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Abstract

Background: Data-reduction methods such as principal component analysis are often used to derive dietary patterns.

However, such methods do not assess how foods are consumed in relation to each other. Gaussian graphical models

(GGMs) are a set of novel methods that can address this issue.

Objective:We sought to apply GGMs to derive sex-specific dietary intake networks representing consumption patterns in

a German adult population.

Methods:Dietary intake data from 10,780men and 16,340 women of the European Prospective Investigation into Cancer

and Nutrition (EPIC)-Potsdam cohort were cross-sectionally analyzed to construct dietary intake networks. Food intake for

each participant was estimated using a 148-item food-frequency questionnaire that captured the intake of 49 food groups.

GGMswere applied to log-transformed intakes (grams per day) of 49 food groups to construct sex-specific food networks.

Semiparametric Gaussian copula graphical models (SGCGMs) were used to confirm GGM results.

Results: In men, GGMs identified 1 major dietary network that consisted of intakes of red meat, processed meat, cooked

vegetables, sauces, potatoes, cabbage, poultry, legumes, mushrooms, soup, and whole-grain and refined breads. For

women, a similar network was identified with the addition of fried potatoes. Other identified networks consisted of dairy

products and sweet food groups. SGCGMs yielded results comparable to those of GGMs.

Conclusions: GGMs are a powerful exploratory method that can be used to construct dietary networks representing dietary

intake patterns that reveal how foods are consumed in relation to each other. GGMs indicated an apparentmajor role of redmeat

intake in a consumption pattern in the studied population. In the future, identified networks might be transformed into pattern

scores for investigating their associations with health outcomes. J Nutr 2016;146:646–52.
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Introduction

Dietary pattern analysis is a preferable method for characteriz-
ing dietary intake (1) and understanding eating behavior. An
exploratory analysis based on data-reduction methods such as
principal component analysis (PCA)8 and cluster analysis are

frequently used to derive dietary patterns (2). PCA has been of
particular interest because it compresses food groups based
on the correlation or covariance between original variables
into a number of uncorrelated patterns called components or
factors (3).

Although the correlation structure assessed by such methods
helps to better understand data and identify the similarity
pattern between food groups, it cannot completely unravel the
understanding of the pairwise association between food varia-
bles. Pairwise correlations between food groups can be more
informative if they are independent of the effect of other food
groups (4). Such pairwise correlations between food groups that
control for others identify a dependency of various food groups
in the dietary data, which may be important in understanding
how foods are consumed in relation to each other.

Moreover, the existing methods of dietary pattern analysis
require several but crucial subjective choices during data
analysis (5, 6), and the identified patterns are often difficult to
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interpret (3, 7, 8). These limitations warrant the investigation of
complementary approaches to characterize dietary intake pat-
terns. Innovative methods that provide additional information
might be advantageous over conventional ones and improve our
understanding of the complexity of eating behaviors.

Gaussian graphical models (GGMs) form a promising class
of methods for exploratory analysis (9). These are graphical
methods that identify the conditional independence structure
in the data set by assessing pairwise correlation between 2
variables controlling for others. GGMs assume multivariate
normal distribution for underlying data and can infer a direct
relation between variables in a given data set without prior
knowledge (10). GGMs have been used to simplify and compress
high-dimensional genetic (11, 12) and metabolomics (13, 14)
data to explore respective underlying pathways.

Because dietary data are high-dimensional like genetic and
metabolomics data, the application of GGMs for identifying
conditional independence structures between food intake vari-
ables is an interesting approach. In dietary intake data, the
pairwise correlation between 2 food groups controlling for
others can identify both the internal structure (i.e., patterns) in
the original data as well as the relation between the food groups
consumed in the identified network. The latter characteristic is
of particular interest because foods are consumed in specific
combinations that reflect consumption patterns and may be
helpful in providing insight into the eating behavior of the
studied population. These networks may also identify key
interrelated food groups that may be potential candidates for
further investigation into confounder structures, thus leading to
a much better understanding of the biological relations between
diet and health status.

The objective of this study was therefore to apply GGMs to a
well-studied set of food data by constructing sex-specific dietary
intake networks in the EPIC (European Prospective Investiga-
tion into Cancer and Nutrition)-Potsdam study for further
understanding the interrelation between food intakes. More-
over, because GGMs assume data normality, which may not be
the case with certain dietary variables, GGM results were
confirmed through semiparametric Gaussian copula graphical
models (SGCGMs) (15), which do not require normal distribu-
tion of the data.

Methods

Study population
Participants of this cross-sectional study came from the EPIC-Potsdam
cohort (16), which is part of the multicenter EPIC cohort study that was

established to investigate associations between diet, lifestyle factors, and

cancer as well as other chronic diseases (17). EPIC-Potsdam includes a

total of 27,548 participants (59.9% women) who were mostly aged 35–
65 y old at baseline, lived in Potsdam, Germany or the surrounding areas,

and enrolled between 1994 and 1998. The ethics committee of the state of

Brandenburg approved the study procedures. All participants provided
written informed consent at baseline before examination. Data on age,

sex, educational attainment, physical activity, smoking status, and

anthropometric indicators, including weight and height, were col-

lected at baseline. Anthropometric measurements were performed by
trained staff while participants were in their underwear. Body weight was

measured to the nearest 100 g and body height to the nearest 1 mm.

Education attainment was defined in 3 categories: currently in training/no

certificate or skill, professional school, and college or higher ed-
ucation. Physical activity was assessed using a short questionnaire

and categorized as inactive, moderately inactive, moderately active, and

active according to the Cambridge physical activity index (18). Smoking

status was categorized as never, former, and current.

For this study, participants aged <35 y and those with missing data on

dietary intake, educational attainment, and anthropometric indicators

were excluded from the analysis. (See Supplemental Figure 1 for a
flowchart of participants selected for this study sample.) Thus, the final

study sample comprised 27,120 subjects (10,780 men and 16,340

women).

Assessment of dietary intake
Habitual dietary intake was assessed at the time of enrollment with a

validated, optical-readable, self-administered, semiquantitative FFQ

(19). The questionnaire queried the frequency of consumption of 148
food items over the past 12 mo. Additional information regarding the fat

content of dairy products consumed and type of fat used for food

preparation was collected at the same time. Food intake portion sizes

were estimated using photographs and standard portion sizes (when
possible). Food intake frequency was assessed in 10 categories ranging

from ‘‘never’’ to ‘‘5 times a day or more.’’ The intake of each food item

was calculated from portion size and intake frequency. Single-food

intakes were collapsed into 49 food groups (including alcoholic
beverages) as described by Schulze et al. (20).

Statistical methods

GGMs. GGMs are probabilistic graphs used to analyze and visualize the

dependency structures with the help of a graph that describe conditional
independence between variables (21). These graphs present a set of

nodes and edges, where nodes represent variables and edges represent

conditional dependency relations. A missing edge between 2 variables

in the dependence graph represents conditional independence between
these variables given all other variables (22). Such conditional indepen-

dence in a dependence graph is called a pairwise Markov property (9)

and is quantified in terms of partial correlation. Model selection in

GGMs results in a sparse graph that represents the underlying pattern of
the associated variables.

Theoretical background. Suppose we have a data matrix X with n
observations and p variables from a p-variate normal distribution that

has a mean vector m and covariance matrix S, which can also be

expressed asNp (m, S). Then from the inverse of this covariance matrix,

which is also called the precision matrix, the conditional distribution of
any 2 random variables given other variables can be obtained, e.g., p1
and p2, given all other variables, and the correlation coefficient in this

distribution between the 2 variables is called partial correlation (23). If

the partial correlation between the 2 variables, i.e., p1 and p2, is 0, it is
inferred that these 2 variables are conditionally independent given

all other variables. The estimation of conditional independence in

a precision matrix forms the basis of GGMs (24). In GGMs, the
conditional independence relation between given variables is reflected

in an undirected graph G (V, E), where V represents vertices (variables)

and E represents edges (partial correlation between variables) of the

graph G. From this, a GGM is defined as an undirected graph of
p-variate normal distribution Np (m, S) with a conditional indepen-

dence restriction (i.e., 2 variables are independent given others) if the

correlation in inverse covariance matrix between the 2 variables is 0,

as defined by the pairwise Markov property (25).
In GGMs, conditional independence between variables is determined

by identifying 0 entries in the inverse of the covariance matrix, known as

the covariance selection problem (26) or model selection (also called
structure learning) in the Gaussian concentration graph model (27).

However, in a high-dimensional multivariate normally distributed data set,

there may be no or few 0 entries in the precision matrix, which may result

in a dense concentration graph, with each node connected to other nodes
in the graph. Such graphs are less informative because the aim of GGMs is

to identify the topology (structure) of a graphical model that is an accurate

and meaningful representation of the underlying data. The accuracy of

such a model is assessed by the likelihood that the model explains the data
(28). Such situations require adopting a regularization technique that

enforces sparsity in the precision matrix for data representation. Although

a number of methods exist (29, 30) for achieving sparsity in the precision

matrix, graphical lasso (31) is a fast, efficient approach for structure

Networks of dietary intake 647
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learning in graphical models. It is a regularized (penalized) likelihood

optimization method that puts a penalty on the off-diagonal elements of

the inverse covariance matrix, shrinking the estimated values of pairwise
partial correlations, which forces small or noisy values to 0 and results in a

sparse matrix of direct connections (31). In sum, rather than maximizing

log likelihood, graphical lasso maximizes the regularized log likelihood for

achieving sparsity. Regularization is achieved by penalizing log likelihood
by the term l3 L1 norm, where L1 norm is the absolute sum of the inverse

covariance matrix and l is a nonnegative-tuning shrinkage parameter. It is

also called the regularization parameter. The value of l depends on the

research question (level of sparsity required) and is estimated from the best
model fit (log likelihood) for different values of l. This model for

continuous data assumes multivariate Gaussian distribution, and the

estimated sparse concentration matrix represents the graphical model that
is visualized as the underlying structure or pattern in the given data set.

Analysis. The means 6 SDs of food intakes, age, BMI (in kg/m2), and

percentages of participants in different smoking, physical activity, and
educational categories were calculated for men and women separately

with SAS version 6.1 (IBM). A t test was used for continuous variables,

and a Chi-square test was used for categorical variables to assess

statistical differences (a = 0.05) between men and women.
GGMs were used to derive sex-specific networks of dietary intake.

GGM analysis was conducted in R (version 3.0.3, R Foundation for

Statistical Computing, Vienna, Austria) software as described by
Højsgaard and Lauritzen (32). Gaussian assumption for GGM was

visually assessed using a histogram and box plot in R. Because most of

the dietary variables had skewed distributions, dietary data were log-

transformed [ln (g/d + 1)] to improve normality. A sparse inverse
covariance (precision) matrix was estimated from the log-transformed

data using graphical lasso (least absolute shrinkage and selection

operator) in R package ‘‘glasso’’ (31). The optimum value for the

regularization parameter l was assessed in the ‘‘huge’’ package by
specifying a sequence of l values (0.60–0.10) in a decreasing order for

sparsity (33). The sequence of l values was selected in such a way that

the highest l value (0.60) would result in an extremely sparse

concentration matrix (no node connections) and the smallest l value
(0.10) would result in a less-sparse concentration matrix (very dense

graph difficult to interpret). An optimum l value of 0.25 was selected by

the maximum likelihood estimate of the graphical models and used for
all analyses. Estimated sparse concentration matrixes were exported to a

yEd graph editor (34) and visualized as a dietary network separately for

men and women. Network stability for the existing study sample was

assessed by repeated bootstrapping 80% of the original sample with
replacement.

To further evaluate the robustness of the results, dietary networks

of the log-transformed intakes were reconstructed using SGCGMs

(15), which do not require Gaussian distribution of the underlying
data. SGCGMs transform the observed variables in the latent

variables, and rank-based statistics, including Spearman�s r and

Kendall�s t, are exploited to estimate the correlation matrix, which
is plugged into the parametric procedure to get a sparse precision

matrix. Semiparametric analysis was conducted using the huge pack-

age in R.

Results

Table 1 shows the baseline characteristics of the study partic-
ipants. In general, men were older (P < 0.01) and had a higher
BMI (P < 0.01) than women. Moreover, men tended to have a
higher level of education (P < 0.01) and were more frequently
smokers compared with women (P < 0.01). Table 2 shows the
mean intakes of the food groups estimated from the FFQ in
this population. Supplemental Tables 1 and 2 show pairwise
Spearman rank correlations among 49 food groups consumed
by men and women, respectively.

GGM analysis identified 1 major dietary network that we
termed the principal network and several smaller networks that

consisted of similar food groups in men and women (Figures
1 and 2). In men, the principal dietary network consisted of the
intake of 12 food groups, most of which clustered around red
meat and cooked vegetables. Red meat intake was highly
correlated with the intakes of poultry, processed meat, sauce,
and potatoes, whereas the intake of cooked vegetables was
highly correlated with the intake of mushrooms and cabbage.
The network revealed that the intake of processed meat and
poultry was conditionally dependent on red meat intake,
whereas the intake of legumes and mushrooms was condi-
tionally dependent on the intake of cooked vegetables in the
identified pattern. In addition, there was a strong negative
correlation between the intake of whole-grain and refined
breads.

Other important networks identified in men consisted of
dairy products defined by fat content, sweet foods, and fruits and
vegetables. In the network of dairy products defined by fat
content, there was a strong inverse correlation between the
intakes of high- and low-fat food groups among men. On the
other hand, in the network defined by the intake of sweet food
groups, all food groups were positively correlated with each
other. In the same network, the intakes of desserts as well as
cakes and cookies were correlated with the intake of all other
sweet foods. The network of fruits and vegetables showed that
the intake of fresh fruits and vegetable fats were conditionally
dependent on the intake of raw vegetables.

In women, the principal network consisted of the same food
groups as identified in men, with the addition of fried potatoes
(Figure 2). Similar to the intake network identified in men, the
network in women revealed a central role of red meat and
cooked vegetables intake but showed more conditional depen-
dencies between intakes of food groups compared to the
network in men. In addition, legumes and potatoes were also
central to the intake network.

As in men, other important networks identified in women
consisted of intakes of dairy products defined by fat content,
sweet foods, and fruits and vegetables. However, unlike in men,
the network of dairy products defined by fat content additionally

TABLE 1 Baseline characteristics of the EPIC-Potsdam cohort
participants included in this study1

Characteristics
Men

(n = 10,780)
Women

(n = 16,340) P

Age at enrollment, y 52.6 6 8.0 49.3 6 9.2 ,0.012

BMI, kg/m2 27.0 6 3.7 25.9 6 4.7 ,0.012

Physical activity, % ,0.013

Inactive 22.1 22.0

Moderately inactive 36.2 39.5

Moderately active 24.3 23.5

Active 17.4 15.1

Education attainment, % ,0.013

Currently in training/no certificate or skill 33.9 41.9

Professional school 17.2 29.8

$College 48.9 28.3

Smoking status, % ,0.013

Never 30.4 58.0

Former 44.7 24.3

Smoker 24.9 17.7

1 Values are means 6 SDs unless otherwise indicated. EPIC, European Prospective

Investigation into Cancer and Nutrition.
2 t test.
3 Chi-square test.
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included butter and margarine in women. Although in the
network comprising sweet foods, the intake of cakes and cookies
was connected to the intakes of all other food groups.

Stability analysis by bootstrap sampling revealed that the
identified networks were stable in the current population. No

structural variations in major networks were observed in both
men and women when bootstrap sampling was applied.

Dietary networks derived through SGCGMs to assess the
robustness of the normality assumption of GGMs showed
a strong resemblance to the GGM-derived networks (Supple-
mental Figures 2 and 3). The derived principal and smaller
networks were similar compared to GGM and comprised similar
food groups for both men and women.

Discussion

This study assessed GGMs, a complementary exploratory
method for dietary pattern analysis that is an existing approach
already in use in metabolomics (14), genetics (35), and climate
research (36). GGMs, a novel approach for dietary pattern
analysis, help to identify latent structures in the dietary intake
data by constructing dietary intake networks based on condi-
tional independence between the intake of food groups. More-
over, this approach, when applied to dietary data, minimizes
subjective choices during data analysis and identifies easy-to-
interpret internal structures in the dietary data that are visual-
ized as dietary networks.

A major advantage of GGMs is their ability to distinguish
between direct and indirect associations between the food
groups consumed. Data-reduction methods such as PCA depend
upon the correlation matrix of the food groups that does not
control for the indirect effect of other foods in the pairwise
correlation between 2 food groups. The removal of indirect
effects when assessing pairwise correlations between 2 food
groups is crucial to understanding how different food groups are
consumed in relation to each other. GGMs address the problem
of indirect effects by calculating a measure of conditional
independencies between the food groups (10). The resulting
conditional independence measures reflect a pairwise correlation
between 2 food groups independent of the linear effect of the
other food groups. In other words, the partial correlation
coefficients reflect the association between 2 food groups
independent of the effect of other food groups. However, it is
pertinent to note that the conditional independence measures do
not provide any information concerning the relation to disease
outcomes. Therefore, use of the identified networks may only
partly be helpful for defining confounding during further
analyses.

In this analysis, GGMs identified sex-specific networks
consisting of a principal network and additional smaller net-
works. The principal networks among both sexes revealed
that the consumption of red meat and cooked vegetables were
independent of any specific food group intake, underlining their
potential key role in determining dietary behavior.

The findings of this study are consistent with a PCA-derived
dietary pattern in the same population (20). For example, in
men, 8 of the 12 food groups with high-factor loading in the
PCA-identified ‘‘plain-cooking’’ pattern were also part of the
principal networks identified by GGMs. Similarly, in women, 10
of the 11 food groups with high-factor loading in the PCA-
identified ‘‘plain-cooking’’ pattern were also part of the principal
networks identified by GGMs. Moreover, high-fat and sweet
PCA patterns were also comparable to the identified networks in
both men and women. This comparison indicates that the
identified food networks are not statistical artifacts but may
reflect true patterns (1). There are several potential approaches
for further investigating the identified networks. First, the
conditional independence can be advantageously used for

TABLE 2 Dietary intakes of 49 food groups used to derive
dietary networks among men and women of the EPIC-Potsdam
cohort included in this study1

Food groups Men (n = 10,780) Women (n = 16,340)

Whole-grain bread, g/d 40.9 6 57.3 48 6 52.4

Refined bread, g/d 167 6 88.0 106 6 63

Grain flakes, grains, muesli, g/d 4.8 6 15.4 5.9 6 14.4

Cornflakes, crisps, g/d 1.4 6 5.7 1.9 6 6.7

Pasta, rice, g/d 16.5 6 15.0 15.9 6 14.4

Vegetarian dishes, g/d 1 6 4.3 1.4 6 5.7

Chips, g/d 2.6 6 6.6 2 6 5.0

Pizza, g/d 7.3 6 11.0 6.8 6 8.9

Cake, cookies, g/d 68.3 6 71.8 59 6 61.8

Confectionary, g/d 23.8 6 27.6 20.9 6 26.1

Sweet bread spreads, g/d 12.5 6 13.7 11.2 6 12.1

Eggs, g/d 19.4 6 17.5 16.1 6 14.6

Fresh fruit, g/d 122 6 89.0 154 6 99.0

Canned fruit, g/d 19.5 6 26.0 17 6 23.9

Raw vegetables, g/d 47.9 6 39.8 61.7 6 47.1

Cabbage, g/d 13.5 6 13.9 14.2 6 13.5

Cooked vegetables, g/d 27.5 6 17.5 30.1 6 18.6

Garlic, g/d 0.1 6 0.4 0.1 6 0.5

Mushrooms, g/d 2 6 2.4 2 6 2.4

Legumes, g/d 29.3 6 24.0 19.3 6 16.0

Potatoes, g/d 95.5 6 52.2 75.2 6 44.9

Fried potatoes, g/d 18.8 6 17.3 10.8 6 10.2

Nuts, g/d 3.7 6 8.3 2.9 6 7.9

Low-fat dairy products, g/d 83.1 6 175 111 6 194

High-fat dairy products, g/d 98.1 6 170 101 6 154

Low-fat cheese, g/d 6.2 6 15.5 6.9 6 14.3

High-fat cheese, g/d 30.6 6 28.1 26.3 6 23.6

Water, g/d 366 6 404 470 6 455

Coffee, g/d 440 6 347 406 6 297

Decaffeinated coffee, g/d 27.1 6 120 31.1 6 121

Tea, g/d 226 6 328 294 6 385

Fruit juice, g/d 186 6 229 200 6 223

Low-energy soft drinks, g/d 14.6 6 92.4 8.5 6 56.7

High-energy soft drinks, g/d 70 6 180 27.4 6 106

Beer, g/d 393 6 525 46.3 6 126

Wine, g/d 49.2 6 102 51.9 6 86.8

Spirits, g/d 5.1 6 13.6 1.1 6 5.1

Other alcoholic beverages, g/d 11.2 6 21.3 14.4 6 38.4

Butter, g/d 10.2 6 14.6 7.7 6 10.9

Margarine, g/d 18 6 16.9 14.1 6 13.5

Vegetable fat, g/d 3 6 3.1 3.6 6 3.5

Animal fat, g/d 0.3 6 0.8 0.2 6 0.6

Sauces, g/d 13.3 6 12.4 11.2 6 10.9

Desserts, g/d 16.7 6 22.0 15.4 6 22.6

Fish, g/d 28.2 6 30.7 21.2 6 21.9

Poultry, g/d 15 6 14.3 11.4 6 11.2

Meat, g/d 54 6 35.6 34.4 6 23.0

Processed meat, g/d 78.6 6 54.8 48.1 6 34.5

Soup, g/d 45.1 6 41.9 38 6 35.5

1 Values are means 6 SDs. Listed are 49 food groups derived from a 178-item FFQ by

combining foods that are similar in nutrient composition. EPIC, European Prospective

Investigation into Cancer and Nutrition.
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identifying consumption probabilities of the foods/food groups
identified in the network for each individual. Such probabilities
would be helpful for modeling alternative intake patterns
by modifying intake probabilities, which may help assess the
impact of dietary behavior change or dietary recommendations.
Second, algorithms could be developed to use these consumption

probabilities to build innovative food network scores that could
be used to investigate their relation to health outcomes

In addition, GGMs showed that red meat consumption is
central to the dietary intake in the studied population, a finding
that cannot be derived explicitly from the PCA pattern.
Although high-factor loading of red meat in the PCA pattern

FIGURE 1 Dietary intake networks

for men from the EPIC-Potsdam cohort

included in this study derived by Gaus-

sian graphical models. Vertices repre-

sent foods/food groups, and edges

represent conditional dependencies

(reflected by partial correlation coeffi-

cients) between foods/food groups.

Continuous lines show positive partial

correlations, whereas broken lines

show negative partial correlations.

Edge thickness is proportional to the

strength of the correlation between

connected food groups. The absence

of an edge between 2 foods/food

groups represents conditional indepen-

dence between them in the network

(n=10,780). EPIC,EuropeanProspective

Investigation into Cancer and Nutrition.

FIGURE 2 Dietary intake networks

for women from the EPIC-Potsdam

cohort included in this study derived by

Gaussian graphical models. Vertices

represent foods/food groups, and

edges represent conditional dependen-

cies (reflected by partial correlation

coefficients) between foods/food

groups. Continuous lines show posi-

tive partial correlations, whereas bro-

ken lines show negative partial

correlations. Edge thickness is propor-

tional to the strength of the correlation

between connected food groups. The

absence of an edge between 2 foods/

food groups represents conditional in-

dependence between them in the

network (n = 16,340). EPIC, European

Prospective Investigation into Cancer

and Nutrition.
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underscores its importance, GGMs not only underscores its
importance but also reveals the pattern of its consumption, i.e.,
how it is consumed in relation to other foods in a given
population. Moreover, the networks show a strong positive
association between red meat and processed meat intake, a
finding also observed in other populations (37). This is interest-
ing because the role of red meat for health outcomes is still
unraveling in terms of causality (37–39), and its further
investigation in relation to health outcomes is still a research
agenda priority (40).

GGMs identified a separate network for fresh fruits, raw
vegetables, and vegetable fats, reflecting a healthy pattern
among both sexes. In addition, similar to PCA, GGMs identified
separate networks for sweet foods and dairy products based on
fat content. However, unlike PCA (41), GGMs identified
independent networks of food groups in which each food group
was part of only 1 network that facilitated their interpretation.

GGMs introduce sparsity (i.e., select only a few variables in
the final model) and force other variables to 0 to explore data
structure and facilitate interpretation. This advantage of GGMs
is also shared by another data-reduction method called treelet
transform, which was introduced in nutrition epidemiology in
2011 (42). Treelet transform combines data-reduction features
of PCA and the interpretability advantage of cluster analysis to
identify sparse latent structures called factors. Low- or noisy-
factor loadings are forced to 0 in each identified factor to achieve
sparsity. This helps to identify factors that are easy to interpret.
However, unlike GGMs, it does not estimate a single pattern of
individual foods as a unique solution for the estimated model.
Moreover, the food groups in each factor are not independent of
the effect of each other.

This study also showed that GGMs are a robust method for
dietary pattern analysis and that they revealed similar networks
as SGCGMs. GGMs were the method of choice for this analysis
because SGCGMs perform rank-based transformations of the
original variables into new variables that have Gaussian
distribution. After transforming the variables, SGCGMs use the
same method to attain a graphical model as done in GGMs.
Therefore, we preferred to keep log-transformed original vari-
ables and use GGMs rather than selecting a model on rank-
based transformed variables.

There are also some potential limitations of the GGM
method. First, it requires data to be Gaussian-distributed, which
is not the case for all dietary variables. However, we log-
transformed all data, and although this does not always result in
perfect normal distributions, our findings were robust compared
with SGCGMs, which do not require the Gaussian assumption.
Second, network sparsity depends on a regularization parameter
that can be derived using different criteria (e.g., log likelihood or
Aikake/Bayesian information criteria, cross-validation, etc).
However, independent of the choice of method, the latent
structure of the data remains the same and may be identified
using any of the shrinkage parameter estimation methods—
albeit with different sparsity levels. Third, changes in character-
istics of the study sample may potentially yield a different
network in the same manner as pattern analysis through PCA.
This is true for all correlation-dependent methods and should be
kept in mind for GGMs as well. Fourth, GGMs identify
networks but do not assign individual scores to participants
such as PCA or classifies individuals in groups as done by cluster
analysis. It is important to note that a major aim of dietary
pattern analysis is to classify individuals based on a pattern
variable, which was not the aim of this study. Nevertheless,
advancing GGM methodology for possible calculation of

quantitative scores or classification of individuals on the basis of
an identified network could be of interest for future research.
Furthermore, methods used for dietary pattern analysis, which
assume sparsity, have also been criticized. It is argued that such
methods reduce the pattern to several foods, although actual
consumption comprises a large number of foods, all of which
should be retained in the dietary pattern (1). Nevertheless, such
arguments are challenged on several grounds. First, dietary
pattern lacks a specific definition. The current definition is
method-driven and can be defined operationally as data reduc-
tion (43). Because existing dietary pattern analysis tools have
limitations, different methods may identify dietary patterns
differently irrespective of the sparsity assumption (44) but still
will be called dietary patterns. Second, use of sparsity for
pattern recognition depends on the study question and may be
advantageous in certain situations. For example, Assi et al. (45)
used sparsity to identify a nutrient pattern associated with
hormonal receptor-defined breast cancer. In this study, sparsity is
advantageous because we could show not only the pattern but also
how foods in the pattern are consumed in relation to each other.

Strengths of this study include the use of a population-based
cohort with a large sample size. The large database allows sex-
specific dietary networks to be calculated and their stability
assessed. In addition, this analysis was based on an already
published dietary data set that has been analyzed with other
dietary pattern methods (e.g., PCA) that enable a direct
comparison of previous methods to our results. Furthermore, the
associations between the investigated food groups and chronic
disease risk in this population are already known (46). Conse-
quently, the identified networks may be further investigated for
an association with health outcomes.

In conclusion, GGMs are a powerful exploratory method
that can be used to construct dietary intake networks that
represent dietary intake patterns. These conditional indepen-
dence networks provide an insight into food consumption
patterns of a population and identify food groups that are
central to the network structure. GGMs identified a central role
of red meat consumption within the derived dietary pattern.
Identified networks can be transformed to intake pattern scores
for association with health outcome. Nevertheless, additional
studies are required to validate this method in other populations.
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