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A visible/near-infrared hyperspectral imaging (HSI) system (400–1000 nm) coupled with wavelet
analysis was used to determine the total volatile basic nitrogen (TVB-N) contents of prawns during cold
storage. Spectral information was denoised by conducting wavelet analysis and uninformative variable
elimination (UVE) algorithm, and then three wavelet features (energy, entropy and modulus maxima)
were extracted. Quantitative models were established between the wavelet features and the reference
TVB-N contents by using three regression algorithms. As a result, the LS-SVM model with modulus
maxima features was considered as the best model for determining the TVB-N contents of prawns, with
an excellent R2

P of 0.9547, RMSEP = 0.7213 mg N/100 g and RPD = 4.799. Finally, an image processing
algorithm was developed for generating a TVB-N distribution map. This study demonstrated the possibil-
ity of applying the HSI imaging system in combination with wavelet analysis to the monitoring of TVB-N
values in prawns.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Freshness is a measure of quality in seafood, which deteriorates
rapidly after harvesting. Therefore techniques such as refrigeration
(Kiani and Sun, 2011; Sun and Eames, 1996; Wang and Sun, 2002a,
2004; Zheng and Sun, 2004) and drying (Cui, Sun, Chen, and Sun,
2008; Delgado and Sun, 2002) are often used to maintain seafood
quality. The freshness of seafood is affected by the decomposition
of protein, carbohydrates and fat, and the catalysis of enzymes, as
well as the metabolism of microorganisms. In order to evaluate the
freshness level of seafood products, a variety of methods based on
different perspectives, including sensory evaluation (Alasalvar
et al., 2001), microbial inspection (Koutsoumanis & Nychas,
2000), biochemical methods (Olafsdottir et al., 1997), chemical
volatile compound measurement (Iglesias et al., 2009), protein
property determination (Reddy & Srikar, 1991), and proteome
analysis (Martinez & Jakobsen Friis, 2004) have been applied. Total
volatile basic nitrogen (TVB-N) is regarded as the most effective
technique for freshness evaluation (Arvanitoyannis & Stratakos,
2012; Castro, Padrón, Cansino, Velázquez, & Larriva, 2006). In addi-
tion, cold storage is the most common storage method, which
prolongs the shelf-life of prawns during transport and marketing.
Therefore, it might be valuable to determine the variation of
TVB-N in prawn during cold storage.

Traditional techniques for determination of TVB-N are labori-
ous, destructive and tedious, which limit their applications for
on-line freshness monitoring and control. To overcome these
problems, several non-destructive techniques such as spec-
troscopy, computer vision, and hyperspectral imaging technique
have been proposed for measurement of TVB-N. By integrating
the advantages of spectroscopy and computer vision (Costa et al.,
2011; Jackman, Sun, Du, and Allen, 2009; Sun, 2004; Wang and
Sun, 2002b), hyperspectral imaging (HSI) is able to predict the
quality attributes at each pixel of the image (Barbin, ElMasry,
Sun, and Allen, 2012a,b; ElMasry, Barbin, Sun, and Allen, 2012;
ElMasry, Kamruzzaman, Sun, and Allen, 2012; Kamruzzaman,
ElMasry, Sun, and Allen, 2012; Lorente et al., 2012; Wu, Sun, and
He, 2012; Wu and Sun, 2013). Recently, numerous studies demon-
strated that HSI shows the possibility for estimating the chemical
composition contents such as fat (Zhu, Zhang, Shao, He, & Ngadi,
2013) and moisture (He, Wu, & Sun, 2013), microbiological
attributes such as freshness (Khojastehnazhand et al., 2014) and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodchem.2015.10.073&domain=pdf
http://dx.doi.org/10.1016/j.foodchem.2015.10.073
mailto:dawen.sun@ucd.ie
http://www.ucd.ie/refrig
http://www.ucd.ie/sun
http://dx.doi.org/10.1016/j.foodchem.2015.10.073
http://www.sciencedirect.com/science/journal/03088146
http://www.elsevier.com/locate/foodchem


258 Q. Dai et al. / Food Chemistry 197 (2016) 257–265
spoilage (Wu & Sun, 2013), as well as sensory parameters such as
color (Wu et al., 2012) and texture (Dai, Cheng, Sun, & Zeng, 2014)
of fish and other seafoods. In particular, for the determination of
TVB-N, Cheng, Sun, Zeng, and Pu (2014) investigated the potential
of using HSI system within the spectral wavelength range of
400–1000 nm to determine the TVB-N in grass carp fillets during
frozen storage. The range of TVB-N in measured fish fillets was
7.83–16.48 mg N/100 g, which was too narrow to establish a
robust prediction model for determining a large variance of
TVB-N. In addition, Huang, Zhao, Chen, and Zhang (2014)
attempted to measure TVB-N in pork meat by integrating near
infrared spectroscopy, computer vision, and the electronic nose
technique. However, in the fusion model, the large volume of 83
features adapted from NIRS, CV and E-nose greatly increased the
complexity and calculation load of the model (Huang et al.,
2014). More importantly, the data mining methods in the above
studies used the most traditional and typical algorithms. Therefore,
it is important to develop or introduce novel methods to analyze
the hyperspectral dataset or signal of seafoods.

The main objective of signal analysis is to find the relationship
between time information and frequency information (Allen &
Mills, 2004). The transformation of signal from time domain to
frequency domain is meaningful for the signal analysis when the
frequency components contain some significant features as in the
case of hyperspectral images. Due to the transient nature of hyper-
spectral images produced by food samples, traditional methods
such as Fourier transform or short-time Fourier transform are
unable to process such signals effectively since the time informa-
tion is severely reduced after transformation (Boashash, 1991;
Grafakos, 2008). Unlike Fourier transform, wavelet transform can
obtain both the time and frequency information of a signal simulta-
neously by shifting a stretched or compressed versions (scale) of
wavelet function (mother wavelet) at different locations along the
signal. The resulting coefficients generated by different parts of
the signal at different scaling factor are called wavelet coefficients.
The coefficients resulting from a large scaling factor represent the
low frequency components of the signal (approximate value) while
those generated by a small scaling factor represent the high
frequency components of the signal (detailed value) (Torrence &
Compo, 1998). Moreover, signal can be decomposed by several
(generally 68) levels, and for simplicity, further decomposition is
only conducted on the approximate value at each decomposition
level. Thus, with the decomposition level of n, the spectral features
of hyperspectral images can be broken into n high frequency com-
ponents and 1 low frequency components after 1 dimensional
wavelet analysis. Recently, wavelet transform has been recognized
as a valuable tool for signal processing (such as noise removal, com-
pression, feature extraction, and reconstruction) of hyperspectral
images at multiple resolutions (Abramovich, Bailey, & Sapatinas,
2000). However, little information is available for its application
in HSI analysis of foods including seafoods such as prawn. There-
fore, the objective of this study was to use wavelet transform and
analysis as an effective data mining technique to handle the hyper-
spectral images of prawns, in order to develop a simple, robust and
accurate model for predicting the variation of TVB-N contents in
prawn during cold storage.
2. Materials and methods

2.1. Preparation of prawn samples

A total of 240 live prawns (Metapenaeus ensis) each weighing
approximately 8–10 g were purchased from a local aquatic
products market of Xinzhao (Guangzhou, China). The prawns were
kept in seawater to which oxygen was added constantly using an
oxygen machine during transport to the laboratories of South
China University of Technology. After excluding the dead and
injured individuals, the remaining prawns were treated with
crushed ice (0 �C for 5 min) to induce a sudden death, and peeled
immediately by hand. Then the peeled prawns were drained, and
packaged in plastic bags, and 240 prawns were divided into five
groups (each group having 48 prawns) and stored at 4 �C for 0 h
(first group), 24 h (second group), 48 h (third group), 72 h (fourth
group) and 96 h (fifth group), respectively. For each cold storage
period, prawns were scanned by a HSI system firstly and then their
corresponding reference values of TVB-N were determined by tra-
ditional methods. The key steps of the experimental procedure are
illustrated in Fig. 1.
2.2. Determination of TVB-N

A modified stream distillation method was conducted to mea-
sure the reference TVB-N values (Cai, Chen, Wan, & Zhao, 2011).
To reduce the effect of muscle composition on cold storage, 3 g
of the middle prawn muscle (the second to fifth segments) was
minced and then mixed with 27 mL of perchloric acid (0.6 M). After
10 min of reaction, the mixture was centrifuged at 5000 rpm for
10 min, and then 30 mL of 30% sodium hydroxide was added to
make the filtrate alkaline and distilled for 5 min using a 8100 Kjel-
tec Distillation Unit (FOSS Tecator, Hillerød, Denmark). The distil-
late was collected in a conical flask containing 50 mL aqueous
solution of boric acid (40 g/L) and a mixed indicator. Afterward, a
0.01 M of hydrochloric acid solution was used to titrate the
obtained boric acid solution, of which the consumption was used
to calculate the TVB-N contents (mg N/100 g) in prawn muscle.
2.3. Hyperspectral imaging system and image acquisition

A typical pushbroom HSI system in the spectral range of 308–
1105 nm (501 bands) with 1004 � 1002 pixels, described previ-
ously by Dai et al. (2014), was applied to obtain the hyperspectral
images of prawn in reflectance mode. Before scanning, the surface
moisture of prawns were wiped by paper towel and warmed to
room temperature (25 �C). The prawns were then placed on the
translation platform and moved to the field of view of the camera
at a constant speed of 1.5 mm/s. Thus, a total of 240 hyperspectral
images were obtained over the whole cold storage, in which 75% of
hyperspectral images were used as the calibration set and the
remaining 25% of hyperspectral images formed the prediction set
in each cold storage period. As a result, the total size of calibration
set and prediction set is 180 and 60, respectively.

By checking the acquired hyperspectral images, a high level of
noise was observed at both ends of the working spectral range
(308–1105 nm), thus only the spectral range of 400–1000 nm
was used for spectral data extraction. Additionally, in order to min-
imize the effects of illumination and detector sensitivity as well as
the differences in camera and physical configuration of the imaging
system, a calibration step was conducted with two extra images,
namely the black image and the white reflectance image. The black
image (�0% reflectance) was acquired by covering the camera lens
with its opaque cap while the white reflectance image was
obtained using a uniform Teflon white tile (�99% reflectance).
The calibration was performed using the following formula:

Rc ¼ R0 � RB

RW � RB
� 100% ð1Þ

where R0 is the original acquired hyperspectral images, RB is the
standard black reference images, RW is the standard white reference
images and RC is the calibrated images.
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Fig. 1. The key steps of experimental procedure.
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2.4. Data pre-treatments

2.4.1. ROI identification and spectra extraction
In order to ensure the corresponding relationship between

spectra and reference values, the spectra should be acquired in
the areas that were used for reference measurement (Feng & Sun,
2012). In this study, the locations within hyperspectral images,
corresponding to areas of prawns that were used for determining
the reference TVB-N contents, were recognized as the region of
interest (ROI). For consideration of reducing the spatial noise, the
averaged spectra were extracted from the ROI of the hyperspectral
images by using the procedure of Statistics Average in ENVI v4.8
(ITT Visual Information Solutions, Boulder, CO, USA).

2.4.2. Wavelength reduction
The hyperspectral images obtained were composed of hundreds

of contiguous wavelengths for each pixel of a prawn sample, in
which most of wavelengths were redundant or weakly related to
the final prediction. These useless variables increased the calcula-
tion load and were removed in order to generate more accurate
and robust classification or predictive models. Several approaches
have been demonstrated to be efficient in the eliminating the noise
and less important wavelengths by dimension reduction. One of
the approaches is to use uninformative variable elimination
(UVE), which reduces the number of uninformative wavelengths
(Liu, Sun, & Zeng, 2014). In the UVE approach, a PLS regression
model should be established, the reliability (an evaluation criterion
of importance) of each wavelength is then analyzed based on the
corresponding regression coefficients of the PLS regression model
(Centner et al., 1996). Then by setting a cut-off value (threshold),
the wavelength with reliability higher than the threshold is
retained, and the lower ones removed. In this study, the cut-off
value (threshold) was set at the absolute stability value of the
99% sorted index number.

2.4.3. Wavelet analysis
The undesired variations, resulting from the physical, environ-

mental or instrumental changes during the procedure of data col-
lection, may decrease the robustness and accuracy of prediction or
classification model (Pu, Sun, Ma, Liu, and Cheng, 2014; Pu, Xie,
Sun, Kamruzzaman, and Ma, 2015). Thus, pre-treatment for mini-
mizing the undesired variations is required to prepare the data
for further analysis. Recently, wavelet transform have been suc-
cessfully applied in the separation of overlapping bands, noise
removal, smoothing, base line correction, and in removing multi-
collinearity effect of multi-dimensional spectra (Barclay, Bonner,
& Hamilton, 1997; Gributs & Burns, 2006). The Daubechies one-
dimensional discrete wavelet transform was conducted to analyse
the spectra matrix of prawns in this study. A combination of low
and high-pass wavelet filters was used to obtain discrete wavelet
coefficients of the spectral set (Mallat, 1989). As shown in Fig. 2,
the one-dimensional wavelet decomposition at the first level gives
two curves comprising of approximate signal (A1) and detailed sig-
nal (D1). And then the signal length is reduced to half in each filter-
ing operation. In other words, the approximated signal, which is
now half-sized compared to the original signal, is further decom-
posed into the second level of approximated (A2) and detailed
signals (D2). This process can be repeated until a desired or pre-
defined level is reached. The decomposition levels of spectra
matrix in this study was 7.

For de-noising, a wavelet de-noising scheme based on soft and
hard thresholding (Donoho, 1995) was employed to remove the



Fig. 2. The wavelet decomposition of a UVE pretreated spectrum (206 wavelengths), centering at 530–660 nm and 780–980 nm.
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noise in this study. The main steps are as follows. Assuming that p
(t) is the noise-free signal and f(t) is the signal corrupted with
white noise e(t), i.e.,

f ðtÞ ¼ pðtÞ þ wneðtÞ ð2Þ

where e(t) obeys a normal distribution N(0;1) and wn is the noise
variance.

(1) Convert the continuous signal f(t) to discrete signal f(i) by
using uniform sampling.

(2) The signal f(i) is transformed to an orthogonal domain by the
usage of discrete wavelet transform.

(3) A soft or hard thresholding is applied to the resulted wavelet
coefficients by the following formulae:

Soft thresholding function : scðxÞ ¼ signðxÞ �maxðjxj � c;0Þ ð3Þ
Hard thresholding function :
hcðxÞ ¼ x� 1fjxj > cg
otherwise;hcðxÞ ¼ 0

ð4Þ

In Eqs. (3) and (4), c is defined as:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w2

n logn
q

ð5Þ

where n is the length of the noisy signal f(i).

(1) The inverse discrete wavelet transform is performed to
reconstruct the de-noised signal.

The above de-noising algorithm performs well under a number
of applications (Chen, Zhu, & Xie, 2012; Cho, Bui, & Chen, 2009)
because wavelet transform is done only on the detailed coefficients
(noise) while the approximate coefficients are well retained. In this
study, Daubechies wavelet analysis, integrating the advantages of



Fig. 3. The variation of TVB-N contents in prawns during cold storage.
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smoothness and adaptation, was applied to eliminate the unde-
sired variations from the data matrix prior to data modeling.

As for the feature extraction of hyperspectral images, three
wavelet features, including energy, entropy signatures, and modu-
lus maxima, were calculated from the resulting wavelet
coefficients using the following equations:

Energy ¼ 1
Ml

XMl

kl¼1l

jW2l ½f ðtÞ�j2 ð6Þ

Entropy ¼ � 1
Ml

XMl

kl¼1l

jW2l ½f ðtÞ�j2 log jW2l ½f ðtÞ�j2 ð7Þ

The modulus maxima MaxjW2l ½f ðtkl Þ� should satisfy the following
equation:

jW2l ½f ðtÞ�j > jW2l ½f ðt þ 1Þ�j
jW2l ½f ðtÞ�j > jW2l ½f ðt � 1Þ�j

(
l ¼ 1;2; . . . ; L; kl ¼ 1l;2l; :::;Ml ð8Þ

where l is the scale, k is the number of modulus maxima at scale l,
W2l ½f ðtÞ� is the wavelet coefficients of f(t) at the scale of l.

The extraction of wavelet features was achieved by a developed
program operated in Matlab 2011a (The MathWorks Inc., Natick,
MA, USA) for wavelet analysis. The extracted wavelet features were
then used to establish prediction models.

2.5. Model calibration and estimation

The final goal of developing a HSI system is to estimate or dis-
criminate the characteristics of new samples accurately based on
the established quantitative models. In order to find the real rela-
tionship between TVB-N value and wavelet features, one linear
regression method, i.e., partial least squares regression (PLSR)
and two non-linear regression methods, i.e., least squares support
vector machines (LS-SVM), and back-propagation neural network
(BP-NN), were applied to build quantitative calibration models in
this study. The performance of the three established models based
upon PLSR, LS-SVM, and BR-NN using the wavelet features were
compared according to their predicting abilities. Several statistic
parameters are available to evaluate the prediction ability, includ-
ing the determination coefficients (R2), root mean square error
(RMSE), and ratio of prediction to deviation (RPD). Generally, a
good model should have a high R2 and a low RMSE. By combining
the ratio of SD and RMSE, RPD presents a relative predictive perfor-
mance of the established model more directly and efficient than
when either R2 or RMSE is used separately. According to
Barlocco, Vadell, Ballesteros, Galietta, and Cozzolin (2006) and
Guy, Prache, Thomas, Bauchart, and Andueza (2011), the value of
RPD above 2 indicate a good performance of the calibration model,
while a RPD value greater than 3 is considered sufficient for a par-
ticular analytical purposes. In this study, rather than calculating
the ordinary statistical criteria from the established calibration or
validation models, the quality of regression models was primarily
evaluated by the above three statistics in the prediction set
(ElMasry, Sun, & Allen, 2013).

2.6. Visualization

As TVB-N is a comprehensive freshness index that is related to
activities such as the degradation of proteins caused by enzymatic
and microbial activity, the TVB-N value may vary from pixel to
pixel. Therefore, visualization of TVB-N distribution is helpful to
understand the overall freshness level of prawns at different cold
storage periods. However, it is practically impossible to obtain
the reference contents of TVB-N at each pixel of prawn. As a useful
imaging tool, HSI is capable of visualizing the spatial distribution of
chemical components by generating the images or maps of concen-
tration gradients. In this study, the wavelet features of each pixel
was inserted into the optimized calibration model to obtain its cor-
responding TVB-N content. Then a visualized distribution map was
generated by pseudo-coloring each pixel into different colors
according to their corresponding TVB-N concentration, which
facilitated a better adjudication of the distribution and variations
of TVB-N content by checking the different color distributions.
All the procedures of visualization were conducted in a developed
program using software Matlab 2011a.
3. Results and discussion

3.1. Reference measurement of TVB-N

The reference average TVB-N contents of measured prawns at
each cold storage period (Fig. 3) reveal a low average TVB-N value
of 13.4 mg N/100 g in the 0 h group, indicating superior freshness.
The TVB-N contents were subsequently increased significantly at
the storage period of 24 h and 48 h possibly caused by the micro-
bial decomposition of protein. As for the two longer cold storage
periods (72 h and 96 h), the TVB-N contents gradually accumulated
at a relatively slow rate as the metabolism of protein was effec-
tively restrained (Huang et al., 2014). The TVB-N contents for some
samples even exceeded 30 mg N/100 g, which should be rejected
for human consumption (Castro et al., 2006; Olafsdottir et al.,
1997). The mean, standard deviation (SD) and the range of TVB-N
contents measured by the conventional methods in calibration
set are 20.75 mg N/100 g, 5.30 mg N/100 g, 9.41–35.40 mg N/100 g
and those for the prediction set are 20.23 mg N/100 g,
5.12 mg N/100 g, 9.87–33.52 mg N/100 g. The average TVB-N value
of all groups was 20.49 mg/100 g, indicating most of the cold stor-
age (696 h) samples were acceptable for human consumption
(Castro et al., 2006; Olafsdottir et al., 2006). More importantly,
the variation of TVB-N contents found in the examined prawn sam-
ples, ranging from 9.41 mg N/100 g to 35.4 mg N/100 g, was
required for establishing a robust and accurate calibration model.
Compared to the prediction set, the larger range in calibration set
might be meaningful for improving the prediction accuracy.
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3.2. Spectral characteristics

The averaged reflectance spectra of prawns at different cold
storage periods within the wavelength range of 400–1000 nm are
shown in Fig. 4. A similar trend with some variation was found
among the five average reflectance spectra. These differences were
possibly attributed to the changes of the main chemical compo-
nents during the cold storage of prawns. Although different TVB-
N values were found between the 0 h group and 24 h group, little
difference was observed in the corresponding reflectance spectra.
When the cold storage time reached 48 h, the main chemical com-
ponents of prawns were gradually decomposed, resulting in the
rapid accumulation of TVB-N as well as the increases of reflectance
values. The increased trend in the first three periods was consistent
with Cheng et al. (2013) who identified a positive relationship
between the reflectance value and TVB-N contents (7 < TVB-
N < 16 mg N/100 g). As most protein had been decomposed in
72 h and 96 h periods, the accumulation of the TVB-N contents
were slow and their corresponding decomposition products such
as ammonia, hydrogen sulfide, ethyl mercaptan, hydrocarbons,
alcohols, ketones and aldehydes accounted for the main factor of
spectra absorption, resulting in a declining trend of reflectance
spectrum. By checking the reflectance spectra, three broad peeks
centered at 575 nm, 810 nm and 970 nm were easily identified.
In detail, 575 nm was the feature wavelength for detecting met-
myoglobin (Wu et al., 2012), the high reflectance values at
810 nm were possibly due to the combined influences of C–H
stretching overtone in protein contents and O–H stretching over-
tone in water (He et al., 2013; Wu, He, & Feng, 2008), and the peak
around 970 nm was mainly related to the second overtone O–H
stretching in water as water is the major composition in prawn
(Elmasry, Sun, & Allen, 2011; Talens et al., 2013).
3.3. Identification of important wavelengths and extraction of wavelet
features

The redundant and noisy wavelengths in the spectral dataset
not only decrease the prediction ability but also limit the imple-
mentation of HSI for on-line systems. Therefore, it is desirable to
conduct wavelength elimination to establish simplified calibration
models with higher predicting accuracies. In this study, UVE was
employed to reduce the useless wavelengths, aiming to reducing
Fig. 4. Average spectra features of the tested
the calculation burden for further analysis. After the application
of the UVE algorithm, about 206 wavelengths were selected dis-
tributed mainly on two broad regions around 530–660 nm and
780–980 nm, which was consistent with the previous analysis of
spectral characteristics. This meant that most of wavelengths in
these two regions contained important information for the deter-
mination of TVB-N values in prawns during cold storage. Once
the redundant wavelengths were removed, three wavelet features,
including energy, entropy and modulus maxima were extracted at
the identified important wavelength regions. With seven wavelet
decomposition levels, eight, eight and twenty variables, respec-
tively, were obtained for energy, entropy and modulus maxima
in each sample. In order to find the most appropriate wavelet fea-
tures for predicting the examined TVB-N contents of prawns, the
extracted three wavelet feature sets were used as the input vari-
ables for calibration models and their corresponding performance
for determining TVB-N contents in the test samples were
compared.
3.4. Prediction of TVB-N values based on wavelet features

As the successful implementation of HSI in predicting food qual-
ity parameters and safety properties was closely associated with
appropriate data mining methods, the prediction models were
established based upon one linear algorithm (PLSR) and two non-
linear algorithms (BP-NN and LS-SVM) using the three wavelet fea-
tures. Table 1 lists their corresponding performance. Among the
three wavelet feature sets, the performance of non-linear regres-
sion models were better than that of linear regression models.
The possible reason might be that the wavelet transformation is a
type of non-linear decomposition and the extracted wavelet fea-
tures cannot be handled properly by linear regression algorithms
such as PLSR (Heijmans & Goutsias, 2000). Satisfactory predicting
accuracies (R2

p > 0.90, RMSEP < 2.04 and RPD > 2.79) were obtained
from non-linear calibration models based on all three wavelet fea-
tures, which demonstrated that wavelet features were sufficient to
establish a robust and accuratemodel for predicting the TVB-N con-
tents of prawns during the cold storage. By checking the perfor-
mance of three algorithms, LS-SVM was considered as the most
suitable regression algorithm for building prediction models. In
order to avoid the negative effect resulting from the unsuitable
regression algorithm (PLSR), only the performances of LS-SVM
prawns at different cold storage periods.



Table 1
Performance of four models for predicting TVB-N contents of prawns based on wavelet features.

Wavelet features Calibration model Variable number Calibration Prediction

R2
c

RMSEC R2
p

RMSEP RPD

Energy PLSR 8 0.401 4.102 0.321 6.365 0.943
LS-SVM 8 0.952 1.184 0.928 1.136 3.655
BP-NN 8 0.942 1.298 0.901 2.036 2.799

Entropy PLSR 8 0.164 4.847 0.133 4.986 0.864
LS-SVM 8 0.997 0.279 0.950 0.874 4.395
BP-NN 8 0.987 0.875 0.921 1.098 4.063

Modulus maxima PLSR 20 0.342 4.163 0.238 4.416 0.975
LS-SVM 20 0.998 0.256 0.955 0.712 4.799
BP-NN 20 0.975 0.946 0.932 1.159 4.165

Fig. 5. Examples of oranginal hyperspectral images (1) and TVB-N distribution maps (2) of prawns. (a), (b), (c), (d) and (e) represent the storage period of 0 h, 24 h, 48 h, 72 h
and 96 h, respectively.
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and BP-NNmodel were considered to find the best wavelet features
for quantification analysis. The modulus maxima showed a better
performance than the other two features both in LS-SVM and BP-
NN models for predicting TVB-N contents in prawns, possibly
because modulus maxima not only calculates the variations of sig-
nal value (spectrum) but also contains the information of structure
and shape of signal (spectrum) (Tu, Hwang, & Ho, 2005). With a
high prediction accuracy of R2

p = 0.9547, RMSEP = 0.7213 and
RPD = 4.799, the LS-SVMmodel based onmodulusmaxima features
was regarded as the best model for determining the TVB-N contents
in prawns during cold storage. This result demonstrated consider-
able progress compared with Cheng et al. (2013) who used tradi-
tional spectral features for investigating the effects of frozen
storage on the TVB-N contents of grass carp fillets.
3.5. Visualization of TVB-N distribution of prawn samples

The implementation of a visualization process would be helpful
to understand the variation of TVB-N contents within prawn mus-
cles during cold storage, which is impossible to observe visually.
In this study, the optimized model based on UVE-LS-SVM using
modulus maxima features was used for visualizing the TVB-N
distribution maps of prawn samples by transferring the model to
each pixel of the image to predict TVB-N contents in all spots of
prawns. Fig. 5 shows examples of original hyperspectral images
(1) and visualization of TVB-N distributionmap (2) of prawns at five
different cold storage periods. Obviously, it is hard to tell the
difference levels of TVB-N distribution of prawn samples from the
captured hyperspectral images in Fig. 5(1) directly. As shown in
Fig. 5(2), high TVB-N values were shown in red color while the
low values were in blue color. As the storage time increased, the
distribution maps exhibited an increase in overall TVB-N contents
from blue to red, a clear indication of spoilage uptake during the
cold storage of prawns. Although it is difficult to visually observe
the difference in TVB-N contents from location to location, the dif-
ference could be easily discerned from the final distribution maps.
The density and intensity of TVB-N contents of the head and back
locations were clearly higher than those of other locations, which
might be subjected to the high concentration of microorganisms
in prawns in those locations before cold storage.

The concentration maps demonstrated that HSI was a promis-
ing and useful tool for predicting and visualizing TVB-N contents
of prawns at different cold storage periods. With such TVB-N con-
tents distribution map, it was helpful and meaningful to evaluate
the accumulation of TVB-N contents in prawns during cold storage.
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More importantly, the distribution map could well facilitate pro-
cess monitoring and freshness quality control in the industry,
and provide information for the right consumption of prawn prod-
ucts with correct label, classification and price.
4. Conclusions

The potential for predicting TVB-N contents using a Vis–NIR
(400–1000 nm) HSI system in combination with wavelet features
were investigated in this study. The accuracies of the three wavelet
features (energy, entropy, modulus maxima) demonstrated that
the information obtained was sufficient to evaluate TVB-N varia-
tion in prawns during cold storage. The non-linear regression
methods (LS-SVM and BP-NN) were more suitable to deal with
wavelet features than linear regression method (PLSR). The UVE-
LS-SVMmodel using the modulus maxima features was considered
as the best model for the determination of TVB-N contents, which
showed high prediction ability with R2

p = 0.9547, RMSEP = 0.7213
and RPD = 4.799. Additionally, visualization maps of TVB-N distri-
bution were created using UVE-LS-SVM model for further under-
standing and better monitoring the loss of prawn freshness
during cold storage. The current results showed that this VIS–NIR
HSI technique coupled with wavelet analysis was an effective
and powerful tool for rapid and non-destructive determination
and assessment of prawn freshness.
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