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Abstract

Background: Glycine traditionally is classified as a nutritionally nonessential amino acid in humans and animals. Because of its
abundance in the body and its extensive use via multiple pathways, requirements for glycine are particularly high in neonates. Our
recent studies show that dietary glycine supplementation is needed for optimal intestinal development in piglets. Importantly,
reduced concentrations of glycine in the lumen of the small intestine are associated with gut dysfunction in low-birth-weight piglets.
However, the mechanisms responsible for the beneficial effects of glycine on the intestinal mucosal barrier are largely unknown.
Objective: This study tested the hypothesis that glycine may regulate the expression and distribution of tight junction (TJ)
proteins, thereby contributing to intestinal mucosal barrier function.

Methods: Enterocytes isolated from the jejunum of a healthy newborn pig were propagated to establish a stable cell line.
The cells were cultured with 0.05 mmol glycine/L (control; concentration in the small intestinal lumen of low-birth-weight
piglets) or 0.25 or 1.0 mmol glycine/L for the indicated periods of time. Epithelial barrier integrity and expression and
localization of TJ proteins were analyzed by using monolayer transepithelial electrical resistance (TEER) and paracellular
permeability, Western blot, and immunofluorescence imaging.

Results: Compared with controls, cells cultured with 0.25 or 1.0 mmol glycine/L increased TEER (P < 0.05) by 46-53% and
80-111%, respectively, at 60-72 h. Correspondingly, paracellular permeability was reduced (P < 0.05) by 6-21% and 18-27%
for 0.25 or 1.0 mmol glycine/L treatment, respectively, at 36-72 h. Compared with controls, protein abundances for claudin-3,
claudin-7, and zonula occludens (ZO) 3 were enhanced (25-33%, P < 0.05) by 0.25 and 1.0 mmol glycine/L at 8 h, whereas
those for occludin, claudin-1, claudin-4, and ZO-2 were not affected. Compared with controls, 1.0 mmol glycine/L reduced the
protein abundance of ZO-1 by 20% at 8 h (P < 0.05), but 0.25 mmol glycine/L had no effect. A glycine concentration
of 0.25 mmol/L sustained the localization of claudin-7 and ZO-3 to the interface between enterocytes. Interestingly,
1 mmol glycine/L promoted the distribution of claudin-4 and claudin-7 to the cytosol and nucleus, and the localization of ZO-3
to the plasma membranes, while decreasing the distribution of ZO-1 at cell-cell contact sites, compared with control cells.
Conclusion: Physiologic concentrations of glycine support intestinal mucosal barrier function by regulating the abundance
and distribution of claudin-7 and ZO-3 in enterocytes. Supplementation with glycine may provide an effective nutritional
strategy to improve intestinal integrity in piglets. J Nutr 2016;146:964-9.
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Introduction

Glycine is the most abundant amino acid in the plasma of young
pigs (1-3). Glycine traditionally has been categorized as a
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nutritionally nonessential amino acid because it is synthesized
in the body (4-6). In addition to serving as a building block
for protein synthesis, glycine is used for the biosynthesis of
glutathione, heme, creatine, nucleic acids, and uric acid (4).
Furthermore, glycine promotes the digestion and absorption of
fats and long-chain FAs by conjugating bile acids in the lumen of
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the small intestine (4, 7, 8). Thus, glycine plays an important role
in regulating DNA synthesis, cell proliferation, animal behavior,
food intake, immune response, and whole-body homeostasis (7,
9-11). Based on the dietary intake of glycine and the accretion of
glycine in the whole body, we have proposed that the amount of
glycine synthesized by neonates is not sufficient to meet their
maximal metabolic and growth requirements (12-14). There-
fore, glycine must be included in the diet for the young,
particularly low-birth-weight neonates with reduced concen-
trations of glycine in the plasma and small intestine (15).

Results of our recent study show that dietary supplementation
of glycine enhances growth performance and intestinal develop-
ment in milk-fed piglets (16). This effect was associated with a
greater rate of protein synthesis and maintenance of intracellular
redox states in enterocytes, which are required for intestinal
mucosal barrier function (17, 18). In addition, reduced concen-
trations of glycine in the lumen of the small intestine are associated
with gut dysfunction in low-birth-weight neonates (16). However,
the underlying mechanisms remain largely unknown. We hypoth-
esized that glycine may upregulate expression and distribution of
tight junction (TJ)® proteins in intestinal epithelial cells, thus
contributing to intestinal integrity in neonates.

Methods

Reagents. DMEM/Ham’s F-12 and FBS were purchased from
Invitrogen. DMEM was custom-made by Gibco. Epidermal growth
factor was a product of BD Biosciences. Trypsin/EDTA was procured
from Gibco. Antibodies against occludin, claudin-1, claudin-3, claudin-4,
claudin-7, zonula occludens (ZO) 1, ZO-2, and ZO-3 were pro-
ducts of Invitrogen. Culture plates were purchased from Corning.

Unless indicated, all other chemicals were purchased from Sigma-
Aldrich.

Cell culture. Intestinal porcine epithelial cell 1 (IPEC-1) cells were isolated
from the jejunum of a healthy newborn pig that did not have access to milk
or any food (19). These cells were propagated to establish a stable cell line
for our study. The cells were cultured in DMEM/Ham’s F-12 as previously
described (17). To evaluate the effect of glycine on intestinal integrity and TJ
protein abundance, adhered cells were starved for 6 h in serum- and glycine-
free custom-made DMEM (no. 08-5009EF; Gibco). The basal medium
contained 5 mmol D-glucose/L, no glycine, and physiologic concentrations
of all other amino acids found in the plasma of neonatal pigs (17). In our
preliminary studies, we found that the concentrations (means = SEMs; 7 =
6) of free glycine in the lumen of the jejunum were 0.06 = 0.01 mmol/L in
low-birth-weight (<0.7 kg birth weight) piglets not nursed by sows, 0.26 =
0.02 mmol/L in normal-birth-weight piglets (~1.4 kg) not nursed by sows
(KJ Sun, Z Wu, G Wu, unpublished data, 2015), and 1.05 * 0.12 mmol/L
in 7-d-old normal-birth-weight piglets nursed by sows (17). In the present
study, IPEC-1 cells attached to the culture dish were treated with 0.05
(serving as control), 0.25, or 1.0 mmol glycine/L as previously described
(17) for the indicated periods of time before respective analysis. This made
our results physiologically more relevant to piglets with intrauterine growth
restriction, a major health problem in both human medicine and animal
production (18).

Measurement of transepithelial electrical resistance. Cells were
incubated with 0.05 (serving as control), 0.25, or 1.0 mmol glycine/L
for the indicated periods of time. Transepithelial electrical resistance
(TEER) was determined every 12 h with the use of a Millicell ERS-2
Voltohmmeter (World Precision Instruments) equipped with an STX01
electrode as described (20). TEER was calculated by subtracting the
resistance value of the filter and fluids, and was normalized to initial

© Abbreviations used: FITC, fluorescein isothiocyanate; IPEC-1, intestinal porcine
epithelial cell 1; LDH, lactate dehydrogenase; TEER, transepithelial electrical
resistance; TJ, tight junction; ZO, zonula occludens.

values. Six independent experiments were performed with IPEC-1 cells.
All data are expressed as the relative values to those for the controls.

Measurement of paracellular permeability. Cells were treated as
described for TEER determination. Fluorescein isothiocyanate (FITC)-
labeled dextran (20 kDa) was added to the apical side of the monolayer
at the final concentration of 1 g/L. Aliquots of the medium were removed
from the basolateral chamber, and the concentration of FITC-dextran
was measured with the use of the SpectraMax M3 Multi-Mode
Microplate Reader (Molecular Devices) at excitation and emission
wavelengths of 490 and 520 nm, respectively. The permeability of
monolayer cells was defined as the amount of FITC-dextran that was
transported from the apical side into the basolateral chamber. FITC-
dextran concentration was calculated by subtracting the fluorescence
value of FITC-free medium.

Determination of cell membrane integrity. Release of lactate
dehydrogenase (LDH) from IPEC-1 cells into the cell culture medium
was determined, as described previously by us (20). Briefly, cells were
cultured with 0.05, 0.25, or 1 mmol glycine/L for 24 h. Thereafter, the
medium was collected for determination of LDH activity with the use
of an ultraviolet-visible spectrophotometer (450 nm) and an assay kit
from Jiancheng Bioengineering.

Western blot analysis. IPEC-1 cells treated with various concentra-
tions of glycine for 8 h were harvested for the analysis of abundance of TJ
proteins, as previously described (20). Equal amounts of protein (25 pg)
were separated on SDS-PAGE gels and then transferred to polyvinylidene
difluoride membranes (Millipore). Blots were incubated with a primary
antibody (1:2000) overnight at 4°C and then with an appropriate
secondary antibody (1:2000) at 25°C for 1 h. The blots were detected
with the ImageQuant LAS 4000 mini system (GE Healthcare Bio-
Sciences) after reactions with ECL Plus detection reagents (Amersham
Biosciences). The chemiluminescence signal was determined and band
density was quantified with the use of Quantity One software (Bio-Rad
Laboratories) (20). All results were normalized to B-actin and expressed
as the relative values to those for the control group.

Immunofluorescence imaging. Cells were fixed with 4% paraformal-
dehyde at 37°C for 20 min and then incubated with a specific primary
antibody against occludin, claudin-1, claudin-3, claudin-4, claudin-7,
Z0-1,Z20-2, or ZO-3 for 16 h at 4°C. Cells were washed 3 times with PBS
and then incubated with an appropriate secondary antibody (1:100) for
1 hat 25°C. Nuclei were stained with the use of Hoechst 33258 (1 pwg/mL)
for 10 min at 25°C. The distribution of T] proteins was visualized under a
fluorescence microscope (Axio Vert.Al; Zeiss).

Statistical analysis. Values are expressed as means = SEMs. Data were
analyzed by the use of 1-factor ANOVA and a Student-Newman-Keuls
multiple comparison test at each time point separately with the use of
SPSS statistical software for Windows (version 17.0). In statistical analysis,
the number of observations for each glycine concentration group refers
to the number of independent experiments with IPEC-1 cells. P values <
0.05 were taken to indicate statistical significance.

Results

Effects of glycine on barrier function in the IPEC-1 cell
monolayer. Compared with control cells, 0.25-1.0 mmol
glycine/L resulted in greater TEER (P < 0.05) at 48-72 h,
(Figure 1A). Cells treated with 1.0 mmol glycine/L also had
greater TEER (P < 0.05) than did those treated with 0.25 mmol
glycine/L at 48-72 h. In contrast, no difference was observed
between the cells treated with 0.25 or 1.0 mmol glycine/L and
control cells at 12-36 h. Correspondingly, cells incubated with
0.25 or 1.0 mmol glycine/L had reduced paracellular perme-
ability (P < 0.05), as indicated by FITC-dextran flux at 36-72 h
(Figure 1B), compared with controls. Cells treated with 1.0 mmol

Glycine regulates tight junctions 965

/T0Z ‘v Jaquialdas uo Sy ‘S9oualos ayiT 1o} Ja1uad uonewlolul reybueys e B1o-uonuinu-ul wolj papeojumod


http://jn.nutrition.org/

JN THE JOURNAL OF NUTRITION

25009 o ctrl
-+ Gly-0.25 mmol/L

20009, Gly-1 mmoliL
2 15004
&
w 10004
=

500~

0-

L T T T T
0 12 24 36 48 60 72
Time (h)

10009 —- Ctrl

= Gly-025mmolL , 2
8009 — Gly-1 mmollL
a

FITC-dextran concentration
(ng/mL)

T T T T T T
0 12 24 36 48 60 72
Time (h)

FIGURE 1 Effects of Gly on intestinal barrier function in IPEC-1
cells. Cells were cultured for the indicated time points in the presence
of 0.05 (Ctrl), 0.25, or 1 mmol Gly/L. TEER (A) and paracellular perme-
ability (B) were determined. Values are means = SEMs; n = 6. Labeled
means at a time without a common letter differ, P < 0.05. Ctrl, control
(cells incubated with 0.05 mmol Gly/L); FITC, fluorescein isothiocyanate;

IPEC-1, intestinal porcine epithelial cell 1; TEER, transepithelial electrical
resistance.

glycine/L had lower permeability (P < 0.05) than did those
treated with 0.25 mmol glycine/L at 36-72 h.

Effects of glycine on LDH release from IPEC-1 cells. The
amount of LDH released into the medium of IPEC-1 cells did not
differ between cells treated with 0.25 and 1.0 mmol glycine/L
(240 = 8.6 and 243 = 11 units/L, respectively) and control cells
(241 = 7.9 units/L).

Effects of glycine on expression of TJ proteins in IPEC-1
cells. Compared with the control treatment, treatment with
0.25 and 1.0 mmol glycine/L enhanced the abundance of proteins
(P < 0.05) for claudin-3, claudin-7 (Figure 2B and D), and
Z.0-3 (Figure 3C), without affecting that for claudin-1, claudin-4,
occludin, or ZO-2 (Figure 2A and C and Figure 3B). The protein
abundance of ZO-1 was reduced (P < 0.05) by 1.0 mmol glycine/L,
but was not affected by 0.25 mmol glycine/L (Figure 3A).

Effects of glycine on the intracellular distribution of TJ
proteins in IPEC-1 cells. The cellular distribution of TJ proteins
was assessed by the use of an immunofluorescence microscope.
Treatment with 0.25 mmol glycine/L promoted the localization
of claudin-7 (Figure 4D) to the plasma membrane without af-
fecting the localization of other TJ proteins, including claudin-1,

966 Lietal.
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FIGURE 2 Protein abundances for claudin-1 (A), claudin-3 (B),
claudin-4 (C), claudin-7 (D), and occludin (E) in IPEC-1 cells. IPEC-1
cells were cultured in the presence of 0.05 (Ctrl), 0.25, or 1 mmol Gly/L
for 8 h. Cells were collected and protein abundances were analyzed.
Values are means = SEMs; n = 6. Means without a common letter
differ, P < 0.05. Ctrl, control (cells incubated with 0.05 mmol Gly/L);
IPEC-1, intestinal porcine epithelial cell 1.
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FIGURE 3 Protein abundances for ZO-1 (A), ZO-2 (B), and ZO-3 (C) in
IPEC-1 cells. Cells were cultured in the presence of 0.05 (Ctrl), 0.25, or
1 mmol Gly/L for 8 h. Cells were collected and protein abundances were
analyzed. Values are means = SEMs; n = 6. Means without a common
letter differ, P < 0.05. Ctrl, control (cells incubated with 0.05 mmol/L
Gly); IPEC-1, intestinal porcine epithelial cell 1; ZO, zonula occludens.

claudin-3, claudin-4, occludin, ZO-1, and ZO-2 (Figure 4).
In contrast, 1.0 mmol glycine/L induced the localization of
claudin-4 (Figure 4C) and claudin-7 (Figure 4D) from the cell
membranes to the cytosol and the nucleus, and reduced the
abundance of ZO-1 (Figure 4F) in the plasma membrane,
compared with the controls. Cells treated with 0.25 or 1.0 mmol
glycine/L had a greater abundance of ZO-3 at cell-cell contact
sites than did control cells (Figure 4H).

Discussion

Intestinal mucosal barrier function is critical for nutrient
transport, absorption, and intracellular homeostasis (21, 22).
The epithelial barrier is formed by the apical plasma membrane

Gly (mmol/L)
A Claudin-1
B claudin-3
C Claudin-4
D cilaudin-7
E Occludin
F Zo-1
G Zo-2
H Z0-3

FIGURE 4 Effects of Gly on the distribution of the TJ proteins
claudin-1 (A), claudin-3 (B), claudin-4 (C), claudin-7 (D), occludin (E),
Z0-1 (F), ZO-2 (G), and ZO-3 (H) in IPEC-1 cells. Cells were treated as
in Figure 3, and immunofluorescence staining was performed to
identify the distribution of the TJ proteins. Scale bar, 50 pm. Ctrl,
control (cells incubated with 0.05 mmol Gly/L); IPEC-1, intestinal
porcine epithelial cell 1; TJ, tight junction; ZO, zonula occludens.

and intercellular TJ, which provides physical and functional
barriers to prevent bacteria, endotoxins, and other harmful
substances from entering the blood circulation while allowing
for the absorption of enteral nutrients (23). The intestinal
mucosal barrier function can be regulated by diverse physiologic
or pathologic stimuli (21, 24-26). Our recent studies showed
that glycine supplementation enhanced growth performance and
intestinal development in piglets (16) through the stimulation of
global protein synthesis and maintenance of intracellular redox
states (17). It is unknown whether glycine can regulate expres-
sion of T] proteins and thereby contribute to intestinal mucosal
barrier integrity.

To this aim, we first measured TEER, an indicator of
intestinal epithelial integrity and permeability of intestinal
epithelium. Multiple factors, such as inflammation, stress, and
injury, result in increased permeability of the intestinal epithe-
lium and dysfunction of the intestinal mucosal barrier (27).
In the present study, we provided for the first time, to our
knowledge, direct evidence that physiologic concentrations of
glycine improve epithelial barrier integrity, as indicated by
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enhanced TEER and reduced paracellular permeability (Figure
1).

Epithelial barrier function and paracellular permeability
primarily are determined by epithelial TJs (28, 29). The TJs
are multiprotein complexes composed of transmembrane pro-
teins (e.g., the claudin family, occludin, and junction adhesion
molecules) that interact with cytosolic peripheral proteins (e.g.,
70-1,70-2, and ZO-3) linking the transmembrane TJ proteins
to the actin-based cytoskeleton (30, 31). Accumulating evidence
shows that disruption of epithelial T] integrity is associated with
multiple intestinal disorders (28, 32). For example, it has been
reported that enteric pathogens impair epithelial integrity in the
intestine by either altering the cellular cytoskeleton or affecting
the function of specific T] proteins, such as integral membrane
proteins (e.g., occludin), ZO-1, or members of the claudin
family (31). We recently found that dietary supplementation
with glutamine prevented weaning stress—induced intestinal
barrier breakdown by augmenting T] protein abundance (33),
suggesting a functional role for amino acids in regulating muco-
sal barrier function.

Another important finding from the present study is that
glycine regulates the cellular distribution of T] proteins in intes-
tinal cells. Specifically, we found that the presence of 0.25 mmol
glycine/L in culture medium led to enhanced protein abun-
dance in the cell membrane for claudin-7 and ZO-3, which
is correlated well with augmented TEER values in IPEC-1 cells
(Figure 1). The claudin family of proteins plays a crucial role in
tightening cell-cell contacts and maintaining paracellular per-
meability (34, 35). Recent studies have demonstrated that the
reduction of claudin-7 proteins is strongly associated with in-
testinal barrier disruption in rodents (36, 37); this was verified
in our cell culture model. Interestingly, the exposure of IPEC-1
cells to glycine resulted in the translocation of claudin-7 from
the cytosol to intracellular membranes. Thus, glycine regulates
both the abundance and localization of claudin-7 in enterocytes.
Considering the claudin-mediated barrier disruption in
deoxynivalenol-treated pigs (38), supplementation with gly-
cine may provide an effective nutritional strategy to attenu-
ate mycotoxin-induced mucosal barrier dysfunction. It should
be noted that 1 mmol glycine/L aided in the redistribution of
claudin-4 and claudin-7 from intracellular membranes to the
cytosol and the nuclear membrane compared with the control
(Figure 4), suggesting a refined control of intestinal T]J function
by glycine.

Another important group of TJ scaffolding molecules is the
family of ZO proteins, including ZO-1, ZO-2, and ZO-3, as
noted previously. It is generally believed that ZO-1 and ZO-2
can interact directly with occludin and claudins via their PSD95-
DLG1-Z01 domain, whereas their C-terminus can associate
with actin, thus providing a direct link with the cytoskele-
ton (29). Such organization of ZO proteins is crucial for the
assembly of TJ and epithelial barrier function (39). In contrast,
in the present work and our previous in vivo studies (33), we
observed that the abundance of proteins for ZO-2 or ZO-3,
rather than ZO-1, was enhanced by certain amino acids. Al-
though the existence of ZO-3 has been known for ~15 vy, its
function remains largely unknown (40, 41). In addition to
providing a bridge that links occludin and claudins with the
cytoskeleton, ZO proteins may also affect the expression of
transmemberane proteins at transcriptional and post-translational
levels (29). Moreover, even though numerous TJ proteins have
been identified (30), their precise roles remain incompletely
understood. More research is required to unravel the underly-
ing molecular mechanisms responsible for the effects of glycine
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on the abundance and localization of TJ proteins in intestinal
epithelial cells.

Low birth weight is a serious health problem in both human
medicine and animal agriculture, and it affects 10-12% and 15—
25% of newborn infants and piglets, respectively (42). Concen-
trations of glycine in the plasma of low-birth-weight neonates
are reduced in comparison with their normal-birth-weight
counterparts (15). Intestinal dysfunction is a major factor con-
tributing to high rates of morbidity and mortality in both low-
birth-weight infants (43) and piglets (42). Interestingly, protein
abundances for claudin-7 and ZO-3, as well as the integrity
of intestinal epithelial cells, were enhanced by 0.25 mmol
glycine/L (found in the small-intestinal lumen of normal-birth-
weight piglets) compared with 0.05 mmol glycine/L (found
in the small-intestinal lumen of low-birth-weight piglets). We
suggest that a deficiency of glycine in the gut contributes to
its dysfunction in low-birth-weight piglets. This provides a
new biochemical basis for the use of glycine to prevent intes-
tinal abnormality, thereby improving neonatal survival and
growth.

In summary, studies with porcine enterocytes revealed that
physiologic concentrations of glycine improved intestinal epi-
thelial barrier integrity, as indicated by increased TEER. This
beneficial effect of glycine is accompanied by enhanced abun-
dance and distribution of claudin-7 and the scaffolding protein
Z0O-3 in intestinal epithelial cells. Based on these findings,
which, to our knowledge, are novel, we propose that supple-
mentation with glycine may provide an effective nutritional
strategy to improve intestinal mucosal barrier function in
neonatal mammals, including piglets and human infants.
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