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Colour and moisture content are important indices in quality monitoring of dehydrating carrot slices dur-
ing dehydration process. This study investigated the potential of using multispectral imaging for
real-time and non-destructive determination of colour change and moisture distribution during the
hot air dehydration of carrot slices. Multispectral reflectance images, ranging from 405 to 970 nm, were
acquired and then calibrated based on three chemometrics models of partial least squares (PLS), least
squares-support vector machines (LS-SVM), and back propagation neural network (BPNN), respectively.

f\(/i):lvtvizrisc:tral imagin Compared with PLS and LS-SVM, BPNN considerably improved the prediction performance with coeffi-
Carmtp eing cient of determination in prediction (R,Z,) =0.991, root-mean-square error of prediction

(RMSEP) = 1.482% and residual predictive deviation (RPD)=11.378 for moisture content. It was con-
cluded that multispectral imaging has an excellent potential for rapid, non-destructive and simultaneous
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determination of colour change and moisture distribution of carrot slices during dehydration.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carrot (Daucus carota L.) is considered one of the healthiest veg-
etables due to its pleasant flavour, nutritive value and great health
benefits related to its antioxidant, anticancer, antianaemic, healing
and sedative properties (Doymaz, 2004; Gamboa-Santos, Montilla,
Soria, & Villamiel, 2012). In recent years, the consumption of carrot
and its related products has increased steadily (Hiranvarachat,
Devahastin, & Chiewchan, 2011). However, as with the rest of
vegetables, carrot is highly seasonal and abundantly available at
particular times of the year. Furthermore, carrot is a high-
moisture food with moisture content of 90/100 g and wilts rapidly
after harvest if it is not stored under appropriate environmental
conditions, which results in poor appearance that is not acceptable
to consumers (Togrul, 2006). For extending the availability of this
root, several preservation processes have been assayed. Among
them, dehydration is one of the most important since it not only
significantly extends vegetable shelf life and retains the nutritional
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quality but also diversifies the offer of foods for consumers
(Prakash, Jha, & Data, 2004). Furthermore, it brings about substan-
tial reduction in weight and volume, minimising packaging, stor-
age and transportation costs and enables storability of the
product under ambient temperatures (Baysal, Icier, Ersus, &
Yildiz, 2003). Currently, dehydrated carrots are used as an ingredi-
ent in many prepared foods such as instant soups and are an excel-
lent ingredient for developing oil-free, healthy snack foods (Lin,
Durance, & Scaman, 1998). Owing to changing lifestyles, there is
now a great demand for a wide variety of high quality dehydrated
carrots with emphasis on freshness and convenience.

Dehydrated carrots are commonly prepared by sun drying, hot
air drying, freeze drying, or vacuum microwave drying (Lin et al.,
1998), and its quality, e.g., colour and moisture content, has
received considerable attention from processors and consumers.
The applied dehydrating conditions and pre-treatments highly
influence the resulting physical, chemical, microbial, functional
and organoleptic properties of the carrot products. Therefore, the
improvement of carrot products quality and the rationalisation of
production in many branches of industry require a permanent
quality control of intermediate and finished products and continu-
ous monitoring of technological processes. The assessment of
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moisture content is very important in the production of dehy-
drated carrots. The removal of moisture prevents the growth and
reproduction of microorganisms which cause decay, and min-
imises many of the moisture-mediated deteriorative reactions.
However, too low moisture content can badly influence food taste,
and even destroy nutrition contents such as carotenoids and vita-
min. In addition, the moisture content controlling has great influ-
ence on dehydrated carrots transportation and storage. Common
methods for moisture analysis include oven-drying (AOAC, 1990),
freeze-drying or lyophilisation (Seligman & Farber, 1971) and
electronic moisture analyser (Sinija & Mishra, 2011). However,
these methods are time-consuming, tedious and destructive, and
not suitable for the situation where a large number of samples
are required to be measured. A rapid, reliable, robust and
non-destructive analytical method is needed for the prediction of
moisture content in carrots during dehydration.

In addition to moisture content, the colour of the dehydrated
carrots is another important quality factor, which is affected by
the operation conditions. Food colour usually is the first quality
parameter evaluated by consumers and is critical in the acceptance
of the products. In addition, colour measurement is an objective
parameter for the evaluation of quality changes during food pro-
cessing, storage, and distribution. At present, colour measurements
of carrots are performed using conventional colorimeter and
spectral photometer after drying (Baysal et al., 2003; Rawson,
Tiwari, Tuohy, O’'Donnell, & Brunton, 2011; Wu, Ma, et al., 2014;
Wu, Pan, et al., 2014). However, these traditional instrumental
techniques are time-consuming because of the repeated measure-
ments required to obtain a representative colour profile and to
reduce the measurement error. Moreover, these instruments are
designed for colour measurements on flat surfaces rather than on
out-of-flatness surfaces, which are found in dehydrating carrot
slices. The uncertainty of these instrumental measurements might
introduce further error in analysis (Huang, Wang, Zhang, & Zhu,
2014). Furthermore, current methods for measuring moisture con-
tent and colour cannot measure the two parameters
simultaneously.

Multispectral imaging is an increasingly used optical technol-
ogy that integrates image with spectroscopic technique to obtain
both spatial and spectral information from an object simultane-
ously. It has the advantages of being non-destructive, rapid, and
requires no sample pre-treatment, which makes this technology
directly useful for real-time applications in the field (e.g., fruit
packinghouses and food processing plants) (Gowen, O’Donnell,
Cullen, Downey, & Frias, 2007; Qin, Chao, Kim, Lu, & Burks,
2013). More importantly, this technique has the great potential
to measure the multiple components at the same time for quality
assurance. Recently, this technology has been applied as a power-
ful process analytical tool for non-destructive and on-line process
monitoring and quality control in the food industry (Andresen,
Dissing, & Lgje, 2013; Kim et al., 2008; Lu & Peng, 2007; Park
et al.,, 2007). Therefore, multispectral imaging is a promising
method for industrial use since it has potential to be used as an
on-line instrument for non-contact measurements of carrots on a
conveyer belt during production.

To our knowledge, there is no research reported about the
application of multispectral imaging technique for determining
colour change and moisture distribution in carrot slices during
hot air dehydration. Therefore, the overall objective of the present
study was to evaluate the feasibility of using multispectral imaging
technique in the spectral region of 405-970 nm for the colour
change detection and moisture content prediction of carrot slices
during dehydration process. The specific objectives were to: (1)
determine the colour change and moisture content in carrot slices
during dehydration process; (2) compare the performances of lin-
ear partial least square (PLS) and nonlinear least square-support

vector machine (LS-SVM) and back propagation neural network
(BPNN) analyses for the prediction accuracy of moisture content;
(3) develop image processing algorithms for the visualisation of
moisture content of carrot slices in all pixels within an image to
form distribution maps of moisture content of carrot slices.

2. Materials and methods
2.1. Sample preparation

Two batches of fresh carrots (D. carota L.) were obtained from
the local fruit and vegetable distribution centre of Hefei (China).
Carrots with no visible damage were selected for the experiment.
Carrots were properly washed in tap water to remove external
impurities and cut into slices of 40 + 2 mm diameter and 4 mm
thickness. Fifty carrot slices from each batch (n = 100 slices in total)
were used for analysis. The multispectral images of the carrot slices
were first captured using the multispectral imaging system. Then,
the sliced carrot slabs were weighed and blanched immediately in
boiling water for 1 min to inactivate the enzymes responsible for
quality deterioration of processed carrots (Gamboa-Santos et al.,
2013). An air temperature of 60 °C was selected to simulate indus-
trial practice and preserve the bioactivity of heat-sensitive carrot
constituents. In order to obtain different levels of moisture content,
carrot slices were dehydrated in a hot wind oven for seven time
periods of 0, 30, 60, 120, 180, 240 and 300 min, resulting in a total
of 700 samples (100 repeats for each dehydration period). For each
dehydration period, each carrot sample was first scanned by the
multispectral imaging system and then its reference value of mois-
ture content was determined.

2.2. Multispectral image acquisition and analysis

The data acquisition was done using the VideometerLab equip-
ment (Videometer A/S, Horsholm, Denmark) which acquired the
multispectral images at 19 different wavelengths ranging from
405 to 970 nm and the detailed information of the measured wave-
length were 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660,
700, 780, 850, 870, 890, 910, 940 and 970 nm. The acquisition sys-
tem recorded the surface reflections with a standard monochrome
charge coupled device chip, nested in a Point Grey Scorpion camera
(Point Grey Research GmbH, Ludwigsburg, Germany). The carrot
slice was placed inside the integrating sphere or Ulbricht sphere
with a matte white coating to ensure a uniform reflection of the
cast light, and thereby a uniform light in the entire sphere. At
the rim of the sphere, light emitting diodes (LEDs) with
narrow-band spectral radiation distribution were positioned in
the pattern of side by side distributing the LEDs of each wavelength
evenly across the whole perimeter to avoid shadows and specular
reflections. The setup of the instrument is further described in Liu
et al. (2014). The system was first calibrated radiometrically and
geometrically using well-defined standard target, followed by a
light setup based on the type of object to be recorded (Dissing
et al, 2013). Image segmentation was performed using the
VideometerLab software version 2.12.23. To remove the image
background, all items except the carrot slice were removed by a
Canonical Discriminant Analysis (CDA) (Cruz-Castillo et al., 1994)
and segmented using a simple threshold. The mean spectra were
calculated as mean values of all the pixels in carrot slice samples.

2.3. Reference measurements

The moisture content, expressed in per cent wet basis (%), was
measured by the gravimetric method using the oven-drying
method (AOAC, 1990). Colour values (L*, a* and b* values) of carrot
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slices were extracted from the image analysis and processing. L*
represents lightness, a* represents redness or greenness while b*
represents blueness or yellowness values. Colour difference (AE)
was used to describe the colour change in the fresh and dehydrated
carrot slice samples and was calculated using the following equa-
tion (Zenoozian, Devahastin, Razavi, Shahidi, & Poreza, 2007). A lar-
ger AE value denoted greater colour change before and after
dehydration.

AE = /(L — L)) + (@ — a;) + (b} — b5 )? (1)

where subscripts 1 and 2 were referred to as colour components
before and after dehydration, respectively.

2.4. Establishment of calibration models

In the current study, three different multivariate analysis,
namely, PLS, LS-SVM and BPNN were used to establish quantitative
models between moisture content and the spectral data extracted
from all samples at different dehydration periods.

2.4.1. PLS

PLS is a very well-known bilinear regression method for multi-
variate calibration. It has been widely applied in fruits and vegeta-
bles analysis and obtained favourable results. PLS compressed a
large number of variables into a few much smaller number of
latent variables (LVs) that were linear combinations of the spectral
data (X) and used these factors to ascertain for the analyte’s con-
centration (Y), explaining much of the covariance of X and Y. In
order to avoid the problem of over-fitting, a critical step in the
algorithm is the determination of the appropriate number of LVs.
This was determined by minimising the value of the prediction
residual error sum of square (PRESS). In the current study, the
X- and Y-variables used in the PLS models were the whole reflec-
tance spectra and the moisture content measured by the
oven-drying method, respectively.

24.2. LS-SVM

Support vector machine (SVM) is a learning algorithm used for
classification and regression tasks proposed by Cortes and Vapnik
(1995). The most valuable properties of SVM are their ability to
handle large input spaces efficiently, to deal with noisy patterns
and multi-modal class distributions, and their restriction on only
a subset of training data in order to fit a (nonlinear) function.
LS-SVM, which solves a set of linear equations instead of solving
a quadratic programming problem, is an optimised version based
on the standard SVM. It possesses the advantage of not only good
generalisation performance as SVM, but also simpler structure and
shorter optimisation time. The LS-SVM model can be expressed as:

y(x) = iail((x, X)) +b (2)

where K(x, x;) is the kernel function, x; is the input vector, o; is
Lagrange multipliers called support value and b is the bias term.
Proper kernel function and optimum kernel parameters are cru-
cial in LS-SVM. Here, a radial basis function (RBF) with Gaussian
function was used as the kernel function which handled nonlinear
relationships between the spectra and target attributes and was
able to reduce the computational complexity of the training proce-
dure, giving a good performance under the general smoothness
assumptions. There were just two parameters (7, 62) needed for
LS-SVM. The regularisation parameter y was used to determine
the trade-off between minimising the training error and model
complexity. The parameter 6> was the bandwidth and implicitly
defined the nonlinear mapping from input space to some high

dimensional feature space. Leave-one-out cross-validation was
used to obtain the optimum value of the parameters for the model
to produce a high accuracy.

2.4.3. BPNN

One of the most popular neural network topologies is BPNN,
which is used as calibration method for its supervised learning
ability proved to be well suited for prediction (Mouazen, Kuang,
Baerdemaeker, & Ramon, 2010). The basic structure of a BPNN
was composed of three layers which are input layers, hidden layers
and output layers. The input layer was used to receive information
from external sources and pass this information to network for
processing. The information from the input layer is processed in
hidden layer and the results are sent in output layer.

The difference between the desired and calculated network out-
put, defined as the goal error of the network, will gradually become
less until it meets the desired value. The goal error of the network
is calculated as:

k k
E= = > 0 0 3)

where k is the number of training bags, y; is the actual output value
of the ith bag and ¢; is the target value of the ith bag, respectively.
An off-line training algorithm based on a gradient descent
approach was used to update network weights that ensures the
designed neural network converge to the desired controller output
in BPNN. One cycle through all the training patterns is defined as
an epoch. Before the optimal network output error is achieved
for all training patterns, many epochs are required for the back
propagation. The transfer function of node takes the form:

fo) = (4)

“Tiewn
where Q is the parameter of function Sigmoid. As a highly non-linear
mapping from input to output, the main aim of the algorithm is to
find a mapping.

Leave-one-out cross-validation procedure was adopted to avoid
over-fitting. Several network architectures were tested by varying
the number of neurons in the hidden layer with different initial
weights. The optimal parameters of the hidden nodes, the goal
error and iteration times were determined by the least goal error.

2.5. Model evaluation

A total of 700 carrot slice samples were randomly divided into
calibration set (75%, including 75 samples at each dehydration
period) and prediction set (25%, including 25 samples at each
dehydration period). To compare among different calibration mod-
els established, the coefficient of determination (R?) in calibration
(R%) and prediction (R), root-mean-square error (RMSE) of calibra-
tion (RMSEC) and prediction (RMSEP) were considered. For better
evaluation, the ratio between RMSEP and RMSEC was introduced,
to provide information about the relationship between calibration
and prediction.

Residual prediction deviation (RPD) index was determined to
evaluate the robustness of the models; it was calculated as the
ratio between the standard deviation of reference data and the
bias-corrected RMSEP. The higher the RPD value the greater the
probability of the model to predict the chemical composition in
samples accurately. An RPD value range between 2.4 and 3.0 is
considered poor and the models could be applied only for very
rough screening, while an RPD value greater than 3.0 could be
considered fair and recommended for screening purposes and good
for quality control, respectively (Sinelli, Spinardi, Di Egidio,
Mignani, & Casiraghi, 2008). Generally, a good model should have
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high values of RZ, R3 and RPD, low values of RMSEC and RMSEP, and
a small difference between RMSEC and RMSEP.

2.6. Visualisation of moisture distribution

For detailed food analysis, it is required to visualise and analyse
the distribution of spatially nonhomogeneous properties of inter-
est in a sample, rather than their average concentration. Because
each pixel in a multispectral image had a corresponding spectrum,
the moisture content can be calculated at each pixel in the carrot
slice sample by inputting its spectrum into the established spectral
quantitative model. Then the moisture content was folded back to
generate a 2-D visualised map using the positions of all corre-
sponding pixels to visualise the moisture distribution of the carrot
slice sample. All of the above computations, chemometric analyses
and visualisation process were performed using the commercial
software Matlab 2009 (The Mathworks Inc., Natick, MA, USA) and
Origin 8.5.

3. Results and discussion
3.1. Analysis of reflectance spectra

Average reflectance spectra in the wavelength range of 405-
970 nm of the examined carrot slice samples original from seven
dehydration periods are shown in Fig. 1. The spectral reflectance
curves of carrot slice samples at different dehydration periods
were smooth and had the same trends across the whole tested
wavelength region. Carotenoids are colour pigments which are
responsible for imparting the characteristic orange colour to car-
rots. The optimal individual waveband for carotenoids estimation
was identified as 470 nm (Blackburn, 1998). As shown in Fig. 1, it
was clear to discover that a downward peak centred at around
470 nm, which was probably due to the presence of carotenoid
in the carrot slices. In addition, a main absorption band observed
between 940 and 970 nm related to O-H third stretching overtone
was assigned to moisture content (Wu, He, & Feng, 2008).
Furthermore, it was noticed from Fig. 1 that carrot slices with
higher moisture content generally had higher reflectance spectra
in the region of 405-890 nm and had lower reflectance spectra in
the region of 910-970 nm. The magnitude of reflectance increased
or decreased along with the increment of dehydration time. This
tendency was in agreement with the real colour change and mois-
ture content of these samples during dehydration.
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Fig. 1. Average reflection spectra of carrot slices original from seven different
dehydration periods. Vertical bars represent standard deviations from one hundred
measurements.

3.2. Colour change of carrot slices during dehydration

Colour change during carrot slices dehydration is due to various
factors including thermal and/or oxidative destruction of carote-
noids and enzymatic or non-enzymatic browning (Nahimana &
Zhang, 2011). A recent paper by Lokke, Seefeldt, Skov, and
Edelenbos (2013) compared CIELAB values from a spectrophotomet-
ric analysis of wild rocket leaves with those from a multispectral
imaging analysis (18 wavelengths in the VIS and the NIR range of
the electromagnetic spectrum) and reported that CIELAB values
from the multispectral images allowed for a more detailed determi-
nation of colour compared to measurement with a spectrophotome-
ter. Furthermore, the multispectral images enabled subtraction of
background information of the sample and gave more accurate
results on visual colour of wild rocket leaves. Similarly, Trinderup,
Dahl, Carstensen, Jensen, and Conradsen (2013) also reported that
the multispectral images (19 spectral bands, ranging from 410 to
955 nm) gave a more descriptive measure of colour and colour vari-
ance of the meat samples than the colorimeter. Based on these
results, multispectral image analysis was chosen for investigating
colour change of carrot slices during dehydration.

The overall colour difference (AE) for dehydrated carrot slices at
different dehydration periods are shown in Fig. 2. The colour differ-
ence (AE) ranged from 4.060 to 22.762, and the mean value was
10.379, with a standard deviation of 3.886. Furthermore, due to
different moisture content caused by dehydration, the carrot slices
showed an appearance of colour change with a large degree of col-
our heterogeneity. In general, the colour of carrot slices became
darker along with the progress of dehydration. Shrinkage also
occurred as the carrot slice samples lost moisture content.
Moreover, different visual appearance was noticed for each carrot
slice indicating heterogeneous distribution of moisture content
and other components in the same carrot slice. Therefore, it was
necessary to utilise multispectral imaging to predict the moisture
content and visualise the spatial distribution of moisture content
for each carrot slice.

3.3. Spectral variation among carrot slice samples

Principal component analysis (PCA) is a common multivariate
statistical modelling and analysis tool to obtain a parsimonious
representation of multivariate data. In the current study, PCA
was performed initially to visualise any variation among carrot
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Fig. 2. Colour difference (AE) of carrot slices original from seven different
dehydration periods. Vertical bars represent standard deviations from one hundred
measurements.



114 C. Liu et al./Food Chemistry 195 (2016) 110-116

PC3 (12.24%)

Fig. 3. Three dimensional score plot of the first three principal components conducted on the spectral data.

Table 1
Sample statistics for moisture content (%) of calibration and prediction sets.
Property Number of Minimum Maximum Mean Standard
samples deviation
Calibration set 525 15.505 92.728 74.722  18.357
Prediction set 175 21.356 91.504 74.766  17.604

slices attributed to differences in their spectral data during dehy-
dration in principal component (PC) space. Fig. 3 shows the three
dimensional score plot of the first three principal components
(PCs) from the spectral data extracted from the multispectral
images of all samples. The first three PCs, which account for the
most spectral variations 98.17%, were used to make differentiation
clearer. It was noticed that there was a better separation among
samples at different dehydration periods. Furthermore, it was also
observed that objects corresponding to 30 min were scored far
from all the remaining periods in PC3, which was probably due
to the moisture of carrot slice samples decreased faster during
the first 30 min. Similar results were reported by Soria et al.
(2010) and others.

3.4. Multivariate statistical analysis for moisture content

The sample statistics for moisture content of calibration and
prediction sets are shown in Table 1. A wide variability in moisture
content was observed as a result of the different dehydration peri-
ods: moisture content from 15.505% to 92.728%. Furthermore,
structured selection using only spectral information treatment
algorithms proved adequate, since the calibration and prediction
sets displayed similar values for mean, standard deviation, the
minimum value and the maximum value for moisture content.

The prediction performance of PLS, LS-SVM and BPNN models
for the determination of moisture content in carrot slices are pre-
sented in Table 2. For PLS model, the ideal number of LVs was
determined as 10 based on the lowest value of PRESS. In the stage
of model development using LS-SVM with RBF kernel, the optimal
combination of (7, %) was found at the value of (256, 0.0039) for
moisture content prediction. For BPNN model, the optimal param-
eters in modelling process were set as follows after the adjust-
ments of parameters. The number of hidden nodes, the goal error
and iteration times were determined to be 0.1, 0.004 and 800 for
moisture content prediction, respectively.

The selection of the best calibration model was important in
spectral analysis. In the current study, the results of PLS, LS-SVM
and BPNN models were compared. Compared with PLS and
LS-SVM models, BPNN model had the best predictive accuracy with
R2 of 0.990, R3 of 0.991, RMSEC of 1.344%, bias of —0.487%, RMSEP
of 1.482% and RMSEP/RMSEC ratio of 1.103. According to Shenk,
Workman, Westerhaus, Bums, and Ciurczak (2001), a robust model
can be achieved if the corrected standard error of prediction for
bias (RMSEPcorrected) does not exceed 1.30 times the RMSEC
and when the bias value does not exceed 0.6 times the RMSEC.
In the current study, the upper limit values were 1.103
(RMSEPcorrected/RMSEC) and 0.362 (Bias/RMSEC) in BPNN model,
respectively, which indicated that the developed model was
robust. Furthermore, the largest RPD of 11.378 showed that the
BPNN model was considered to be adequate for process control
of moisture content in carrot slices. Although the LS-SVM model
had the nearly same coefficient of determination (R?) as the
BPNN model, the RMSEP was higher and RPD was lower than those
in BPNN model indicating that the LS-SVM model was slightly less
good for moisture content prediction. Regarding to PLS, the RMSEP
was higher and R,Z, was lower than LS-SVM and BPNN models in
prediction set indicating that the model was poor. Therefore,

Table 2
Performance of PLS, LS-SVM and BPNN models for predicting moisture content (%) in carrot slices.
Calibration model R%— RMSEC R,27 Bias RMSEP RPD RMSEP/RMSEC
PLS 0.970 2.997 0.952 -0.537 3.420 4930 1.141
LS-SVM 0.995 1.249 0.984 -0.985 1.925 8.757 1.542
BPNN 0.990 1.344 0.991 -0.487 1.482 11.378 1.103

Ré, coefficient of determination in calibration; R,Z,, coefficient of determination in prediction; RMSEC, root mean square error of calibration; RMSEP, root mean square error of

prediction; RPD, residual predictive deviation.
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Fig. 4. Visualisation of moisture content in carrot slices at different dehydration periods.

BPNN was considered as the best way for establishing the
quantitative model of moisture content in carrot slices during
dehydration. The obtained model confirmed the suitability of mul-
tispectral imaging for moisture content determination in carrot
slices in a non-destructive manner.

3.5. Visualisation of moisture distribution in carrot slices during
dehydration

Recognising moisture distribution in a carrot slice at different
dehydration periods was useful to understand the changing of
moisture content in the slice during dehydration. In the current
study, the selected best model was used for further visualisation
of moisture content in carrot slices. An illustration of this is seen
in Fig. 4, the predicted moisture content of each pixel was mapped
with a linear colour scale where different moisture content from
high to low were shown in different colours from red to blue
(the colour bar at the bottom of Fig. 4). Because the established

BPNN model had high R3 of 0.991 and RPD of 11.378, and a low
RMSEP of 1.482%, the resulting distribution maps were reliable.

Fig. 4 shows the final visualised images of moisture distribution
of a carrot slice at seven different dehydration periods. It was
observed that the intensity of moisture distribution of the carrot
slice at different dehydration periods was not homogenous. This
phenomenon can be explained by the different behaviour of the
different tissue types, the moisture content at the xylem part of
the slice was higher than that of the surrounding phloem part.
Such phenomenon was much obvious for slices dehydrated after
180 min. Although many variations in moisture content were
observed across the carrot slices, there was a general trend of
decrease in overall moisture content from red to blue, which was
a clear indication of moisture status during dehydration of carrot
slices. Moreover, it was noticed that the moisture content of the
surrounding part of carrot slice decreased faster than that of the
centre xylem part, presumably because the surrounding part had
more surface area in contact with hot air than that of the centre
part. Multispectral imaging method can be more efficient for mon-
itoring moisture content quantitatively and understanding the
change of moisture distribution than using a usually much higher
precision spectrometer, because the different changes of different
tissue types can be compared. However, since the BPNN model in
the current study, was based on the pre-processed mean spectra
from the whole carrot slices, the accuracy of this pixel-wise predic-
tion remained to be validated properly in a further study.

4. Conclusions

It has been found that multispectral imaging together with
chemometrics can be successfully applied for the determination

of colour change and moisture content in carrot slices during dehy-
dration process without any preliminary sample preparation.
Better prediction results for moisture content were achieved using
BPNN model with Rf, =0.991, RMSEP = 1.482% and RPD = 11.378, as
compared with PLS and LS-SVM models. Furthermore, the simulta-
neous representation of both spectral and spatial data was exclu-
sively involved in multispectral imaging techniques compared to
the other spectral or optical methods. Hence, variations in mois-
ture content in a sample could be assessed with greater details
during dehydration process. The results suggest that multispectral
imaging could become a promising non-destructive method for
rapid and efficient inspecting the colour change and evaluating
the distribution of moisture content in carrot slices during dehy-
dration process at the processing plants.
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