the
functional/physiologic effect, and where is the effect occurring?

A slight effect of protein supplementation during RET on
whole-body lean gain mass was shown in a few individual
studies and when a subset of the literature was pooled in an
unadjusted meta-analysis. Whole-body lean mass is typically
assessed via DXA and is the main outcome of interest in most
studies. Very few studies actually give any information regarding
standardization of the DXA scanning protocol. Our own pilot
findings and those published from others (233-235) suggest
that several variables need to be addressed to obtain precise
measurements of body composition, yet these are variables
rarely addressed in this field. It is also unfortunate that most
studies only reported whole-body lean mass to make conclusions
regarding muscle mass and very few (4 of 33) included readily
available data on regional lean mass. Trunk or whole-body lean
mass includes viscera and vital organs that may change size in
response to increased AA supply (236). Future studies are
encouraged to report regional (arm/leg/appendicular) lean mass
values/changes as a better reflection of muscle mass changes,
especially if direct assessments of muscle mass (CSA and muscle
thickness) cannot be made. This is of prime importance if
conclusions regarding muscle mass continue to be made from
studies with DXA as the primary outcome.

Compared with whole-body lean mass changes, the protein
effect on strength is even more elusive and is only detected, albeit
occasionally, when whole-body RET, not training of isolated
limbs, is conducted. This observation may also partly explain
why very few studies reported an enhancement in strength or
function with protein/AA supplementation during RET. In fact,

some of those studies that did show an effect of protein on
“estimates of muscle mass” (i.e., DXA lean mass) did not find
any suggestion for an enhancement in strength. Taken together,
there are several relevant questions regarding these findings:

1. Do these increases in lean mass constitute limb muscle
increases or rather lean trunk/viscera tissue gain or water
retention?

2. Could this be a result of transient expansion in the free AA
pool and not muscle protein?

3. Is this transient expansion of the sarcoplasmic proteins
and not myofibrillar protein?

4. Is the strength testing or muscle mass measure imprecise?

5.1s the strength testing applied not specific to the area
where muscle mass accrual has occurred?

Regardless of these postulations, the end result is a lower force-
to-mass ratio compared with the placebo group, which should
be a concern to several athletic populations in whom the highest
force-to-mass ratio is essential for optimal performance. If
anything, this situation of extra “nonfunctional” whole-body
lean mass should be further explored to determine the location
and specific composition of this accrual.

One meta-analysis showed that protein supplementation
during RET enhances muscle CSA and strength concomitantly
(169), yet there is little evidence for a coupling of these events
with protein supplementation during RET or even RET alone.
Indeed, skeletal muscle CSA (via MRI, DXA lean mass, and fiber
CSA) has been shown to correlate with strength (237, 238) when
assessed as absolute values. But, to our knowledge, changes in
CSA have not yet been found to correlate with changes in
strength over the course of RET (237). Of the ~70 studies we
examined, there were very few reports of this relation and only
1 laboratory to our knowledge, showed a robust association with
changes in muscle strength and fiber CSA during protein
supplementation and RET with all treatment groups combined
(206, 239, 240). Both muscle size and strength increase with
RET, and a common idea persists that increases in lean/muscle
mass are coupled to changes in strength, yet the scientific
evidence to support such a claim is limited. Indeed, a study found
that different cohorts, on the basis of body builds, can show a
divergent FFM change while exhibiting identical increases in
strength (241). These data together would suggest that the
increase in strength may be more independent of muscle mass
increases than commonly thought, as previously suggested (8).

One could make the argument that most of the studies that
did not see an effect of protein were not appropriately
statistically powered for their outcome (e.g., lean mass) of
interest. Regrettably, most studies did not report how they
determined sample size or were rather ambiguous regarding the
method used. Future studies are advised to describe the rationale
for sample size selection and to be clearer in reporting variability
and sensitivity in outcome assessments and means of the
change values of their outcomes, such that effect size/sample size
estimations can be calculated for future research. Yet, we
attempted to estimate means and SDs and calculate the sample
sizes that would be needed to determine an effect of protein/AA
supplementation during RET (Supplemental Table 14). We
extracted the mean changes and SDs of the changes for the
protein and placebo treatments in selected studies and used
Statmate 2.0 (GraphPad Software) to calculate the sample size
by comparing 2 means with an unpaired # test. The o was set at
0.05 and power at 80%. The meta-analysis of Cermak et al.
(169) found an effect of 0.81 kg from protein/AAs compared
with placebo during RET in all 444 young participants and an SD
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of ~3.1. Using the change divided by the SD we calculated a
minimal effect size of 0.26. As Supplemental Table 14 highlights, it
would take ~110 participants at 80% power to have enough
participants to detect a significant difference in lean mass between
2 groups. We showed that it would take more untrained instead of
trained participants to find a statistical effect on the basis of their
data. Data from our own laboratory closely match with the overall
estimation from the Cermak et al. (169) meta-analysis: we gave 40
participants protein/AAs during RET and a maltodextrin placebo
to 18 participants and found an effect of protein at 0.69 kg with an
SD of ~3.0. This calculates to a minimal effect size of 0.23, and it
would take ~150 participants at 80% power to have enough
participants to detect a significant difference in lean mass.
Supplemental Table 14 also highlights the effect sizes and
comparisons between several other studies. The effect sizes for
lean mass and/or FFM in Cermak et al. (169) are similar to those
reported by Schoenfeld et al. (171) (difference = 0.24 * 0.10;
95% CI: 0.04, 0.44; P = 0.02). It should be noted that, according
to Cohen’s method, these are very weak effect sizes. Given that
the average total sample size for most studies is 20-30 (which
includes both placebo and treatment), it is not unsurprising that
differences between protein and placebo are rarely found.
However, one could make the argument that the need for these
estimated study sample sizes of ~100 with the use of data
extracted from the meta-analysis is the result of a methodologic
issue. It could be debated that the studies that used a less-than-
optimal training duration or protein/AA supplement (type/
timing/dosing) could be diluting the protein/AA effect shown in
meta-analyses. In view of this concern, we also provided the
sample size estimations from a collection of “high response
studies” as “optimal methodologies” to show the sample size
estimations based on the maximal responses reported. These
optimal method studies typically were whole-body training
protocols that maximized exercise intensity and dosed the
protein above the leucine threshold (>2 g/serving), although it
should be noted that these strategies were not always fruitful
(188, 190, 211, 231, 242). On the basis of this subset of
“optimal method” studies, these findings suggest that ~20-30
participants per treatment are needed to capture differences in
the changes in whole-body lean mass between placebo and
protein/AAs. For whole-body lean mass, 2 of the larger studies in
young adults showed that ~20 participants are needed per
group to discern differences in the change between protein and
placebo (186, 196), and we have unpublished data (PT Reidy,
unpublished data, 2015) that suggest similar findings. When
looking at regional changes in lean mass, only 2 other studies

FIGURE 3 Effect of protein supplementa-
tion during resistance exercise training on
the individual response for LM or FFM
changes. These data were extracted from
diverse clinical trials reporting the scatter-
plot (A) of the individual change after sup-
plementation with 20-30 g protein (n = 95)
combining the similar overall average
changes in a protein blend (PT Reidy and
BB Rasmussen, unpublished data), milk
protein (94, 196), and whey protein (186;
PT Reidy and BB Rasmussen, unpublished
data) compared with isocaloric maltodextrin

>
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Lean or fat-free mass change (kg)
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and some of our unpublished data suggest that sample sizes of
42-1400 are theoretically needed to detect region-specific lean
mass differences (Supplemental Table 14).

On the basis of results in Supplemental Table 14 one could
infer that most studies were underpowered, but the case may
actually be more complex, and picking which studies to use the
mean change to estimate the effect size is difficult. For example,
several studies used treatment sizes <10 and found pronounced
differences (194, 239, 243) between protein and placebo
groups, yet studies with >20/group also showed no effect (190,
191, 242). This finding is puzzling, and “optimal” methodol-
ogy alone cannot explain this discrepancy but points to the
possibility of a potentially interesting selection bias, or other
conflict-of-interest concerns, which warrants further investi-
gation. However, similar to large pharmaceutical trials,
increasing the sample size is likely to find a statistical effect
between treatments but provides little meaning or clinical
relevance for the outcome.

It is clear that, for most RET outcomes, the protein/AA effect
after RET is moderate to low at best. However, this already
small physiologic effect could be overestimated due to the
possible influence of a placebo effect. It was briefly mentioned
(244) that participants usually know when they are given
protein/AA treatments. Unfortunately, the placebo effect of
protein/AAs has not been investigated, and the effectiveness
of protein/AA masking is rarely discussed. Our own pilot work in
untrained participants showed that 83% of those receiving
protein and 73 % of the participants given maltodextrin placebo
correctly guessed their treatment. However, participants could
not distinguish between protein/AA supplement types. This
placebo effect is likely to be higher in trained individuals,
because they have had previous exposure to protein/AA supple-
ments (245-249), believe the supplements enhance performance
(246, 249) and muscle size (249), and can likely distinguish
protein/AA texture and taste easily. This is another potential
reason why some, but not all, studies suggest that the effect of
protein/AAs is higher in participants with previous training. To
determine the clinically meaningful relevance of a mean protein
effect of ~0.5-1 kg whole-body lean mass gain found in a large
cohort or a meta-analysis, there are important questions that
should be asked: 1) in which population will the protein effect be
found, 2) is there a proportion of the population who are
nonresponders to protein, 3) or is there a proportion of the
population who is driving the protein effect?

There is no clear pattern, even with “optimal” methodologies
and protein type/dosing, that defines the effect of protein/AAs to
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linesin panel Arepresent the means (95% Cls) of each pooled group (PRO and CHO). Hartman et al. (196) used FFM. The data
were pooled into a relative frequency histogram (B). CHO, carbohydrate; FFM, fat-free mass; LM, lean mass; PRO, protein.
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enhance adaptation to RET. This suggests individual variation
or selection bias for responders to exercise/nutrition, and future
investigations should seek to examine this further. Although
randomly assigned participants undergoing RET will eventually
reach the same average absolute lean mass, this pattern infers
that protein supplementation may be more effective in those
with a lower starting lean mass muscle mass (192, 243, 250)
and/or strength (190). Data in support of this contention come
from a recent and very large (7 = 106) clinical trial from Babault
et al. (190). They used a sensitivity analysis to show that protein
supplementation was most effective in enhancing biceps muscle
thickness (compared with placebo) in a subset of those who had
lower starting strength values (190). The concept that “the less a
participant has to start the more they have to gain” may apply
only to strength values and not lean mass. One study in young
adults suggested the opposite effect with body composition: that
those with greater FFM at the start of RET show the most
change in FFM (241) but similar increases in strength.

Unfortunately, only 2 of ~50 studies actually showed the
individual responses after protein supplementation and RET
(186, 196). This is unfortunate because there is marked
variability in the responses, and useful information for clinical
practice could be gained by understanding the reasons behind
the variant responses. We pooled the data from our laboratory
and the 2 previously described studies (186, 196) and another
study in a milk-protein-only group (94) to generate a diagram of
the individual responses in whole-body lean mass after RET with
protein or carbohydrate supplementation (Figure 3A, B).

Although the exercise-training protocols and the protein type
given (blend, whey, or milk protein) were diverse, the pattern of
magnitude of the change and especially the extreme variability in
the change was remarkably similar across studies, so we pooled
the data into 2 groups (protein and carbohydrate) (Figure 3A).
The variability in the response is remarkable, and it is clear that
some individuals do not respond to protein/AAs (Figure 3A,
bottom left) and some natural responders do quite well, even
with carbohydrate, and are likely to experience minimal benefit
from protein/AAs (Figure 3A, top right). These groups represent
a third of the sample who experience minimal to no effect of
protein/AAs. On the other hand, in the carbohydrate grouping,
some potential responders to protein/AAs are mixed with
natural nonresponders to RET (Figure 3A, bottom right). Yet,
the fourth response grouping (Figure 3A, top left) is a mix of
natural responders and individuals who potentially experienced
an effect of protein/AAs. We took these data and examined them
further in a relative frequency histogram (Figure 3B). The effect
of protein/AAs seemed most pronounced in the 1.25- to 3.75-kg
response bins. Intriguingly, the lower bins (0-1.25 kg) and upper
bins (>3.75 kg) showed very similar patterns in both protein and
carbohydrate groupings as a reflection of natural low and high
responders, regardless of nutritional supplementation. As has
been previously mentioned (156), it is very doubtful that protein/
AAs or any form of nutritional supplementation can turn a low
responder into a high responder. These pooled data should be
interpreted with caution because this was a cross-sectional
comparison. In this field, research would greatly benefit from the
use of larger sample sizes and possibly the crossover counter-
balanced clinical trial as tools to further explore the individual
variability in why some individuals respond to protein/AA
supplementation and others do not.

As questioned above, where is the additional lean mass
distributed (arms, legs, trunk) and what tissue (muscle, visceral
organs) does it comprise? In addition, what is the functional/
physiologic relevance for increased lean/muscle mass? Most

important, if the extra lean/muscle mass accrued with protein
supplementation does not affect strength, is there another
physiologic benefit or is this simply a nonfunctional cosmetic
effect? These are important questions for the nutrition practi-
tioner who works with clients on a client-by-client basis. This
could mean examination of the potential for fatigue resistance
(191, 251), a site of greater postabsorptive glucose disposal, or
the presence of a greater AA reservoir acting as a buffer against
acute periods of sickness, injury, or disuse common with aging
(252). It is clear that we have yet to define the specific who, what,
where, and why of the effect of protein supplementation during
RET. Investigators should be encouraged to consider the above
points when designing, implementing, and interpreting future
research trials.

Relevance of Acute Responses on
Chronic Outcomes

The acute physiologic responses to exercise and nutrition have
garnered ample attention (discussed above). This is partly due to
the mechanistic insight into and physiologic knowledge gained,
which is inherently interesting. Recent findings (94, 253) and
occasional critique over the years have questioned the relevance
of these types of studies in relation to chronic outcomes.

Indeed, the prevailing theory for adaptation is that the
recurring summation of molecular and physiologic changes
molds the ensuing phenotype (11, 254). The literature supports
this concept generally, but we know very little about this
adaptive process in specific situations and populations, in
particular regarding the interaction between exercise and
protein/AA nutrition. An important first step in understanding
these changes has been the acute study, which has most
frequently explored the immediate hours or occasionally the
following day or days after 1 exercise bout. This is a crucial
point, because the acute studies summarize their findings with
various exercise modalities and/or nutritional interventions with
inferences toward chronic outcomes.

Certainly, it is obvious that mMTORCI activity plays a role in
the hypertrophic response (29, 162, 255). Future research
should seek to examine mechanisms explaining the factors and
variability modifying this relation. mTORC1 activation has
been linked to MPS on occasions (discussed in above sections).
Some investigations (29, 256, 257), but not all (94), have
indicated that the acute pretraining postexercise response of
S6K1 (a marker of mTORCI1 activation) is associated with
muscle hypertrophy after RET. It would seem intuitive that a
direct estimate of the rate of MPS would be a stronger predictor
of muscle mass accrual. However, a recent in-depth investiga-
tion (94) and a previous report (29) showed that when using the
same cohort of participants to compare the acute FSR response
to the change in muscle mass, this relation quantitatively does
not exist. This is a puzzling finding for some, because a recent
viewpoint article (253) highlighted that there have been several
reports in the same laboratory but in different participant
cohorts in which acute studies assessing MPS or net balance (35,
67, 74, 120) have reflected chronic outcomes (198, 258-260).
However, this is not always evident (76, 97, 261-263). As
suggested (253), there exist several reasons for this discordance.
They include individual factors such as age, genetic and/or
epigenetic factors, transcriptional adaptability, nutritional sta-
tus, level of physical activity, and/or other environmental
influences. In addition, it is possible that variability in the
outcomes, changes in protein breakdown, or other factors may
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be involved. We have little or no information regarding which of
these factors is most dominant or how they interact, and future
research should seek to elucidate what role these factors play. It
seems most evident that acute studies may be useful in presenting
the general “hypertrophic” potential of a certain intervention.
However, it is clear that there is an inherent variability in an
individual’s ability to respond to training, which we are only
now beginning to understand.

It is well known that physiologic adaptation to a given stress
changes over time. What is clear is that the “law of diminishing
returns” exerts a strong precedent on the acute MPS response as
an individual becomes more trained (199). Interestingly, this
effect has been suggested to occur rather quickly (102, 253).
These data could theoretically suggest that the “upper limit” or
“set point” of hypertrophy is approaching and that various
mechanisms may start to attenuate the anabolic response. An
important observation provided support for this hypothesis
(102). The authors showed that the cumulative MPS rate over a
3-wk period was strongly correlated to the change in muscle
thickness over 6 wk of exercise training and that the increased
MPS normalized during weeks 3—-6 of RET. This becomes even
more complicated with the reflection that this regulation may
occur in other time periods (postabsorptive, postprandial), over
the course of exercise training (hours, days, and weeks).

Several investigations have sought to determine the effect of
later time periods, repeated bouts, exercise habituation, and a
few various durations of exercise training. Unfortunately, the
majority of the acute MPS studies focused on the immediate
postexercise time period. It is very likely that there are other time
frames, in addition to the immediate hours postexercise and
protein/AA nutrition, in which changes in MPS and MPB are
regulated to control hypertrophy. For example, although the
acute postexercise response may lessen in trained individuals, it
appears that the resting postabsorptive MPS is increased in the
trained state MPS (49, 50, 99, 100) (Tables 1 and 2). We know
very little regarding the regulation of protein metabolism during
those later time frames and the diurnal response of protein
turnover during exercise training and how that affects overall
phenotypic change (hypertrophy or other outcomes). There
likely exists a multifactorial role of protein/AA stimulus on MPS
and MPB or even processes of indispensable AA loss or change in
protein metabolism in non-muscle tissue during exercise train-
ing. Training status alone could be a complicated variable,
suggesting differentiated responses on the basis of sessions to
years of training. Type of training (aerobic, resistance, concur-
rent) and when these sessions are applied during a periodized
training program are also likely to illicit a variety of responses.
Layering these variables together with factors intrinsic to the
individual represents the actual complexity of the situation.
Because physiology adapts to both exercise and nutritional
stimuli, it may also be of benefit to examine how altering or
cycling protein/AA form or dose can maintain the sensitivity of
AAs during RET. These realities provide a daunting test for
investigators.

The compiled evidence from human research models indi-
cates that the transcriptional, post-translational, physiologic,
and phenotypic response to exercise and nutrition is highly
variable. This fact has provided a layer of ambiguity in our
ability to make precise estimates of the effectiveness of protein/
AAs during exercise interventions. However, in this critical
review we clearly showed that protein/AA ingestion enhances
the acute exercise-induced stimulation of both mTORC1
signaling and MPS (i.e., 2 important components of the muscle
growth response). Only a small effect of protein/AAs on whole-
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body lean mass (effect size of 0.2-0.4) was evident in some
studies, but minimal to no effect on strength or muscle mass was
consistent. During exercise training, the ability of muscle to
utilize AAs for MPS improves (i.e., becomes more efficient),
which may help to explain the lack of an effect of protein/AA
supplementation during RET. Hulmi et al. (200) summarized the
disparity for the difference in the protein/AA effect between
acute and chronic outcomes: “while the positive effects of the
protein or amino acid ingestion on muscle hypertrophy signaling
can often be clear when studied acutely after each exercise,
especially when the study was performed in a fasting state, the
long-term positive effects may not be as robust with normal
daily high protein consumption.” Thus, another important
variable that may determine the overall effectiveness of protein/
AAs during RET is the total daily protein intake. Muscle
becomes more sensitive to AA availability for at least 24 h after a
bout of exercise. Therefore, participants who consume sufficient
daily energy and protein in a balanced diet are not likely to
enhance muscle growth and strength with protein/AA supple-
mentation during RET, although slight increases in whole-body
lean mass are possible but may not be clinically relevant (Tables
4 and 5, Supplemental Table 14). However, for those who
consume a poor diet, with limited energy or protein, the total
amount, quality, and distribution pattern of protein intake
throughout the day may be useful in enhancing muscle growth
and possibly function, if impaired, in response to RET.
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